Search results for: quality switched ruby laser
10560 Development of β-Ti Alloy Powders for Additive Manufacturing for Application in Patient-Specific Orthopedic Implants
Authors: Eugene Ivanov, Eduardo del-Rio, Igor Kapchenko, Maija Nystrӧm, Juha Kotila
Abstract:
Series of low modulus beta Ti alloy billets and powders can be produced in commercial quantities using a combination of electron beam melting (EBM) and EIGA atomization processes. In the present study, TNZT alloy powder was produced and processed in the EOSINT M290 laser sintering system to produce parts for mechanical testing. Post heat treatments such as diffusion annealing to reduce internal stresses or hot isostatic pressing to remove closed pores were not applied. The density can visually be estimated to be > 99,9 %. According to EDS study Nb, Zr, and Ta are distributed homogeneously throughout the printed sample. There are no indications for any segregation or chemical inhomogeneity, i.e. variation of the element distribution. These points to the fact that under the applied experimental conditions the melt generated by the laser rapidly cools down in the SLM (Selective Laser Melting) process. The selective laser sintering yielded dense structures with relatively good surface quality. The mechanical properties, especially the elongation (24%) along with tensile strength ( > 500MPa) and modulus of elasticity (~60GPa), were found to be promising compared to titanium alloys in general.Keywords: beta titanium alloys, additive manufacturing, powder, implants
Procedia PDF Downloads 23110559 Influence of Selected Finishing Technologies on the Roughness Parameters of Stainless Steel Manufactured by Selective Laser Melting Method
Authors: J. Hajnys, M. Pagac, J. Petru, P. Stefek, J. Mesicek, J. Kratochvil
Abstract:
The new progressive method of 3D metal printing SLM (Selective Laser Melting) is increasingly expanded into the normal operation. As a result, greater demands are placed on the surface quality of the parts produced in this way. The article deals with research of selected finishing methods (tumbling, face milling, sandblasting, shot peening and brushing) and their impact on the final surface roughness. The 20 x 20 x 7 mm produced specimens using SLM additive technology on the Renishaw AM400 were subjected to testing of these finishing methods by adjusting various parameters. Surface parameters of roughness Sa, Sz were chosen as the evaluation criteria and profile parameters Ra, Rz were used as additional measurements. Optical measurement of surface roughness was performed on Alicona Infinite Focus 5. An experiment conducted to optimize the surface roughness revealed, as expected, that the best roughness parameters were achieved through a face milling operation. Tumbling is particularly suitable for 3D printing components, as tumbling media are able to reach even complex shapes and, after changing to polishing bodies, achieve a high surface gloss. Surface quality after tumbling depends on the process time. Other methods with satisfactory results are shot peening and tumbling, which should be the focus of further research.Keywords: additive manufacturing, selective laser melting, SLM, surface roughness, stainless steel
Procedia PDF Downloads 13410558 The Temperature Effects on the Microstructure and Profile in Laser Cladding
Authors: P. C. Chiu, Jehnming Lin
Abstract:
In this study, a 50-W CO2 laser was used for the clad of 304L powders on the stainless steel substrate with a temperature sensor and image monitoring system. The laser power and cladding speed and focal position were modified to achieve the requirement of the workpiece flatness and mechanical properties. The numerical calculation is based on ANSYS to analyze the temperature change of the moving heat source at different surface positions when coating the workpiece, and the effect of the process parameters on the bath size was discussed. The temperature of stainless steel powder in the nozzle outlet reacting with the laser was simulated as a process parameter. In the experiment, the difference of the thermal conductivity in three-dimensional space is compared with single-layer cladding and multi-layer cladding. The heat dissipation pattern of the single-layer cladding is the steel plate and the multi-layer coating is the workpiece itself. The relationship between the multi-clad temperature and the profile was analyzed by the temperature signal from an IR pyrometer.Keywords: laser cladding, temperature, profile, microstructure
Procedia PDF Downloads 22710557 3D Writing on Photosensitive Glass-Ceramics
Authors: C. Busuioc, S. Jinga, E. Pavel
Abstract:
Optical lithography is a key technique in the development of sub-5 nm patterns for the semiconductor industry. We have already reported that the best results obtained with respect to direct laser writing process on active media, such as glass-ceramics, are achieved only when the energy of the laser radiation is absorbed in discrete quantities. Further, we need to clarify the role of active centers concentration in silver nanocrystals natural generation, as well as in fluorescent rare-earth nanostructures formation. As a consequence, samples with different compositions were prepared. SEM, AFM, TEM and STEM investigations were employed in order to demonstrate that few nm width lines can be written on fluorescent photosensitive glass-ceramics, these being efficient absorbers. Moreover, we believe that the experimental data will lead to the best choice in terms of active centers amount, laser power and glass-ceramic matrix.Keywords: glass-ceramics, 3D laser writing, optical disks, data storage
Procedia PDF Downloads 30210556 Laser Shock Peening of Additively Manufactured Nickel-Based Superalloys
Authors: Michael Munther, Keivan Davami
Abstract:
One significant roadblock for additively manufactured (AM) parts is the buildup of residual tensile stresses during the fabrication process. These residual stresses are formed due to the intense localized thermal gradients and high cooling rates that cause non-uniform material expansion/contraction and mismatched strain profiles during powder-bed fusion techniques, such as direct metal laser sintering (DMLS). The residual stresses adversely affect the fatigue life of the AM parts. Moreover, if the residual stresses become higher than the material’s yield strength, they will lead to acute geometric distortion. These are limiting the applications and acceptance of AM components for safety-critical applications. Herein, we discuss laser shock peening method as an advanced technique for the manipulation of the residual stresses in AM parts. An X-ray diffraction technique is used for the measurements of the residual stresses before and after the laser shock peening process. Also, the hardness of the structures is measured using a nanoindentation technique. Maps of nanohardness and modulus are obtained from the nanoindentation, and a correlation is made between the residual stresses and the mechanical properties. The results indicate that laser shock peening is able to induce compressive residual stresses in the structure that mitigate the tensile residual stresses and increase the hardness of AM IN718, a superalloy, almost 20%. No significant changes were observed in the modulus after laser shock peening. The results strongly suggest that laser shock peening can be used as an advanced post-processing technique to optimize the service lives of critical components for various applications.Keywords: additive manufacturing, Inconel 718, laser shock peening, residual stresses
Procedia PDF Downloads 13010555 Laser - Ultrasonic Method for the Measurement of Residual Stresses in Metals
Authors: Alexander A. Karabutov, Natalia B. Podymova, Elena B. Cherepetskaya
Abstract:
The theoretical analysis is carried out to get the relation between the ultrasonic wave velocity and the value of residual stresses. The laser-ultrasonic method is developed to evaluate the residual stresses and subsurface defects in metals. The method is based on the laser thermooptical excitation of longitudinal ultrasonic wave sand their detection by a broadband piezoelectric detector. A laser pulse with the time duration of 8 ns of the full width at half of maximum and with the energy of 300 µJ is absorbed in a thin layer of the special generator that is inclined relative to the object under study. The non-uniform heating of the generator causes the formation of a broadband powerful pulse of longitudinal ultrasonic waves. It is shown that the temporal profile of this pulse is the convolution of the temporal envelope of the laser pulse and the profile of the in-depth distribution of the heat sources. The ultrasonic waves reach the surface of the object through the prism that serves as an acoustic duct. At the interface ‚laser-ultrasonic transducer-object‘ the conversion of the most part of the longitudinal wave energy takes place into the shear, subsurface longitudinal and Rayleigh waves. They spread within the subsurface layer of the studied object and are detected by the piezoelectric detector. The electrical signal that corresponds to the detected acoustic signal is acquired by an analog-to-digital converter and when is mathematically processed and visualized with a personal computer. The distance between the generator and the piezodetector as well as the spread times of acoustic waves in the acoustic ducts are the characteristic parameters of the laser-ultrasonic transducer and are determined using the calibration samples. There lative precision of the measurement of the velocity of longitudinal ultrasonic waves is 0.05% that corresponds to approximately ±3 m/s for the steels of conventional quality. This precision allows one to determine the mechanical stress in the steel samples with the minimal detection threshold of approximately 22.7 MPa. The results are presented for the measured dependencies of the velocity of longitudinal ultrasonic waves in the samples on the values of the applied compression stress in the range of 20-100 MPa.Keywords: laser-ultrasonic method, longitudinal ultrasonic waves, metals, residual stresses
Procedia PDF Downloads 32810554 Development and Modeling of the Process of Narrow-seam Laser Welding of Ni-Superalloy in a Hard-to-Reach Place
Authors: Vladimir Isakov, Evgeniy Rykov, Lubov Magerramova, Nikolay Emmaussky
Abstract:
For the manufacture of critical hollow products, a laser narrow-seam welding scheme based on the supply of a laser beam into the inner cavity has been developed. The report presents the results of comprehensive studies aimed at creating a sealed weld that repeats the geometric shape of the inner cavity using a rotary mirror. Laser welding of hard-to-reach places requires preliminary modeling of the process to identify defect-free modes performed at the highest possible welding speed. Optimization of the technological modes of the welded joint with a ratio of the seam width to its depth equal to 1/5 of the thickness of the Ni superalloy 6.0 mm was performed using the Verhulst limited growth model in a discrete representation. This mathematical model in the form of a recurrence relation made it possible to numerically investigate the entire variety of laser melting modes: chaotic; self-oscillating; stationary and attenuated. The control parameters and the parameter of the order to which other variables of the technological system of laser welding are subordinated are established. In it, the coefficient of relative heat capacity of the melt bath was used as a control parameter, characterizing the competition between the heat input by the laser and the heat sink into the surrounding metal. The parameter of the order of the narrow–seam laser welding process, in this interpretation, is a dimensionless value of the penetration depth, which is an argument of the function of the desired logistic equation. Experimental studies of narrow-seam welding were performed using a copper, water-cooled mirror by radiation from a powerful fiber laser. The obtained results were used to validate the evolutionary mathematical model of the laser welding process.Keywords: laser welding, internal cavity, limited growth model, ni-superalloy
Procedia PDF Downloads 1510553 Application of Laser Spectroscopy for Detection of Actinides and Lanthanides in Solutions
Authors: Igor Izosimov
Abstract:
This work is devoted to applications of the Time-resolved laser-induced luminescence (TRLIF) spectroscopy and time-resolved laser-induced chemiluminescence spectroscopy for detection of lanthanides and actinides. Results of the experiments on Eu, Sm, U, and Pu detection in solutions are presented. The limit of uranyl detection (LOD) in urine in our TRLIF experiments was up to 5 pg/ml. In blood plasma LOD was 0.1 ng/ml and after mineralization was up to 8pg/ml – 10pg/ml. In pure solution, the limit of detection of europium was 0.005ng/ml and samarium, 0.07ng/ml. After addition urine, the limit of detection of europium was 0.015 ng/ml and samarium, 0.2 ng/ml. Pu, Np, and some U compounds do not produce direct luminescence in solutions, but when excited by laser radiation, they can induce chemiluminescence of some chemiluminogen (luminol in our experiments). It is shown that multi-photon scheme of chemiluminescence excitation makes chemiluminescence not only a highly sensitive but also a highly selective tool for the detection of lanthanides/actinides in solutions.Keywords: actinides/lanthanides detection, laser spectroscopy with time resolution, luminescence/chemiluminescence, solutions
Procedia PDF Downloads 33910552 Laser Micro-Welding of an Isomorphous System with Different Geometries: An Investigation on the Mechanical Properties and Microstructure of the Joint
Authors: Mahdi Amne Elahi, Marcus Koch, Peter Plapper
Abstract:
Due to the demand of miniaturizing in automotive industry, the application of laser welding is quite promising. The current study focused on laser micro-welding of CuSn6 bronze and nickel wire for a miniature electromechanical hybrid component. Due to the advantages of laser welding, the welding can be tailored specifically for the requirements of the part. Scanning electron and optical microscopy were implemented to study the microstructure and tensile-shear test was selected to represent the mechanical properties. Different welding sides, beam oscillations, and speeds have been investigated to optimize the tensile-shear load and microstructure. The results show that the mechanical properties and microstructure of the joint is highly under the influence of the mentioned parameters. Due to the lack of intermetallic compounds, the soundness of the joint is achievable by manipulating the geometry of the weld seam and minimize weld defects.Keywords: bronze, laser micro-welding, microstructure, nickel, tensile shear test
Procedia PDF Downloads 16810551 Relationshiop Between Occupants' Behaviour And Indoor Air Quality In Malaysian Public Hospital Outpatient Department
Authors: Farha Ibrahim, Ely Zarina Samsudin, Ahmad Razali Ishak, Jeyanthini Sathasivam
Abstract:
Introduction: Indoor air quality (IAQ) has recently gained substantial traction as the airborne transmission of infectious respiratory disease has become an increasing public health concern. Public hospital outpatient department (OPD). IAQ warrants special consideration as it is the most visited department in which patients and staff are all directly impacted by poor IAQ. However, there is limited evidence on IAQ in these settings. Moreover, occupants’ behavior like occupant’s movement and operation of door, windows and appliances, have been shown to significantly affect IAQ, yet the influence of these determinants on IAQ in such settings have not been established. Objectives: This study aims to examine IAQ in Malaysian public hospitals OPD and assess its relationships with occupants’ behavior. Methodology: A multicenter cross-sectional study in which stratified random sampling of Johor public hospitals OPD (n=6) according to building age was conducted. IAQ measurements include indoor air temperature, relative humidity (RH), air velocity (AV), carbon dioxide (CO2), total bacterial count (TBC) and total fungal count (TFC). Occupants’ behaviors in Malaysian public hospital OPD are assessed using observation forms, and results were analyzed. Descriptive statistics were performed to characterize all study variables, whereas non-parametric Spearman Rank correlation analysis was used to assess the correlation between IAQ and occupants’ behavior. Results: After adjusting for potential cofounder, the study has suggested that occupants’ movement in new building, like seated quietly, is significantly correlated with AV in new building (r 0.642, p-value 0.010), CO2 in new (r 0.772, p-value <0.001) and old building (r -0.559, p-value 0.020), TBC in new (r 0.747, p-value 0.001) and old building (r -0.559, p-value 0.020), and TFC in new (r 0.777, p-value <0.001) and old building (r -0.485, p-value 0.049). In addition, standing relaxed movement is correlated with indoor air temperature (r 0.823, p-value <0.001) in new building, CO2 (r 0.559, p-value 0.020), TBC (r 0.559, p-value 0.020), and TFC (r -0.485, p-value 0.049) in old building, while walking is correlated with AV in new building (r -0.642, p-value 0.001), CO2 in new (r -0.772, p-value <0.001) and old building (r 0.559, p-value 0.020), TBC in new (r -0.747, p-value 0.001) and old building (r 0.559, p-value 0.020), and TFC in old building (r -0.485, p-value 0.049). The indoor air temperature is significantly correlated with number of doors kept opened (r 0.522, p-value 0.046), frequency of door adjustments (r 0.753, p-value 0.001), number of windows kept opened (r 0.522, p-value 0.046), number of air-conditioned (AC) switched on (r 0.698, p-value 0.004) and frequency of AC adjustment (r 0.753, p-value 0.001) in new hospital OPD building. AV is found to be significantly correlated with number of doors kept opened (r 0.642, p-value 0.01), frequency of door adjustments (r 0.553, p-value 0.032), number of windows kept opened (r 0.642, p-value 0.01), and frequency of AC adjustment, number of fans switched on, and frequency of fans adjustment(all with r 0.553, p-value 0.032) in new building. In old hospital OPD building, the number of doors kept opened is significantly correlated with CO₂, TBC (both r -0.559, p-value 0.020) and TFC (r -0.495, p-value 0.049), frequency of door adjustment is significantly correlated with CO₂, TBC (both r-0.559, p-value 0.020) and TFC (r -0.495, p-value 0.049), number of windows kept opened is significantly correlated with CO₂, TBC (both r 0.559, p-value 0.020) and TFC (r 0.495, p-value 0.049), frequency of window adjustment is significantly correlated with CO₂,TBC (both r -0.559, p-value 0.020) and TFC (r -0.495, p-value 0.049), number of AC switched on is significantly correlated with CO₂, TBC (both r -0.559, p-value 0.020) and TFC (r -0.495, p-value 0.049),, frequency of AC adjustment is significantly correlated with CO2 (r 0.559, p-value 0.020), TBC (0.559, p-value 0.020) and TFC (r -0.495, p-value 0.049), number of fans switched on is significantly correlated with CO2, TBC (both r 0.559, p-value 0.020) and TFC (r 0.495, p-value 0.049), and frequency of fans adjustment is significantly correlated with CO2, TBC (both r -0.559, p-value 0.020) and TFC (r -0.495, p-value 0.049). Conclusion: This study provided evidence on IAQ parameters in Malaysian public hospitals OPD and significant factors that may be effective targets of prospective intervention, thus enabling stakeholders to develop appropriate policies and programs to mitigate IAQ issues in Malaysian public hospitals OPD.Keywords: outpatient department, iaq, occupants practice, public hospital
Procedia PDF Downloads 9810550 Biological Optimization following BM-MSC Seeding of Partially Demineralized and Partially Demineralized Laser-Perforated Structural Bone Allografts Implanted in Critical Femoral Defects
Authors: S. AliReza Mirghasemi, Zameer Hussain, Mohammad Saleh Sadeghi, Narges Rahimi Gabaran, Mohamadreza Baghaban Eslaminejad
Abstract:
Background: Despite promising results have shown by osteogenic cell-based demineralized bone matrix composites, they need to be optimized for grafts that act as structural frameworks in load-bearing defects. The purpose of this experiment is to determine the effect of bone-marrow-mesenchymal-stem-cells seeding on partially demineralized laser-perforated structural allografts that have been implanted in critical femoral defects. Materials and Methods: P3 stem cells were used for graft seeding. Laser perforation in four rows of three holes was achieved. Cell-seeded grafts were incubated for one hour until they were planted into the defect. We used four types of grafts: partially demineralized only (Donly), partially demineralized stem cell seeded (DST), partially demineralized laser-perforated (DLP), and partially demineralized laser-perforated stem cell seeded (DLPST). histologic and histomorphometric analysis were performed at 12 weeks. Results: Partially demineralized laser-perforated had the highest woven bone formation within graft limits, stem cell seeded demineralized laser-perforated remained intact, and the difference between partially demineralized only and partially demineralized stem cell seeded was insignificant. At interface, partially demineralized laser-perforated and partially demineralized only had comparable osteogenesis, but partially demineralized stem cell seeded was inferior. The interface in stem cell seeded demineralized laser-perforated was almost replaced by distinct endochondral osteogenesis with higher angiogenesis in the vicinity. Partially demineralized stem cell seeded and stem cell seeded demineralized laser-perforated graft surfaces had extra vessel-ingrowth-like porosities, a sign of delayed resorption. Conclusion: This demonstrates that simple cell-based composites are not optimal and necessitates the supplementation of synergistic stipulations and surface changes.Keywords: structural bone allograft, partial demineralization, laser perforation, mesenchymal stem cell
Procedia PDF Downloads 41810549 Laser Corneoplastique™: A Refractive Surgery for Corneal Scars
Authors: Arun C. Gulani, Aaishwariya A. Gulani, Amanda Southall
Abstract:
Background: Laser Corneoplastique™ as a least interventional, visually promising technique for patients with vision disability from corneal scars of varied causes has been retrospectively reviewed and proves to cause a paradigm shift in mindset and approach towards corneal scars as a Refractive surgery aiming for emmetropic, unaided vision of 20;/20 in most cases. Three decades of work on this technique has been compiled in this 15-year study. Subject and Methods: The objective of this study was to determine the success of Laser Corneoplastique™ surgery as a treatment of corneal scar cases. A survey of corneal scar cases caused by various medical histories that had undergone Laser Corneoplastique™ surgery over the past twenty years by a single surgeon Arun C. Gulani, M.D. were retrospectively reviewed. The details of each of the cases were retrieved from their medical records and analyzed. Each patient had been examined thoroughly at their preoperative appointments for stability of refraction and vision, depth of scar, pachymetry, topography, pattern of the scar and uncorrected and best corrected vision potential, which were all taken into account in the patients' treatment plans. Results: 64 eyes of 53 patients were investigated for scar etiology, keratometry, visual acuity, and complications. There were 25 different etiologies seen, with the most common being a Herpetic scar. The average visual acuity post-op was, on average, 20/23.55 (±7.05). Laser parameters used were depth and pulses. Overall, the mean Laser ablation depth was 30.67 (±19.05), ranging from 2 to 73 µm. Number of Laser pulses averaged 191.85 (±112.02). Conclusion: Refractive Laser Corneoplastique™ surgery, when practiced as an art, can address all levels of ametropia while reversing complex corneas and scars from refractive surgery complications back to 20/20 vision.Keywords: corneal scar, refractive surgery, corneal transplant, laser corneoplastique
Procedia PDF Downloads 19710548 Preparation and Sealing of Polymer Microchannels Using EB Lithography and Laser Welding
Authors: Ian Jones, Jonathan Griffiths
Abstract:
Laser welding offers the potential for making very precise joints in plastics products, both in terms of the joint location and the amount of heating applied. These methods have allowed the production of complex products such as microfluidic devices where channels and structure resolution below 100 µm is regularly used. However, to date, the dimension of welds made using lasers has been limited by the focus spot size that is achievable from the laser source. Theoretically, the minimum spot size possible from a laser is comparable to the wavelength of the radiation emitted. Practically, with reasonable focal length optics the spot size achievable is a few factors larger than this, and the melt zone in a plastics weld is larger again than this. The narrowest welds feasible to date have therefore been 10-20 µm wide using a near-infrared laser source. The aim of this work was to prepare laser absorber tracks and channels less than 10 µm wide in PMMA thermoplastic using EB lithography followed by sealing of channels using laser welding to carry out welds with widths of the order of 1 µm, below the resolution limit of the near-infrared laser used. Welded joints with a width of 1 µm have been achieved as well as channels with a width of 5 µm. The procedure was based on the principle of transmission laser welding using a thin coating of infrared absorbent material at the joint interface. The coating was patterned using electron-beam lithography to obtain the required resolution in a reproducible manner and that resolution was retained after the transmission laser welding process. The joint strength was ratified using larger scale samples. The results demonstrate that plastics products could be made with a high density of structure with resolution below 1 um, and that welding can be applied without excessively heating regions beyond the weld lines. This may be applied to smaller scale sensor and analysis chips, micro-bio and chemical reactors and to microelectronic packaging.Keywords: microchannels, polymer, EB lithography, laser welding
Procedia PDF Downloads 40410547 Phase Control in Population Inversion Using Chirped Laser
Authors: Avijit Datta
Abstract:
We have presented a phase control scheme in population transfer using chirped laser fields. A chirped pulse can do population transfer from one level to another level via adiabatic rapid passage accessible by one photon dipole transition. We propose to use a pair of phase-locked chirped pulses of the same frequency w(t) instead of a singly chirped-pulse frequency w(t). Simultaneous action of phase controlled interference in addition to rapid adiabatic passages due to chirped pulses lead to phase control over this population transfer dynamics. We have demonstrated the proposed phase control scheme over the population distribution from the initial level X(v=0,j=0) to C(v=2,j=1) level of hydrogen molecule using a pair of phase-locked and similarly chirped laser pulses. We have extended this two-level system to three-level 1+1 ladder system of hydrogen molecule from X level to final J(v=2,j=2) level via C intermediate level using two pairs of laser pulses having frequencies w(t) and w'(t) respectively and obtained laudable control over the population distribution among three levels. We also have presented some results of interference effects of w₁(t) and its third harmonics w₃(t).Keywords: phase control, population transfer, chirped laser pulses, rapid adiabatic passage, laser-molecule interaction
Procedia PDF Downloads 36410546 One-Step Synthesis of Titanium Dioxide Porous Microspheres by Picosecond Pulsed Laser Welding
Authors: Huiwu Yu, Xiangyou Li, Xiaoyan Zeng
Abstract:
Porous spheres have been widely used in many fields due to their attractive features. In this work, an approach for fabricating porous spheres of nanoparticles was presented, in which the nanoparticles were welded together to form micro spheres by simply irradiating the nanoparticles in liquid medium by a picosecond laser. As an example, anatase titanium dioxide was chosen as a typical material on account of its metastability. The structure and morphologies of the products were characterised by X-ray diffraction (XRD), scanning electron microscope (SEM), Raman, and high-resolution transmission electron microscopy (HRTEM), respectively. The results showed that, anatase titanium dioxide micro spheres (2-10 μm) with macroporous (10-100 nm) were prepared from nano-anatase titanium dioxide nanoparticles (10-100 nm). The formation process of polycrystalline anatase titanium dioxide microspheres was investigated with different liquid mediums and the input laser fluences. Thus, this facile laser irradiation approach might provide a way for the fabrication of porous microspheres without phase-transition.Keywords: titanium dioxide, porous microspheres, picosecond laser, nano-welding
Procedia PDF Downloads 30910545 Switched Ultracapacitors for Maximizing Energy Supply
Authors: Nassouh K. Jaber
Abstract:
Supercapacitors (S.C.) are presently attracting attention for driving general purpose (12VDC to 220VAC) inverters in renewable energy systems. Unfortunately, when the voltage of the S.C supplying the inverter reaches the minimal threshold of 7-8VDC the inverter shuts down leaving the remaining 40% of the valuable energy stored inside the ultracapacitor un-usable. In this work a power electronic circuit is proposed which switches 2 banks of supercapacitors from parallel connection when both are fully charged at 14VDC to serial connection when their voltages drop down to 7 volts, thus keeping the inverter working within its operating limits for a longer time and advantageously tapping almost 92% of the stored energy in the supercapacitors.Keywords: ultra capacitor, switched ultracapacitors, inverter, supercapacitor, parallel connection, serial connection, battery limitation
Procedia PDF Downloads 41510544 Role of Pulsed-Dye Laser in the Treatment of Inflammatory Acne Vulgaris
Authors: Shirajul Islam Khan, Muhammad Ashraful Alam Bhuiyan, Syeda Tania Begum
Abstract:
Introduction: Acne vulgaris is one of the most common dermatologic conditions and affects the vast majority of people at some point during their lifetime, so effective treatment is of major importance. The failure of usual treatment modalities, teratogenic effects with some severe side effects, and resistance to P.Acne by Retinoides have been focusing on new therapeutic options for the treatment of acne. More recently, pulsed dye laser therapy has been reported to reduce acne lesion counts. The negligible morbidity of these treatment modalities and some other benefits of subsequent acne scar management lead this therapy more attractive. Objective: The objective of this study is to assess the efficacy and safety of pulsed dye laser therapy in the treatment of inflammatory acne vulgaris. Materials and Methods: A prospective clinical trial was done in the Department of Dermatology and Venereology, Combined Military Hospital (CMH), Dhaka, to find out the role of pulse dye laser in the treatment of inflammatory acne vulgaris. The study was carried out with 60 patients with mild to moderate acne vulgaris, and those were treated with pulsed dye laser therapy at baseline and after 4, 8, and 12 weeks. Results: Among 60 patients with inflammatory acne, 42(70%) were in the age group of less than 20 years, and 36(60%) were female. Regarding the number of inflammatory lesions, the baseline mean number (± SD) was 12.77 ± 4.01; after 4 weeks of treatment of inflammatory acne by pulsed dye laser was 7.80 ± 4.11; after 8 weeks of treatment, 6.10 ± 4.03 and after 12 weeks of treatment was 4.17 ± 4.02. After 4 weeks of treatment by pulse dye laser, the level of improvement was excellent at 3.3%, good at 10%, fair at 60%, and poor at 26.7%; after 8 weeks of treatment, excellent was 13.3%, good was 46.7%, the fair was 30% and poor 10% and after 12 weeks of treatment, excellent was 56.7%, good 13.3%, fair 23.3% and poor 6.7%. Regarding safety level, out of 60 patients of inflammatory acne vulgaris treated by pulsed dye laser, about 52(86.7%) patients did not observe any side effects. Conclusions: On the basis of the study results, it can be concluded that pulsed-dye laser is highly effective and well tolerated by patients in the treatment of inflammatory acne.Keywords: pulsed-dye laser, inflammatory acne, acne vulgaris, retinoids
Procedia PDF Downloads 9710543 Powerful Laser Diode Matrixes for Active Vision Systems
Authors: Dzmitry M. Kabanau, Vladimir V. Kabanov, Yahor V. Lebiadok, Denis V. Shabrov, Pavel V. Shpak, Gevork T. Mikaelyan, Alexandr P. Bunichev
Abstract:
This article is deal with the experimental investigations of the laser diode matrixes (LDM) based on the AlGaAs/GaAs heterostructures (lasing wavelength 790-880 nm) to find optimal LDM parameters for active vision systems. In particular, the dependence of LDM radiation pulse power on the pulse duration and LDA active layer heating as well as the LDM radiation divergence are discussed.Keywords: active vision systems, laser diode matrixes, thermal properties, radiation divergence
Procedia PDF Downloads 61410542 Parameter Optimization and Thermal Simulation in Laser Joining of Coach Peel Panels of Dissimilar Materials
Authors: Masoud Mohammadpour, Blair Carlson, Radovan Kovacevic
Abstract:
The quality of laser welded-brazed (LWB) joints were strongly dependent on the main process parameters, therefore the effect of laser power (3.2–4 kW), welding speed (60–80 mm/s) and wire feed rate (70–90 mm/s) on mechanical strength and surface roughness were investigated in this study. The comprehensive optimization process by means of response surface methodology (RSM) and desirability function was used for multi-criteria optimization. The experiments were planned based on Box– Behnken design implementing linear and quadratic polynomial equations for predicting the desired output properties. Finally, validation experiments were conducted on an optimized process condition which exhibited good agreement between the predicted and experimental results. AlSi3Mn1 was selected as the filler material for joining aluminum alloy 6022 and hot-dip galvanized steel in coach peel configuration. The high scanning speed could control the thickness of IMC as thin as 5 µm. The thermal simulations of joining process were conducted by the Finite Element Method (FEM), and results were validated through experimental data. The Fe/Al interfacial thermal history evidenced that the duration of critical temperature range (700–900 °C) in this high scanning speed process was less than 1 s. This short interaction time leads to the formation of reaction-control IMC layer instead of diffusion-control mechanisms.Keywords: laser welding-brazing, finite element, response surface methodology (RSM), multi-response optimization, cross-beam laser
Procedia PDF Downloads 35310541 Laser Ultrasonic Diagnostics and Acoustic Emission Technique for Examination of Rock Specimens under Uniaxial Compression
Authors: Elena B. Cherepetskaya, Vladimir A. Makarov, Dmitry V. Morozov, Ivan E. Sas
Abstract:
Laboratory studies of the stress-strain behavior of rocks specimens were conducted by using acoustic emission and laser-ultrasonic diagnostics. The sensitivity of the techniques allowed changes in the internal structure of the specimens under uniaxial compressive load to be examined at micro- and macro scales. It was shown that microcracks appear in geologic materials when the stress level reaches about 50% of breaking strength. Also, the characteristic stress of the main crack formation was registered in the process of single-stage compression of rocks. On the base of laser-ultrasonic echoscopy, 2D visualization of the internal structure of rocky soil specimens was realized, and the microcracks arising during uniaxial compression were registered.Keywords: acoustic emission, geomaterial, laser ultrasound, uniaxial compression
Procedia PDF Downloads 37910540 Effect of the Aluminum Fraction “X” on the Laser Wavelengths in GaAs/AlxGa1-xAs Superlattices
Authors: F.Bendahma, S.Bentata
Abstract:
In this paper, we study numerically the eigenstates existing in a GaAs/AlxGa1-xAs superlattice with structural disorder in trimer height barrier (THB). Aluminium concentration x takes at random two different values, one of them appears only in triply and remains inferior to the second in the studied structure. In spite of the presence of disorder, the system exhibits two kinds of sets of propagating states lying below the barrier due to the characteristic structure of the superlattice. This result allows us to note the existence of a single laser emission in trimer and wavelengths are obtained in the mid-infrared.Keywords: infrared (IR), laser emission, superlattice, trimer
Procedia PDF Downloads 45310539 Empirical Modeling and Optimization of Laser Welding of AISI 304 Stainless Steel
Authors: Nikhil Kumar, Asish Bandyopadhyay
Abstract:
Laser welding process is a capable technology for forming the automobile, microelectronics, marine and aerospace parts etc. In the present work, a mathematical and statistical approach is adopted to study the laser welding of AISI 304 stainless steel. A robotic control 500 W pulsed Nd:YAG laser source with 1064 nm wavelength has been used for welding purpose. Butt joints are made. The effects of welding parameters, namely; laser power, scanning speed and pulse width on the seam width and depth of penetration has been investigated using the empirical models developed by response surface methodology (RSM). Weld quality is directly correlated with the weld geometry. Twenty sets of experiments have been conducted as per central composite design (CCD) design matrix. The second order mathematical model has been developed for predicting the desired responses. The results of ANOVA indicate that the laser power has the most significant effect on responses. Microstructural analysis as well as hardness of the selected weld specimens has been carried out to understand the metallurgical and mechanical behaviour of the weld. Average micro-hardness of the weld is observed to be higher than the base metal. Higher hardness of the weld is the resultant of grain refinement and δ-ferrite formation in the weld structure. The result suggests that the lower line energy generally produce fine grain structure and improved mechanical properties than the high line energy. The combined effects of input parameters on responses have been analyzed with the help of developed 3-D response surface and contour plots. Finally, multi-objective optimization has been conducted for producing weld joint with complete penetration, minimum seam width and acceptable welding profile. Confirmatory tests have been conducted at optimum parametric conditions to validate the applied optimization technique.Keywords: ANOVA, laser welding, modeling and optimization, response surface methodology
Procedia PDF Downloads 29710538 DSPIC30F6010A Control for 12/8 Switched Reluctance Motor
Authors: Yang Zhou, Chen Hao, Ma Xiaoping
Abstract:
This paper briefly mentions the micro controller unit, and then goes into details about the exact regulations for SRM. Firstly, it proposes the main driving state control for motor and the importance of the motor position sensor. For different speed, the controller will choice various styles such as voltage chopper control, angle position control and current chopper control for which owns its advantages and disadvantages. Combining the strengths of the three discrepant methods, the main control chip will intelligently select the best performing control depending on the load and speed demand. Then the exact flow diagram is showed in paper. At last, an experimental platform is established to verify the correctness of the proposed theory.Keywords: switched reluctance motor, dspic microcontroller, current chopper
Procedia PDF Downloads 42810537 Study of Quantum Lasers of Random Trimer Barrier AlxGa1-xAs Superlattices
Authors: Bentata Samir, Bendahma Fatima
Abstract:
We have numerically studied the random trimer barrier AlxGa1-xAs superlattices (RTBSL). Such systems consist of two different structures randomly distributed along the growth direction, with the additional constraint that the barriers of one kind appear in triply. An explicit formula is given for evaluating the transmission coefficient of superlattices (SL's) in intentional correlated disorder. We have specially investigated the effect of aluminum concentration on the laser wavelength. We discuss the impact of the aluminum concentration associated with the structure profile on the laser wavelengths.Keywords: superlattices, transfer matrix method, transmission coefficient, quantum laser
Procedia PDF Downloads 49410536 Development of a Laboratory Laser-Produced Plasma “Water Window” X-Ray Source for Radiobiology Experiments
Authors: Daniel Adjei, Mesfin Getachew Ayele, Przemyslaw Wachulak, Andrzej Bartnik, Luděk Vyšín, Henryk Fiedorowicz, Inam Ul Ahad, Lukasz Wegrzynski, Anna Wiechecka, Janusz Lekki, Wojciech M. Kwiatek
Abstract:
Laser produced plasma light sources, emitting high intensity pulses of X-rays, delivering high doses are useful to understand the mechanisms of high dose effects on biological samples. In this study, a desk-top laser plasma soft X-ray source, developed for radio biology research, is presented. The source is based on a double-stream gas puff target, irradiated with a commercial Nd:YAG laser (EKSPLA), which generates laser pulses of 4 ns time duration and energy up to 800 mJ at 10 Hz repetition rate. The source has been optimized for maximum emission in the “water window” wavelength range from 2.3 nm to 4.4 nm by using pure gas (argon, nitrogen and krypton) and spectral filtering. Results of the source characterization measurements and dosimetry of the produced soft X-ray radiation are shown and discussed. The high brightness of the laser produced plasma soft X-ray source and the low penetration depth of the produced X-ray radiation in biological specimen allows a high dose rate to be delivered to the specimen of over 28 Gy/shot; and 280 Gy/s at the maximum repetition rate of the laser system. The source has a unique capability for irradiation of cells with high pulse dose both in vacuum and He-environment. Demonstration of the source to induce DNA double- and single strand breaks will be discussed.Keywords: laser produced plasma, soft X-rays, radio biology experiments, dosimetry
Procedia PDF Downloads 59210535 Simulation of Single-Track Laser Melting on IN718 using Material Point Method
Authors: S. Kadiyala, M. Berzins, D. Juba, W. Keyrouz
Abstract:
This paper describes the Material Point Method (MPM) for simulating a single-track laser melting process on an IN718 solid plate. MPM, known for simulating challenging multiphysics problems, is used to model the intricate thermal, mechanical, and fluid interactions during the laser sintering process. This study analyzes the formation of single tracks, exploring the impact of varying laser parameters such as speed, power, and spot diameter on the melt pool and track formation. The focus is on MPM’s ability to accurately simulate and capture the transient thermo-mechanical and phase change phenomena, which are critical in predicting the cooling rates before and after solidification of the laser track and the final melt pool geometry. The simulation results are rigorously compared with experimental data (AMB2022 benchmarks), demonstrating the effectiveness of MPM in replicating the physical processes in laser sintering. This research highlights the potential of MPM in advancing the understanding and simulation of melt pool physics in metal additive manufacturing, paving the way for optimized process parameters and improved material performance.Keywords: dditive manufacturing simulation, material point method, phase change, melt pool physics
Procedia PDF Downloads 6110534 Study on the Process of Detumbling Space Target by Laser
Authors: Zhang Pinliang, Chen Chuan, Song Guangming, Wu Qiang, Gong Zizheng, Li Ming
Abstract:
The active removal of space debris and asteroid defense are important issues in human space activities. Both of them need a detumbling process, for almost all space debris and asteroid are in a rotating state, and it`s hard and dangerous to capture or remove a target with a relatively high tumbling rate. So it`s necessary to find a method to reduce the angular rate first. The laser ablation method is an efficient way to tackle this detumbling problem, for it`s a contactless technique and can work at a safe distance. In existing research, a laser rotational control strategy based on the estimation of the instantaneous angular velocity of the target has been presented. But their calculation of control torque produced by a laser, which is very important in detumbling operation, is not accurate enough, for the method they used is only suitable for the plane or regularly shaped target, and they did not consider the influence of irregular shape and the size of the spot. In this paper, based on the triangulation reconstruction of the target surface, we propose a new method to calculate the impulse of the irregularly shaped target under both the covered irradiation and spot irradiation of the laser and verify its accuracy by theoretical formula calculation and impulse measurement experiment. Then we use it to study the process of detumbling cylinder and asteroid by laser. The result shows that the new method is universally practical and has high precision; it will take more than 13.9 hours to stop the rotation of Bennu with 1E+05kJ laser pulse energy; the speed of the detumbling process depends on the distance between the spot and the centroid of the target, which can be found an optimal value in every particular case.Keywords: detumbling, laser ablation drive, space target, space debris remove
Procedia PDF Downloads 8810533 The Efficacy of Class IV Diode Laser in the Treatment of Patients with Chronic Neck Pain: A Randomized Controlled Trial
Authors: Mohamed Salaheldien Mohamed Alayat, Ahmed Mohamed Elsoudany, Roaa Abdulghani Sroge, Bayan Muteb Aldhahwani
Abstract:
Background: Neck pain is a common illness that could affect individual’s daily activities. Class IV laser with longer wavelength can stimulate tissues and penetrate more than the classic low-level laser therapy. Objectives: The aim of the study was to investigate the efficacy of class IV diode laser in the treatment of patients with chronic neck pain (CNP). Methods: Fifty-two patients participated and completed the study. Their mean age (SD) was 50.7 (6.2). Patients were randomized into two groups and treated with laser plus exercise (laser + EX) group and placebo laser plus exercise (PL+EX) group. Treatment was performed by Class IV laser in two phases; scanning and trigger point phases. Scanning to the posterior neck and shoulder girdle region with 4 J/cm2 with a total energy of 300 J applied to 75 cm2 in 4 minutes and 16 seconds. Eight trigger points on the posterior neck area were treated by 4 J/cm2 and the time of application was in 30 seconds. Both groups received exercise two times per week for 4 weeks. Exercises included range of motion, isometric, stretching, isotonic resisted exercises to the cervical extensors, lateral bending and rotators muscles with postural correction exercises. The measured variables were pain level using visual analogue scale (VAS), and neck functional activity using neck disability index (NDI) score. Measurements were taken at baseline and after 4 weeks of treatment. The level of statistical significance was set as p < 0.05. Results: There were significant decreases in post-treatment VAS and NDI in both groups as compared to baseline values. Laser + EX effectively decreased VAS (mean difference -6.5, p = 0.01) and NDI scores after (mean difference -41.3, p = 0.01) 4 weeks of treatment compared to PL + EX. Conclusion: Class IV laser combined with exercise is effective treatment for patients with CNP as compared to PL + EX therapy. The combination of laser + EX effectively increased functional activity and reduced pain after 4 weeks of treatment.Keywords: chronic neck pain, class IV laser, exercises, neck disability index, visual analogue scale
Procedia PDF Downloads 31710532 Identification of Switched Reluctance Motor Parameters Using Exponential Swept-Sine Signal
Authors: Abdelmalek Ouannou, Adil Brouri, Laila Kadi, Tarik
Abstract:
Switched reluctance motor (SRM) has a major interest in a large domain as in electric vehicle driving because of its wide range of speed operation, high performances, low cost, and robustness to run under degraded conditions. The purpose of the paper is to develop a new analytical approach for modeling SRM parameters. Then, an identification scheme is proposed to obtain the SRM parameters. Since the SRM is featured by a highly nonlinear behavior, modeling these devices is difficult. Then, it is convenient to develop an accurate model describing the SRM. Furthermore, it is always operated in the magnetically saturated mode to maximize the energy transfer. Accordingly, it is shown that the SRM can be accurately described by a generalized polynomial Hammerstein model, i.e., the parallel connection of several Hammerstein models having polynomial nonlinearity. Presently an analytical identification method is developed using a chirp excitation signal. Afterward, the parameters of the obtained model have been determined using Finite Element Method analysis. Finally, in order to show the effectiveness of the proposed method, a comparison between the true and estimate models has been performed. The obtained results show that the output responses are very close.Keywords: switched reluctance motor, swept-sine signal, generalized Hammerstein model, nonlinear system
Procedia PDF Downloads 24110531 Arduino-Based Laser Communication
Authors: Simon Bambey, Edward Lim, Kai Corley-Jory, Pooya Taheri
Abstract:
The main goal of this paper is to propose a simple and low-cost microcontroller-based laser communication link. To demonstrate that laser communication is a viable and efficient means for transmitting data, a transceiver capable of transfer rates of approximately 0.7 kB/s is prototyped. The hardware used for the transceiver consists of Commercial Off-The-Shelf (COTS) lasers, photodiodes, and the Arduino Mega 2560 which is an open-source and easy-to-use microcontroller-based platform intended for making interactive projects. A graphic user interface utilizing the Meteor framework is developed to facilitate the communication between the user and transceiver. The developed transceiver prototype is capable of receiving and transmitting data at significant ranges with no loss of information. Furthermore, stable and secure communication is achieved through several mechanisms developed to manage simultaneous sending and receiving, in addition to detecting physical interruptions during transmission. The design setup is scalable and with further development can be transformed into a fiber-optic transmission system. Due to its nature, laser communication is very secure and can provide a safe and private communication link. Overall, this paper demonstrates how laser communication can be an economical, durable, and effective means of information transfer.Keywords: Arduino microcontrollers, laser applications, user interfaces, wireless communication
Procedia PDF Downloads 307