Search results for: price forecasting
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1591

Search results for: price forecasting

1471 Multi-Period Portfolio Optimization Using Predictive Machine Learning Models

Authors: Peng Liu, Chyng Wen Tee, Xiaofei Xu

Abstract:

This paper integrates machine learning forecasting techniques into the multi-period portfolio optimization framework, enabling dynamic asset allocation based on multiple future periods. We explore both theoretical foundations and practical applications, employing diverse machine learning models for return forecasting. This comprehensive guide demonstrates the superiority of multi-period optimization over single-period approaches, particularly in risk mitigation through strategic rebalancing and enhanced market trend forecasting. Our goal is to promote wider adoption of multi-period optimization, providing insights that can significantly enhance the decision-making capabilities of practitioners and researchers alike.

Keywords: multi-period portfolio optimization, look-ahead constrained optimization, machine learning, sequential decision making

Procedia PDF Downloads 49
1470 Assessment of the Relationship Between Energy Price Dynamics and Green Growth in Sub-Saharan Africa

Authors: Christopher Ikechukwu Ifeacho

Abstract:

The paper examines the relationship between energy price dynamics and green growth in Sub Sahara African Countries. The quest for adopting green energy in order to improve the green growth that can engender sustainability, and stability has received more attention from researchers in recent times. This study uses a panel Autoregressive distributed lag approach to investigate this relationship. Findings from the result showed that energy price dynamics and exchange rate have more short-run significant impacts on green growth in individual countries rather than the pooled result. Furthermore, the long-run result confirmed that inflation and capital have a significant long-run relationship with green growth. The causality test result revealed the existence of a bi-directional relationship between green growth and energy price dynamics. The study recommends caution in a currency devaluation and improvement in renewable energy production in the Sub Sahara Africa in order to achieve sustainable green growth.

Keywords: green growth, energy price dynamics, Sub Sahara Africa., sustainability

Procedia PDF Downloads 23
1469 Load Forecasting in Microgrid Systems with R and Cortana Intelligence Suite

Authors: F. Lazzeri, I. Reiter

Abstract:

Energy production optimization has been traditionally very important for utilities in order to improve resource consumption. However, load forecasting is a challenging task, as there are a large number of relevant variables that must be considered, and several strategies have been used to deal with this complex problem. This is especially true also in microgrids where many elements have to adjust their performance depending on the future generation and consumption conditions. The goal of this paper is to present a solution for short-term load forecasting in microgrids, based on three machine learning experiments developed in R and web services built and deployed with different components of Cortana Intelligence Suite: Azure Machine Learning, a fully managed cloud service that enables to easily build, deploy, and share predictive analytics solutions; SQL database, a Microsoft database service for app developers; and PowerBI, a suite of business analytics tools to analyze data and share insights. Our results show that Boosted Decision Tree and Fast Forest Quantile regression methods can be very useful to predict hourly short-term consumption in microgrids; moreover, we found that for these types of forecasting models, weather data (temperature, wind, humidity and dew point) can play a crucial role in improving the accuracy of the forecasting solution. Data cleaning and feature engineering methods performed in R and different types of machine learning algorithms (Boosted Decision Tree, Fast Forest Quantile and ARIMA) will be presented, and results and performance metrics discussed.

Keywords: time-series, features engineering methods for forecasting, energy demand forecasting, Azure Machine Learning

Procedia PDF Downloads 298
1468 EarlyWarning for Financial Stress Events:A Credit-Regime Switching Approach

Authors: Fuchun Li, Hong Xiao

Abstract:

We propose a new early warning model for predicting financial stress events for a given future time. In this model, we examine whether credit conditions play an important role as a nonlinear propagator of shocks when predicting the likelihood of occurrence of financial stress events for a given future time. This propagation takes the form of a threshold regression in which a regime change occurs if credit conditions cross a critical threshold. Given the new early warning model for financial stress events, we evaluate the performance of this model and currently available alternatives, such as the model from signal extraction approach, and linear regression model. In-sample forecasting results indicate that the three types of models are useful tools for predicting financial stress events while none of them outperforms others across all criteria considered. The out-of-sample forecasting results suggest that the credit-regime switching model performs better than the two others across all criteria and all forecasting horizons considered.

Keywords: cut-off probability, early warning model, financial crisis, financial stress, regime-switching model, forecasting horizons

Procedia PDF Downloads 436
1467 Input Data Balancing in a Neural Network PM-10 Forecasting System

Authors: Suk-Hyun Yu, Heeyong Kwon

Abstract:

Recently PM-10 has become a social and global issue. It is one of major air pollutants which affect human health. Therefore, it needs to be forecasted rapidly and precisely. However, PM-10 comes from various emission sources, and its level of concentration is largely dependent on meteorological and geographical factors of local and global region, so the forecasting of PM-10 concentration is very difficult. Neural network model can be used in the case. But, there are few cases of high concentration PM-10. It makes the learning of the neural network model difficult. In this paper, we suggest a simple input balancing method when the data distribution is uneven. It is based on the probability of appearance of the data. Experimental results show that the input balancing makes the neural networks’ learning easy and improves the forecasting rates.

Keywords: artificial intelligence, air quality prediction, neural networks, pattern recognition, PM-10

Procedia PDF Downloads 232
1466 Modernization of the Economic Price Adjustment Software

Authors: Roger L. Goodwin

Abstract:

The US Consumer Price Indices (CPIs) measures hundreds of items in the US economy. Many social programs and government benefits index to the CPIs. In mid to late 1990, much research went into changes to the CPI by a Congressional Advisory Committee. One thing can be said from the research is that, aside from there are alternative estimators for the CPI; any fundamental change to the CPI will affect many government programs. The purpose of this project is to modernize an existing process. This paper will show the development of a small, visual, software product that documents the Economic Price Adjustment (EPA) for long-term contracts. The existing workbook does not provide the flexibility to calculate EPAs where the base-month and the option-month are different. Nor does the workbook provide automated error checking. The small, visual, software product provides the additional flexibility and error checking. This paper presents the feedback to project.

Keywords: Consumer Price Index, Economic Price Adjustment, contracts, visualization tools, database, reports, forms, event procedures

Procedia PDF Downloads 318
1465 Prediction on Housing Price Based on Deep Learning

Authors: Li Yu, Chenlu Jiao, Hongrun Xin, Yan Wang, Kaiyang Wang

Abstract:

In order to study the impact of various factors on the housing price, we propose to build different prediction models based on deep learning to determine the existing data of the real estate in order to more accurately predict the housing price or its changing trend in the future. Considering that the factors which affect the housing price vary widely, the proposed prediction models include two categories. The first one is based on multiple characteristic factors of the real estate. We built Convolution Neural Network (CNN) prediction model and Long Short-Term Memory (LSTM) neural network prediction model based on deep learning, and logical regression model was implemented to make a comparison between these three models. Another prediction model is time series model. Based on deep learning, we proposed an LSTM-1 model purely regard to time series, then implementing and comparing the LSTM model and the Auto-Regressive and Moving Average (ARMA) model. In this paper, comprehensive study of the second-hand housing price in Beijing has been conducted from three aspects: crawling and analyzing, housing price predicting, and the result comparing. Ultimately the best model program was produced, which is of great significance to evaluation and prediction of the housing price in the real estate industry.

Keywords: deep learning, convolutional neural network, LSTM, housing prediction

Procedia PDF Downloads 307
1464 Application of Support Vector Machines in Forecasting Non-Residential

Authors: Wiwat Kittinaraporn, Napat Harnpornchai, Sutja Boonyachut

Abstract:

This paper deals with the application of a novel neural network technique, so-called Support Vector Machine (SVM). The objective of this study is to explore the variable and parameter of forecasting factors in the construction industry to build up forecasting model for construction quantity in Thailand. The scope of the research is to study the non-residential construction quantity in Thailand. There are 44 sets of yearly data available, ranging from 1965 to 2009. The correlation between economic indicators and construction demand with the lag of one year was developed by Apichat Buakla. The selected variables are used to develop SVM models to forecast the non-residential construction quantity in Thailand. The parameters are selected by using ten-fold cross-validation method. The results are indicated in term of Mean Absolute Percentage Error (MAPE). The MAPE value for the non-residential construction quantity predicted by Epsilon-SVR in corporation with Radial Basis Function (RBF) of kernel function type is 5.90. Analysis of the experimental results show that the support vector machine modelling technique can be applied to forecast construction quantity time series which is useful for decision planning and management purpose.

Keywords: forecasting, non-residential, construction, support vector machines

Procedia PDF Downloads 434
1463 Forecasting Residential Water Consumption in Hamilton, New Zealand

Authors: Farnaz Farhangi

Abstract:

Many people in New Zealand believe that the access to water is inexhaustible, and it comes from a history of virtually unrestricted access to it. For the region like Hamilton which is one of New Zealand’s fastest growing cities, it is crucial for policy makers to know about the future water consumption and implementation of rules and regulation such as universal water metering. Hamilton residents use water freely and they do not have any idea about how much water they use. Hence, one of proposed objectives of this research is focusing on forecasting water consumption using different methods. Residential water consumption time series exhibits seasonal and trend variations. Seasonality is the pattern caused by repeating events such as weather conditions in summer and winter, public holidays, etc. The problem with this seasonal fluctuation is that, it dominates other time series components and makes difficulties in determining other variations (such as educational campaign’s effect, regulation, etc.) in time series. Apart from seasonality, a stochastic trend is also combined with seasonality and makes different effects on results of forecasting. According to the forecasting literature, preprocessing (de-trending and de-seasonalization) is essential to have more performed forecasting results, while some other researchers mention that seasonally non-adjusted data should be used. Hence, I answer the question that is pre-processing essential? A wide range of forecasting methods exists with different pros and cons. In this research, I apply double seasonal ARIMA and Artificial Neural Network (ANN), considering diverse elements such as seasonality and calendar effects (public and school holidays) and combine their results to find the best predicted values. My hypothesis is the examination the results of combined method (hybrid model) and individual methods and comparing the accuracy and robustness. In order to use ARIMA, the data should be stationary. Also, ANN has successful forecasting applications in terms of forecasting seasonal and trend time series. Using a hybrid model is a way to improve the accuracy of the methods. Due to the fact that water demand is dominated by different seasonality, in order to find their sensitivity to weather conditions or calendar effects or other seasonal patterns, I combine different methods. The advantage of this combination is reduction of errors by averaging of each individual model. It is also useful when we are not sure about the accuracy of each forecasting model and it can ease the problem of model selection. Using daily residential water consumption data from January 2000 to July 2015 in Hamilton, I indicate how prediction by different methods varies. ANN has more accurate forecasting results than other method and preprocessing is essential when we use seasonal time series. Using hybrid model reduces forecasting average errors and increases the performance.

Keywords: artificial neural network (ANN), double seasonal ARIMA, forecasting, hybrid model

Procedia PDF Downloads 337
1462 Groundwater Level Prediction Using hybrid Particle Swarm Optimization-Long-Short Term Memory Model and Performance Evaluation

Authors: Sneha Thakur, Sanjeev Karmakar

Abstract:

This paper proposed hybrid Particle Swarm Optimization (PSO) – Long-Short Term Memory (LSTM) model for groundwater level prediction. The evaluation of the performance is realized using the parameters: root mean square error (RMSE) and mean absolute error (MAE). Ground water level forecasting will be very effective for planning water harvesting. Proper calculation of water level forecasting can overcome the problem of drought and flood to some extent. The objective of this work is to develop a ground water level forecasting model using deep learning technique integrated with optimization technique PSO by applying 29 years data of Chhattisgarh state, In-dia. It is important to find the precise forecasting in case of ground water level so that various water resource planning and water harvesting can be managed effectively.

Keywords: long short-term memory, particle swarm optimization, prediction, deep learning, groundwater level

Procedia PDF Downloads 78
1461 Dynamic Control Theory: A Behavioral Modeling Approach to Demand Forecasting amongst Office Workers Engaged in a Competition on Energy Shifting

Authors: Akaash Tawade, Manan Khattar, Lucas Spangher, Costas J. Spanos

Abstract:

Many grids are increasing the share of renewable energy in their generation mix, which is causing the energy generation to become less controllable. Buildings, which consume nearly 33% of all energy, are a key target for demand response: i.e., mechanisms for demand to meet supply. Understanding the behavior of office workers is a start towards developing demand response for one sector of building technology. The literature notes that dynamic computational modeling can be predictive of individual action, especially given that occupant behavior is traditionally abstracted from demand forecasting. Recent work founded on Social Cognitive Theory (SCT) has provided a promising conceptual basis for modeling behavior, personal states, and environment using control theoretic principles. Here, an adapted linear dynamical system of latent states and exogenous inputs is proposed to simulate energy demand amongst office workers engaged in a social energy shifting game. The energy shifting competition is implemented in an office in Singapore that is connected to a minigrid of buildings with a consistent 'price signal.' This signal is translated into a 'points signal' by a reinforcement learning (RL) algorithm to influence participant energy use. The dynamic model functions at the intersection of the points signals, baseline energy consumption trends, and SCT behavioral inputs to simulate future outcomes. This study endeavors to analyze how the dynamic model trains an RL agent and, subsequently, the degree of accuracy to which load deferability can be simulated. The results offer a generalizable behavioral model for energy competitions that provides the framework for further research on transfer learning for RL, and more broadly— transactive control.

Keywords: energy demand forecasting, social cognitive behavioral modeling, social game, transfer learning

Procedia PDF Downloads 108
1460 A Comparative Study of Dividend Policy and Share Price across the South Asian Countries

Authors: Anwar Hussain, Ahmed Imran, Farida Faisal, Fatima Sultana

Abstract:

The present research evaluates a comparative assessment of dividend policy and share price across the South Asian countries including Pakistan, India and Sri-Lanka over the period of 2010 to 2014. Academic writers found that dividend policy and share price relationship is not same in south Asian market due to different reasons. Moreover, Panel Models used = for the evaluation of current study. In addition, Redundant fixed effect Likelihood and Hausman test used for determine of Common, Fixed and Random effect model. Therefore Indian market dividend policies play a fundamental role and significant impact on Market Share Prices. Although, present research found that different as compared to previous study that dividend policy have no impact on share price in Sri-Lanka and Pakistan.

Keywords: dividend policy, share price, South Asian countries, panel data analysis, theories and parameters of dividend

Procedia PDF Downloads 323
1459 Enhancing Project Performance Forecasting using Machine Learning Techniques

Authors: Soheila Sadeghi

Abstract:

Accurate forecasting of project performance metrics is crucial for successfully managing and delivering urban road reconstruction projects. Traditional methods often rely on static baseline plans and fail to consider the dynamic nature of project progress and external factors. This research proposes a machine learning-based approach to forecast project performance metrics, such as cost variance and earned value, for each Work Breakdown Structure (WBS) category in an urban road reconstruction project. The proposed model utilizes time series forecasting techniques, including Autoregressive Integrated Moving Average (ARIMA) and Long Short-Term Memory (LSTM) networks, to predict future performance based on historical data and project progress. The model also incorporates external factors, such as weather patterns and resource availability, as features to enhance the accuracy of forecasts. By applying the predictive power of machine learning, the performance forecasting model enables proactive identification of potential deviations from the baseline plan, which allows project managers to take timely corrective actions. The research aims to validate the effectiveness of the proposed approach using a case study of an urban road reconstruction project, comparing the model's forecasts with actual project performance data. The findings of this research contribute to the advancement of project management practices in the construction industry, offering a data-driven solution for improving project performance monitoring and control.

Keywords: project performance forecasting, machine learning, time series forecasting, cost variance, earned value management

Procedia PDF Downloads 50
1458 Demand Forecasting Using Artificial Neural Networks Optimized by Particle Swarm Optimization

Authors: Daham Owaid Matrood, Naqaa Hussein Raheem

Abstract:

Evolutionary algorithms and Artificial neural networks (ANN) are two relatively young research areas that were subject to a steadily growing interest during the past years. This paper examines the use of Particle Swarm Optimization (PSO) to train a multi-layer feed forward neural network for demand forecasting. We use in this paper weekly demand data for packed cement and towels, which have been outfitted by the Northern General Company for Cement and General Company of prepared clothes respectively. The results showed superiority of trained neural networks using particle swarm optimization on neural networks trained using error back propagation because their ability to escape from local optima.

Keywords: artificial neural network, demand forecasting, particle swarm optimization, weight optimization

Procedia PDF Downloads 452
1457 A Mathematical Equation to Calculate Stock Price of Different Growth Model

Authors: Weiping Liu

Abstract:

This paper presents an equation to calculate stock prices of different growth model. This equation is mathematically derived by using discounted cash flow method. It has the advantages of being very easy to use and very accurate. It can still be used even when the first stage is lengthy. This equation is more generalized because it can be used for all the three popular stock price models. It can be programmed into financial calculator or electronic spreadsheets. In addition, it can be extended to a multistage model. It is more versatile and efficient than the traditional methods.

Keywords: stock price, multistage model, different growth model, discounted cash flow method

Procedia PDF Downloads 406
1456 Comparing Forecasting Performances of the Bass Diffusion Model and Time Series Methods for Sales of Electric Vehicles

Authors: Andreas Gohs, Reinhold Kosfeld

Abstract:

This study should be of interest for practitioners who want to predict precisely the sales numbers of vehicles equipped with an innovative propulsion technology as well as for researchers interested in applied (regional) time series analysis. The study is based on the numbers of new registrations of pure electric and hybrid cars. Methods of time series analysis like ARIMA are compared with the Bass Diffusion-model concerning their forecasting performances for new registrations in Germany at the national and federal state levels. Especially it is investigated if the additional information content from regional data increases the forecasting accuracy for the national level by adding predictions for the federal states. Results of parameters of the Bass Diffusion Model estimated for Germany and its sixteen federal states are reported. While the focus of this research is on the German market, estimation results are also provided for selected European and other countries. Concerning Bass-parameters and forecasting performances, we get very different results for Germany's federal states and the member states of the European Union. This corresponds to differences across the EU-member states in the adoption process of this innovative technology. Concerning the German market, the adoption is rather proceeded in southern Germany and stays behind in Eastern Germany except for Berlin.

Keywords: bass diffusion model, electric vehicles, forecasting performance, market diffusion

Procedia PDF Downloads 169
1455 Time Series Modelling for Forecasting Wheat Production and Consumption of South Africa in Time of War

Authors: Yiseyon Hosu, Joseph Akande

Abstract:

Wheat is one of the most important staple food grains of human for centuries and is largely consumed in South Africa. It has a special place in the South African economy because of its significance in food security, trade, and industry. This paper modelled and forecast the production and consumption of wheat in South Africa in the time covid-19 and the ongoing Russia-Ukraine war by using annual time series data from 1940–2021 based on the ARIMA models. Both the averaging forecast and selected models forecast indicate that there is the possibility of an increase with respect to production. The minimum and maximum growth in production is projected to be between 3million and 10 million tons, respectively. However, the model also forecast a possibility of depression with respect to consumption in South Africa. Although Covid-19 and the war between Ukraine and Russia, two major producers and exporters of global wheat, are having an effect on the volatility of the prices currently, the wheat production in South African is expected to increase and meat the consumption demand and provided an opportunity for increase export with respect to domestic consumption. The forecasting of production and consumption behaviours of major crops play an important role towards food and nutrition security, these findings can assist policymakers and will provide them with insights into the production and pricing policy of wheat in South Africa.

Keywords: ARIMA, food security, price volatility, staple food, South Africa

Procedia PDF Downloads 102
1454 Value Relevance of Accounting Information: Empirical Evidence from China

Authors: Ying Guo, Miaochan Li, David Yang, Xiao-Yan Li

Abstract:

This paper examines the relevance of accounting information to stock prices at different periods using manufacturing companies listed in China’s Growth Enterprise Market (GEM). We find that both the average stock price at fiscal year-end and the average stock price one month after fiscal year-end are more relevant to the accounting information than the closing stock price four months after fiscal year-end. This implies that Chinese stock markets react before the public disclosure of accounting information, which may be due to information leak before official announcements. Our findings confirm that accounting information is relevant to stock prices for Chinese listed manufacturing companies, which is a critical question to answer for investors who have interest in Chinese companies.

Keywords: accounting information, response time, value relevance, stock price

Procedia PDF Downloads 96
1453 Calculate Consumer Surplus and Producer Surplus Using Integration

Authors: Bojan Radisic, Katarina Stavlic

Abstract:

The paper describes two economics terms consumer surplus and producer surplus using the definite integrals (the Riemann integral). The consumer surplus is the difference between what consumers are willing to pay and actual price. The producer surplus is the difference between what producers selling at the current price, rather than at the price they would have been are willing to accept. Using the definite integrals describe terms and mathematical formulas of the consumer surplus and the producer surplus and will be applied to the numerical examples.

Keywords: consumer surplus, producer surplus, definite integral, integration

Procedia PDF Downloads 589
1452 Unravelling Cross-Commodity Price Transmission Dynamics between Coastal and Freshwater Fish Species in Bangladesh: A Structural VAR Analysis

Authors: Farhana Arefeen Mila, Luis Emilio Morales, Nam Hoang, Sujana Adapa, Garry Griffith

Abstract:

This study investigates the existence of price transmission asymmetries and imperfections among the coastal and freshwater fish species in Bangladesh. Using a Structural Vector Autoregression (SVAR) model, we explore how price changes in one fish species impact the prices of others in the retail market. Monthly data from the Department of Agricultural Marketing (DAM) covering the period from 2012 to 2023 was analyzed. Price series were detrended using the Hodrick-Prescott filter, and unit root tests confirmed stationarity after detrending. The findings indicate that there are significant interdependencies and asymmetries in price transmission, particularly the strong influence of Hilsha on the broader fish market. Hilsha’s price shocks generate immediate responses across other species, reflecting its cultural and economic importance. Silver Pomfret demonstrates some independence but is still affected by broader market fluctuations, particularly those involving Hilsha. Meanwhile, Rohu and Catla exhibit high interdependence, where price changes in one species closely impact the other, underscoring their substitutable nature in consumer preferences. These findings emphasize the need for joint interventions and market monitoring to stabilize prices effectively. Stakeholders are encouraged to monitor Hilsha’s market, consider coordinated interventions for Rohu and Catla, and establish data-sharing partnerships to enhance market stability. Additionally, promoting consumer awareness of price trends and sustainable practices can further support market resilience and long-term sustainability in the fisheries sector.

Keywords: price transmission, cross commodity, fish, Bangladesh, CCF, SVAR, IRF

Procedia PDF Downloads 13
1451 Development of pm2.5 Forecasting System in Seoul, South Korea Using Chemical Transport Modeling and ConvLSTM-DNN

Authors: Ji-Seok Koo, Hee‑Yong Kwon, Hui-Young Yun, Kyung-Hui Wang, Youn-Seo Koo

Abstract:

This paper presents a forecasting system for PM2.5 levels in Seoul, South Korea, leveraging a combination of chemical transport modeling and ConvLSTM-DNN machine learning technology. Exposure to PM2.5 has known detrimental impacts on public health, making its prediction crucial for establishing preventive measures. Existing forecasting models, like the Community Multiscale Air Quality (CMAQ) and Weather Research and Forecasting (WRF), are hindered by their reliance on uncertain input data, such as anthropogenic emissions and meteorological patterns, as well as certain intrinsic model limitations. The system we've developed specifically addresses these issues by integrating machine learning and using carefully selected input features that account for local and distant sources of PM2.5. In South Korea, the PM2.5 concentration is greatly influenced by both local emissions and long-range transport from China, and our model effectively captures these spatial and temporal dynamics. Our PM2.5 prediction system combines the strengths of advanced hybrid machine learning algorithms, convLSTM and DNN, to improve upon the limitations of the traditional CMAQ model. Data used in the system include forecasted information from CMAQ and WRF models, along with actual PM2.5 concentration and weather variable data from monitoring stations in China and South Korea. The system was implemented specifically for Seoul's PM2.5 forecasting.

Keywords: PM2.5 forecast, machine learning, convLSTM, DNN

Procedia PDF Downloads 55
1450 The Reliability of Management Earnings Forecasts in IPO Prospectuses: A Study of Managers’ Forecasting Preferences

Authors: Maha Hammami, Olfa Benouda Sioud

Abstract:

This study investigates the reliability of management earnings forecasts with reference to these two ingredients: verifiability and neutrality. Specifically, we examine the biasedness (or accuracy) of management earnings forecasts and company specific characteristics that can be associated with accuracy. Based on sample of 102 IPO prospectuses published for admission on NYSE Euronext Paris from 2002 to 2010, we found that these forecasts are on average optimistic and two of the five test variables, earnings variability and financial leverage are significant in explaining ex post bias. Acknowledging the possibility that the bias is the result of the managers’ forecasting behavior, we then examine whether managers decide to under-predict, over-predict or forecast accurately for self-serving purposes. Explicitly, we examine the role of financial distress, operating performance, ownership by insiders and the economy state in influencing managers’ forecasting preferences. We find that managers of distressed firms seem to over-predict future earnings. We also find that when managers are given more stock options, they tend to under-predict future earnings. Finally, we conclude that the management earnings forecasts are affected by an intentional bias due to managers’ forecasting preferences.

Keywords: intentional bias, management earnings forecasts, neutrality, verifiability

Procedia PDF Downloads 235
1449 Dynamic-cognition of Strategic Mineral Commodities; An Empirical Assessment

Authors: Carlos Tapia Cortez, Serkan Saydam, Jeff Coulton, Claude Sammut

Abstract:

Strategic mineral commodities (SMC) both energetic and metals have long been fundamental for human beings. There is a strong and long-run relation between the mineral resources industry and society's evolution, with the provision of primary raw materials, becoming one of the most significant drivers of economic growth. Due to mineral resources’ relevance for the entire economy and society, an understanding of the SMC market behaviour to simulate price fluctuations has become crucial for governments and firms. For any human activity, SMC price fluctuations are affected by economic, geopolitical, environmental, technological and psychological issues, where cognition has a major role. Cognition is defined as the capacity to store information in memory, processing and decision making for problem-solving or human adaptation. Thus, it has a significant role in those systems that exhibit dynamic equilibrium through time, such as economic growth. Cognition allows not only understanding past behaviours and trends in SCM markets but also supports future expectations of demand/supply levels and prices, although speculations are unavoidable. Technological developments may also be defined as a cognitive system. Since the Industrial Revolution, technological developments have had a significant influence on SMC production costs and prices, likewise allowing co-integration between commodities and market locations. It suggests a close relation between structural breaks, technology and prices evolution. SCM prices forecasting have been commonly addressed by econometrics and Gaussian-probabilistic models. Econometrics models may incorporate the relationship between variables; however, they are statics that leads to an incomplete approach of prices evolution through time. Gaussian-probabilistic models may evolve through time; however, price fluctuations are addressed by the assumption of random behaviour and normal distribution which seems to be far from the real behaviour of both market and prices. Random fluctuation ignores the evolution of market events and the technical and temporal relation between variables, giving the illusion of controlled future events. Normal distribution underestimates price fluctuations by using restricted ranges, curtailing decisions making into a pre-established space. A proper understanding of SMC's price dynamics taking into account the historical-cognitive relation between economic, technological and psychological factors over time is fundamental in attempting to simulate prices. The aim of this paper is to discuss the SMC market cognition hypothesis and empirically demonstrate its dynamic-cognitive capacity. Three of the largest and traded SMC's: oil, copper and gold, will be assessed to examine the economic, technological and psychological cognition respectively.

Keywords: commodity price simulation, commodity price uncertainties, dynamic-cognition, dynamic systems

Procedia PDF Downloads 464
1448 Short-Term Load Forecasting Based on Variational Mode Decomposition and Least Square Support Vector Machine

Authors: Jiangyong Liu, Xiangxiang Xu, Bote Luo, Xiaoxue Luo, Jiang Zhu, Lingzhi Yi

Abstract:

To address the problems of non-linearity and high randomness of the original power load sequence causing the degradation of power load forecasting accuracy, a short-term load forecasting method is proposed. The method is based on the Least Square Support Vector Machine optimized by an Improved Sparrow Search Algorithm combined with the Variational Mode Decomposition proposed in this paper. The application of the variational mode decomposition technique decomposes the raw power load data into a series of Intrinsic Mode Functions components, which can reduce the complexity and instability of the raw data while overcoming modal confounding; the proposed improved sparrow search algorithm can solve the problem of difficult selection of learning parameters in the least Square Support Vector Machine. Finally, through comparison experiments, the results show that the method can effectively improve prediction accuracy.

Keywords: load forecasting, variational mode decomposition, improved sparrow search algorithm, least square support vector machine

Procedia PDF Downloads 109
1447 Demand and Supply Management for Electricity Markets: Econometric Analysis of Electricity Prices

Authors: Ioana Neamtu

Abstract:

This paper investigates the potential for demand-side management for the system price in the Nordic electricity market and the price effects of introducing wind-power into the system. The model proposed accounts for the micro-structure of the Nordic electricity market by modeling each hour individually, while still accounting for the relationship between the hours within a day. This flexibility allows us to explore the differences between peak and shoulder demand hours. Preliminary results show potential for demand response management, as indicated by the price elasticity of demand as well as a small but statistically significant decrease in price, given by the wind power penetration. Moreover, our study shows that these effects are stronger during day-time and peak hours,compared to night-time and shoulder hours.

Keywords: structural model, GMM estimation, system of equations, electricity market

Procedia PDF Downloads 437
1446 A Bayesian Multivariate Microeconometric Model for Estimation of Price Elasticity of Demand

Authors: Jefferson Hernandez, Juan Padilla

Abstract:

Estimation of price elasticity of demand is a valuable tool for the task of price settling. Given its relevance, it is an active field for microeconomic and statistical research. Price elasticity in the industry of oil and gas, in particular for fuels sold in gas stations, has shown to be a challenging topic given the market and state restrictions, and underlying correlations structures between the types of fuels sold by the same gas station. This paper explores the Lotka-Volterra model for the problem for price elasticity estimation in the context of fuels; in addition, it is introduced multivariate random effects with the purpose of dealing with errors, e.g., measurement or missing data errors. In order to model the underlying correlation structures, the Inverse-Wishart, Hierarchical Half-t and LKJ distributions are studied. Here, the Bayesian paradigm through Markov Chain Monte Carlo (MCMC) algorithms for model estimation is considered. Simulation studies covering a wide range of situations were performed in order to evaluate parameter recovery for the proposed models and algorithms. Results revealed that the proposed algorithms recovered quite well all model parameters. Also, a real data set analysis was performed in order to illustrate the proposed approach.

Keywords: price elasticity, volume, correlation structures, Bayesian models

Procedia PDF Downloads 165
1445 A Comparative Analysis of ARIMA and Threshold Autoregressive Models on Exchange Rate

Authors: Diteboho Xaba, Kolentino Mpeta, Tlotliso Qejoe

Abstract:

This paper assesses the in-sample forecasting of the South African exchange rates comparing a linear ARIMA model and a SETAR model. The study uses a monthly adjusted data of South African exchange rates with 420 observations. Akaike information criterion (AIC) and the Schwarz information criteria (SIC) are used for model selection. Mean absolute error (MAE), root mean squared error (RMSE) and mean absolute percentage error (MAPE) are error metrics used to evaluate forecast capability of the models. The Diebold –Mariano (DM) test is employed in the study to check forecast accuracy in order to distinguish the forecasting performance between the two models (ARIMA and SETAR). The results indicate that both models perform well when modelling and forecasting the exchange rates, but SETAR seemed to outperform ARIMA.

Keywords: ARIMA, error metrices, model selection, SETAR

Procedia PDF Downloads 244
1444 Fast Short-Term Electrical Load Forecasting under High Meteorological Variability with a Multiple Equation Time Series Approach

Authors: Charline David, Alexandre Blondin Massé, Arnaud Zinflou

Abstract:

In 2016, Clements, Hurn, and Li proposed a multiple equation time series approach for the short-term load forecasting, reporting an average mean absolute percentage error (MAPE) of 1.36% on an 11-years dataset for the Queensland region in Australia. We present an adaptation of their model to the electrical power load consumption for the whole Quebec province in Canada. More precisely, we take into account two additional meteorological variables — cloudiness and wind speed — on top of temperature, as well as the use of multiple meteorological measurements taken at different locations on the territory. We also consider other minor improvements. Our final model shows an average MAPE score of 1:79% over an 8-years dataset.

Keywords: short-term load forecasting, special days, time series, multiple equations, parallelization, clustering

Procedia PDF Downloads 104
1443 Forecasting 24-Hour Ahead Electricity Load Using Time Series Models

Authors: Ramin Vafadary, Maryam Khanbaghi

Abstract:

Forecasting electricity load is important for various purposes like planning, operation, and control. Forecasts can save operating and maintenance costs, increase the reliability of power supply and delivery systems, and correct decisions for future development. This paper compares various time series methods to forecast 24 hours ahead of electricity load. The methods considered are the Holt-Winters smoothing, SARIMA Modeling, LSTM Network, Fbprophet, and Tensorflow probability. The performance of each method is evaluated by using the forecasting accuracy criteria, namely, the mean absolute error and root mean square error. The National Renewable Energy Laboratory (NREL) residential energy consumption data is used to train the models. The results of this study show that the SARIMA model is superior to the others for 24 hours ahead forecasts. Furthermore, a Bagging technique is used to make the predictions more robust. The obtained results show that by Bagging multiple time-series forecasts, we can improve the robustness of the models for 24 hours ahead of electricity load forecasting.

Keywords: bagging, Fbprophet, Holt-Winters, LSTM, load forecast, SARIMA, TensorFlow probability, time series

Procedia PDF Downloads 96
1442 Perceived Quality of Regional Products in MS Region

Authors: M. Stoklasa, H. Starzyczna, K. Matusinska

Abstract:

This article deals with the perceived quality of regional products in the Moravian-Silesian region in the Czech Republic. Research was focused on finding out what do consumers perceive as a quality product and what characteristics make a quality product. The data were obtained by questionnaire survey and analysed by IBM SPSS. From the thousands of respondents the representative sample of 719 for MS region was created based on demographic factors of gender, age, education and income. The research analysis disclosed that consumers in MS region are still price oriented and that the preference of quality over price does not depend on regional brand knowledge.

Keywords: regional brands, quality products, characteristics of quality, quality over price

Procedia PDF Downloads 417