Search results for: plantar insoles reinforcement
646 Effects of Stirring Time and Reinforcement Preheating on the Porosity of Particulate Periwinkle Shell-Aluminium 6063 Metal Matrix Composite (PPS-ALMMC) Produced by Two-Step Casting
Authors: Reginald Umunakwe, Obinna Chibuzor Okoye, Uzoma Samuel Nwigwe, Damilare John Olaleye, Akinlabi Oyetunji
Abstract:
The potential for the development of PPS-AlMMCs as light weight material for industrial applications was investigated. Periwinkle shells were milled and the density of the particles determined. Particulate periwinkle shell of particle size 75µm was used to reinforce aluminium 6063 alloy at 10wt% filler loading using two-step stir casting technique. The composite materials were stirred for five minutes in a semi-solid state and the stirring time varied as 3, 6 and 9 minutes at above the liquidus temperature. A specimen was also produced with pre-heated filler. The effect of variation in stirring time and reinforcement pre-heating on the porosity of the composite materials was investigated. The results of the analysis show that a composition of reinforcement pre-heating and stirring for 3 minutes produced a composite material with the lowest porosity of 1.05%.Keywords: composites, periwinkle shell, two-step casting, porosity
Procedia PDF Downloads 349645 Settlement Analysis of Back-To-Back Mechanically Stabilized Earth Walls
Authors: Akhila Palat, B. Umashankar
Abstract:
Back-to-back Mechanically Stabilized Earth (MSE) walls are cost-effective soil-retaining structures that can tolerate large settlements compared to conventional gravity retaining walls. They are also an economical way to meet everyday earth retention needs for highway and bridge grade separations, railroads, commercial and residential developments. But, existing design guidelines (FHWA/BS/ IS codes) do not provide a mechanistic approach for the design of back-to-back reinforced retaining walls. The settlement analysis of such structures is limited in the literature. A better understanding of the deformations of this wall system requires an analytical tool that incorporates the properties of backfill material, foundation soil, and geosynthetic reinforcement, and account for the soil–structure interactions in a realistic manner. This study was conducted to investigate the effect of reinforced back-to-back MSE walls on wall settlements and facing deformations. Back-to-back reinforced retaining walls were modeled and compared using commercially available finite difference package FLAC 2D. Parametric studies were carried out for various angles of shearing resistance of backfill material and foundation soil, and the axial stiffness of the reinforcement. A 6m-high wall was modeled, and the facing panels were taken as full-length panels with nominal thickness. Reinforcement was modeled as cable elements (two-dimensional structural elements). Interfaces were considered between soil and wall, and soil and reinforcement.Keywords: back-to-back walls, numerical modeling, reinforced wall, settlement
Procedia PDF Downloads 303644 Comparative Assessment of Geocell and Geogrid Reinforcement for Flexible Pavement: Numerical Parametric Study
Authors: Anjana R. Menon, Anjana Bhasi
Abstract:
Development of highways and railways play crucial role in a nation’s economic growth. While rigid concrete pavements are durable with high load bearing characteristics, growing economies mostly rely on flexible pavements which are easier in construction and more economical. The strength of flexible pavement is based on the strength of subgrade and load distribution characteristics of intermediate granular layers. In this scenario, to simultaneously meet economy and strength criteria, it is imperative to strengthen and stabilize the load transferring layers, namely subbase and base. Geosynthetic reinforcement in planar and cellular forms have been proven effective in improving soil stiffness and providing a stable load transfer platform. Studies have proven the relative superiority of cellular form-geocells over planar geosynthetic forms like geogrid, owing to the additional confinement of infill material and pocket effect arising from vertical deformation. Hence, the present study investigates the efficiency of geocells over single/multiple layer geogrid reinforcements by a series of three-dimensional model analyses of a flexible pavement section under a standard repetitive wheel load. The stress transfer mechanism and deformation profiles under various reinforcement configurations are also studied. Geocell reinforcement is observed to take up a higher proportion of stress caused by the traffic loads compared to single and double-layer geogrid reinforcements. The efficiency of single geogrid reinforcement reduces with an increase in embedment depth. The contribution of lower geogrid is insignificant in the case of the double-geogrid reinforced system.Keywords: Geocell, Geogrid, Flexible Pavement, Repetitive Wheel Load, Numerical Analysis
Procedia PDF Downloads 75643 Influence of Processing Parameters in Selective Laser Melting on the Microstructure and Mechanical Properties of Ti/Tin Composites With in-situ and ex-situ Reinforcement
Authors: C. Sánchez de Rojas Candela, A. Riquelme, P. Rodrigo, M. D. Escalera-Rodríguez, B. Torres, J. Rams
Abstract:
Selective laser melting is one of the most commonly used AM techniques. In it, a thin layer of metallic powder is deposited, and a laser is used to melt selected zones. The accumulation of layers, each one molten in the preselected zones, gives rise to the formation of a 3D sample with a nearly arbitrary design. To ensure that the properties of the final parts match those of the powder, all the process is carried out in an inert atmosphere, preferentially Ar, although this gas could be substituted. Ti6Al4V alloy is widely used in multiple industrial applications such as aerospace, maritime transport and biomedical, due to its properties. However, due to the demanding requirements of these applications, greater hardness and wear resistance are necessary, together with a better machining capacity, which currently limits its commercialization. To improve these properties, in this study, Selective Laser Melting (SLM) is used to manufacture Ti/TiN metal matrix composites with in-situ and ex-situ titanium nitride reinforcement where the scanning speed is modified (from 28.5 up to 65 mm/s) to study the influence of the processing parameters in SLM. A one-step method of nitriding the Ti6Al4V alloy is carried out to create in-situ TiN reinforcement in a reactive atmosphere and it is compared with ex-situ composites manufactured by previous mixture of both the titanium alloy powder and the ceramic reinforcement particles. The microstructure and mechanical properties of the different Ti/TiN composite materials have been analyzed. As a result, the existence of a similar matrix has been confirmed in in-situ and ex-situ fabrications and the growth mechanisms of the nitrides have been studied. An increase in the mechanical properties with respect to the initial alloy has been observed in both cases and related to changes in their microstructure. Specifically, a greater improvement (around 30.65%) has been identified in those manufactured by the in-situ method at low speeds although other properties such as porosity must be improved for their future industrial applicability.Keywords: in-situ reinforcement, nitriding reaction, selective laser melting, titanium nitride
Procedia PDF Downloads 79642 Experimental Analysis of Composite Timber-Concrete Beam with CFRP Reinforcement
Authors: O. Vlcek
Abstract:
The paper deals with current issues in research of advanced methods to increase reliability of traditional timber structural elements. It analyses the issue of strengthening of bent timber beams, such as ceiling beams in old (historical) buildings with additional concrete slab in combination with externally bonded fibre - reinforced polymer. The paper describes experimental testing of composite timber-concrete beam with FRP reinforcement and compares results with FEM analysis.Keywords: timber-concrete composite, strengthening, fibre-reinforced polymer, experimental analysis
Procedia PDF Downloads 472641 Behavior of Composite Reinforced Concrete Circular Columns with Glass Fiber Reinforced Polymer I-Section
Authors: Hiba S. Ahmed, Abbas A. Allawi, Riyadh A. Hindi
Abstract:
Pultruded materials made of fiber-reinforced polymer (FRP) come in a broad range of shapes, such as bars, I-sections, C-sections, and other structural sections. These FRP materials are starting to compete with steel as structural materials because of their great resistance, low self-weight, and cheap maintenance costs-especially in corrosive conditions. This study aimed to evaluate the effectiveness of Glass Fiber Reinforced Polymer (GFRP) of the hybrid columns built by combining (GFRP) profiles with concrete columns because of their low cost and high structural efficiency. To achieve the aims of this study, nine circular columns with a diameter of (150 mm) and a height of (1000mm) were cast using normal concrete with compression strength equal to (35 MPa). The research involved three different types of reinforcement: hybrid circular columns type (IG) with GFRP I-section and 1% of the reinforcement ratio of steel bars, hybrid circular columns type (IS) with steel I-section and 1% of the reinforcement ratio of steel bars, (where the cross-section area of I-section for GFRP and steel was the same), compared with reference column (R) without I-section. To investigate the ultimate capacity, axial and lateral deformation, strain in longitudinal and transverse reinforcement, and failure mode of the circular column under different loading conditions (concentric and eccentric) with eccentricities of 25 mm and 50 mm, respectively. In the second part, an analytical finite element model will be performed using ABAQUS software to validate the experimental results.Keywords: composite, columns, reinforced concrete, GFRP, axial load
Procedia PDF Downloads 55640 Reduction Shrinkage of Concrete without Use Reinforcement
Authors: Martin Tazky, Rudolf Hela, Lucia Osuska, Petr Novosad
Abstract:
Concrete’s volumetric changes are natural process caused by silicate minerals’ hydration. These changes can lead to cracking and subsequent destruction of cementitious material’s matrix. In most cases, cracks can be assessed as a negative effect of hydration, and in all cases, they lead to an acceleration of degradation processes. Preventing the formation of these cracks is, therefore, the main effort. Once of the possibility how to eliminate this natural concrete shrinkage process is by using different types of dispersed reinforcement. For this application of concrete shrinking, steel and polymer reinforcement are preferably used. Despite ordinarily used reinforcement in concrete to eliminate shrinkage it is possible to look at this specific problematic from the beginning by itself concrete mix composition. There are many secondary raw materials, which are helpful in reduction of hydration heat and also with shrinkage of concrete during curing. The new science shows the possibilities of shrinkage reduction also by the controlled formation of hydration products, which could act by itself morphology as a traditionally used dispersed reinforcement. This contribution deals with the possibility of controlled formation of mono- and tri-sulfate which are considered like degradation minerals. Mono- and tri- sulfate's controlled formation in a cementitious composite can be classified as a self-healing ability. Its crystal’s growth acts directly against the shrinking tension – this reduces the risk of cracks development. Controlled formation means that these crystals start to grow in the fresh state of the material (e.g. concrete) but stop right before it could cause any damage to the hardened material. Waste materials with the suitable chemical composition are very attractive precursors because of their added value in the form of landscape pollution’s reduction and, of course, low cost. In this experiment, the possibilities of using the fly ash from fluidized bed combustion as a mono- and tri-sulphate formation additive were investigated. The experiment itself was conducted on cement paste and concrete and specimens were subjected to a thorough analysis of physicomechanical properties as well as microstructure from the moment of mixing up to 180 days. In cement composites, were monitored the process of hydration and shrinkage. In a mixture with the used admixture of fluidized bed combustion fly ash, possible failures were specified by electronic microscopy and dynamic modulus of elasticity. The results of experiments show the possibility of shrinkage concrete reduction without using traditionally dispersed reinforcement.Keywords: shrinkage, monosulphates, trisulphates, self-healing, fluidized fly ash
Procedia PDF Downloads 186639 LanE-change Path Planning of Autonomous Driving Using Model-Based Optimization, Deep Reinforcement Learning and 5G Vehicle-to-Vehicle Communications
Authors: William Li
Abstract:
Lane-change path planning is a crucial and yet complex task in autonomous driving. The traditional path planning approach based on a system of carefully-crafted rules to cover various driving scenarios becomes unwieldy as more and more rules are added to deal with exceptions and corner cases. This paper proposes to divide the entire path planning to two stages. In the first stage the ego vehicle travels longitudinally in the source lane to reach a safe state. In the second stage the ego vehicle makes lateral lane-change maneuver to the target lane. The paper derives the safe state conditions based on lateral lane-change maneuver calculation to ensure collision free in the second stage. To determine the acceleration sequence that minimizes the time to reach a safe state in the first stage, the paper proposes three schemes, namely, kinetic model based optimization, deep reinforcement learning, and 5G vehicle-to-vehicle (V2V) communications. The paper investigates these schemes via simulation. The model-based optimization is sensitive to the model assumptions. The deep reinforcement learning is more flexible in handling scenarios beyond the model assumed by the optimization. The 5G V2V eliminates uncertainty in predicting future behaviors of surrounding vehicles by sharing driving intents and enabling cooperative driving.Keywords: lane change, path planning, autonomous driving, deep reinforcement learning, 5G, V2V communications, connected vehicles
Procedia PDF Downloads 252638 Reinforcement Learning for Robust Missile Autopilot Design: TRPO Enhanced by Schedule Experience Replay
Authors: Bernardo Cortez, Florian Peter, Thomas Lausenhammer, Paulo Oliveira
Abstract:
Designing missiles’ autopilot controllers have been a complex task, given the extensive flight envelope and the nonlinear flight dynamics. A solution that can excel both in nominal performance and in robustness to uncertainties is still to be found. While Control Theory often debouches into parameters’ scheduling procedures, Reinforcement Learning has presented interesting results in ever more complex tasks, going from videogames to robotic tasks with continuous action domains. However, it still lacks clearer insights on how to find adequate reward functions and exploration strategies. To the best of our knowledge, this work is a pioneer in proposing Reinforcement Learning as a framework for flight control. In fact, it aims at training a model-free agent that can control the longitudinal non-linear flight dynamics of a missile, achieving the target performance and robustness to uncertainties. To that end, under TRPO’s methodology, the collected experience is augmented according to HER, stored in a replay buffer and sampled according to its significance. Not only does this work enhance the concept of prioritized experience replay into BPER, but it also reformulates HER, activating them both only when the training progress converges to suboptimal policies, in what is proposed as the SER methodology. The results show that it is possible both to achieve the target performance and to improve the agent’s robustness to uncertainties (with low damage on nominal performance) by further training it in non-nominal environments, therefore validating the proposed approach and encouraging future research in this field.Keywords: Reinforcement Learning, flight control, HER, missile autopilot, TRPO
Procedia PDF Downloads 264637 A Review of Masonry Buildings Restrengthening Methods
Authors: Negar Sartipzadeh
Abstract:
The historic buildings are generally the ones which have been built by materials like brick, mud, stone, and wood. Some phenomena such as severe earthquakes can be tremendously detrimental to the structures, imposing serious effects and losses on such structures. Hence, it matters a lot to ascertain safety and reliability of the structures under such circumstances. It has been asserted that the major reason for the collapse of Unreinforced Masonry (URM) in various earthquakes is the incapability of resisting the forces and vice versa because such URMs are meant for the gravity load and they fail to withstand the shear forces inside the plate and the bending forces outside the plate. For this reason, restrengthening such structures is a key factor in lowering the seismic loss in developing countries. Seismic reinforcement of the historic buildings with regard to their cultural value on one hand, and exhaustion and damage of many of the structural elements on the other hand, have brought in restricting factors which necessitate the seismic reinforcement methods meant for such buildings to be maximally safe, non-destructive, effective, and non-obvious. Henceforth, it is pinpointed that making use of diverse technologies such as active controlling, Energy dampers, and seismic separators besides the current popular methods would be justifiable for such buildings, notwithstanding their high imposed costs.Keywords: masonry buildings, seismic reinforcement, Unreinforced Masonry (URM), earthquake
Procedia PDF Downloads 280636 Performance of Fiber-Reinforced Polymer as an Alternative Reinforcement
Authors: Salah E. El-Metwally, Marwan Abdo, Basem Abdel Wahed
Abstract:
Fiber-reinforced polymer (FRP) bars have been proposed as an alternative to conventional steel bars; hence, the use of these non-corrosive and nonmetallic reinforcing bars has increased in various concrete projects. This concrete material is lightweight, has a long lifespan, and needs minor maintenance; however, its non-ductile nature and weak bond with the surrounding concrete create a significant challenge. The behavior of concrete elements reinforced with FRP bars has been the subject of several experimental investigations, even with their high cost. This study aims to numerically assess the viability of using FRP bars, as longitudinal reinforcement, in comparison with traditional steel bars, and also as prestressing tendons instead of the traditional prestressing steel. The nonlinear finite element analysis has been utilized to carry out the current study. Numerical models have been developed to examine the behavior of concrete beams reinforced with FRP bars or tendons against similar models reinforced with either conventional steel or prestressing steel. These numerical models were verified by experimental test results available in the literature. The obtained results revealed that concrete beams reinforced with FRP bars, as passive reinforcement, exhibited less ductility and less stiffness than similar beams reinforced with steel bars. On the other hand, when FRP tendons are employed in prestressing concrete beams, the results show that the performance of these beams is similar to those beams prestressed by conventional active reinforcement but with a difference caused by the two tendon materials’ moduli of elasticity.Keywords: reinforced concrete, prestressed concrete, nonlinear finite element analysis, fiber-reinforced polymer, ductility
Procedia PDF Downloads 13635 Expression of Somatostatin and Neuropeptide Y in Dorsal Root Ganglia Following Hind Paw Incision in Rats
Authors: Anshu Bahl, Saroj Kaler, Shivani Gupta, S B Ray
Abstract:
Background: Somatostatin is an endogenous regulatory neuropeptide. Somatostatin and its analogues play an important role in neuropathic and inflammatory pain. Neuropeptide Y is extensively distributed in the mammalian nervous system. NPY has an important role in blood pressure, circadian rhythm, obesity, appetite and memory. The purpose was to investigate somatostatin and NPY expression in dorsal root ganglia during pain. The plantar incision model in rats is similar to postoperative pain in humans. Methods: 24 adult male Sprague dawley rats were distributed randomly into two groups – Control (n=6) and incision (n=18) groups. Using Hargreaves apparatus, thermal hyperalgesia behavioural test for nociception was done under basal condition and after surgical incision in right hind paw at different time periods (day 1, 3 and 5). The plantar incision was performed as per standard protocol. Perfusion was done using 4% paraformaldehyde followed by extraction of dorsal root ganglia at L4 level. The tissue was processed for immunohistochemical localisation for somatostatin and neuropeptide Y. Results: Post incisional groups (day 1, 3 and 5) exhibited significant decrease of paw withdrawal latency as compared to control groups. Somatostatin expression was noted under basal conditions. It decreased on day 1, but again gradually increased on day 3 and further on day five post incision. The expression of Neuropeptide Y was noted in the cytoplasm of dorsal root ganglia under basal conditions. Compared to control group, expression of neuropeptide Y decreased on day one after incision, but again gradually increased on day 3. Maximum expression was noted on day five post incision. Conclusion: Decrease in paw withdrawal latency indicated nociception, particularly on day 1. In comparison to control, somatostatin and NPY expression was decreased on day one post incision. This could be correlated with increased axoplasmic flow towards the spinal cord. Somatostatin and NPY expression was maximum on day five post incision. This could be due to decreased migration from the site of synthesis towards the spinal cord.Keywords: dorsal root ganglia, neuropeptide y, postoperative pain, somatostatin
Procedia PDF Downloads 176634 Seismic Active Earth Pressure on Retaining Walls with Reinforced Backfill
Authors: Jagdish Prasad Sahoo
Abstract:
The increase in active earth pressure during the event of an earthquake results sliding, overturning and tilting of earth retaining structures. In order to improve upon the stability of structures, the soil mass is often reinforced with various types of reinforcements such as metal strips, geotextiles, and geogrids etc. The stresses generated in the soil mass are transferred to the reinforcements through the interface friction between the earth and the reinforcement, which in turn reduces the lateral earth pressure on the retaining walls. Hence, the evaluation of earth pressure in the presence of seismic forces with an inclusion of reinforcements is important for the design retaining walls in the seismically active zones. In the present analysis, the effect of reinforcing horizontal layers of reinforcements in the form of sheets (Geotextiles and Geogrids) in sand used as backfill, on reducing the active earth pressure due to earthquake body forces has been studied. For carrying out the analysis, pseudo-static approach has been adopted by employing upper bound theorem of limit analysis in combination with finite elements and linear optimization. The computations have been performed with and out reinforcements for different internal friction angle of sand varying from 30 ° to 45 °. The effectiveness of the reinforcement in reducing the active earth pressure on the retaining walls is examined in terms of active earth pressure coefficient for presenting the solutions in a non-dimensional form. The active earth pressure coefficient is expressed as functions of internal friction angle of sand, interface friction angle between sand and reinforcement, soil-wall interface roughness conditions, and coefficient of horizontal seismic acceleration. It has been found that (i) there always exists a certain optimum depth of the reinforcement layers corresponding to which the value of active earth pressure coefficient becomes always the minimum, and (ii) the active earth pressure coefficient decreases significantly with an increase in length of reinforcements only up to a certain length beyond which a further increase in length hardly causes any reduction in the values active earth pressure. The optimum depth of the reinforcement layers and the required length of reinforcements corresponding to the optimum depth of reinforcements have been established. The numerical results developed in this analysis are expected to be useful for purpose of design of retaining walls.Keywords: active, finite elements, limit analysis, presudo-static, reinforcement
Procedia PDF Downloads 365633 Integrating Distributed Architectures in Highly Modular Reinforcement Learning Libraries
Authors: Albert Bou, Sebastian Dittert, Gianni de Fabritiis
Abstract:
Advancing reinforcement learning (RL) requires tools that are flexible enough to easily prototype new methods while avoiding impractically slow experimental turnaround times. To match the first requirement, the most popular RL libraries advocate for highly modular agent composability, which facilitates experimentation and development. To solve challenging environments within reasonable time frames, scaling RL to large sampling and computing resources has proved a successful strategy. However, this capability has been so far difficult to combine with modularity. In this work, we explore design choices to allow agent composability both at a local and distributed level of execution. We propose a versatile approach that allows the definition of RL agents at different scales through independent, reusable components. We demonstrate experimentally that our design choices allow us to reproduce classical benchmarks, explore multiple distributed architectures, and solve novel and complex environments while giving full control to the user in the agent definition and training scheme definition. We believe this work can provide useful insights to the next generation of RL libraries.Keywords: deep reinforcement learning, Python, PyTorch, distributed training, modularity, library
Procedia PDF Downloads 83632 Review on PETG Material Parts Made Using Fused Deposition Modeling
Authors: Dhval Chauhan, Mahesh Chudasama
Abstract:
This study has been undertaken to give a review of Polyethylene Terephthalate Glycol (PETG) material used in Fused Deposition Modelling (FDM). This paper offers a review of the existing literature on polyethylene terephthalate glycol (PETG) material, the objective of the paper is to providing guidance on different process parameters that can be used to improve the strength of the part by performing various testing like tensile, compressive, flexural, etc. This work is target to find new paths that can be used for further development of the use of fiber reinforcement in PETG material.Keywords: PETG, FDM, tensile strength, flexural strength, fiber reinforcement
Procedia PDF Downloads 192631 High-Frequency Cryptocurrency Portfolio Management Using Multi-Agent System Based on Federated Reinforcement Learning
Authors: Sirapop Nuannimnoi, Hojjat Baghban, Ching-Yao Huang
Abstract:
Over the past decade, with the fast development of blockchain technology since the birth of Bitcoin, there has been a massive increase in the usage of Cryptocurrencies. Cryptocurrencies are not seen as an investment opportunity due to the market’s erratic behavior and high price volatility. With the recent success of deep reinforcement learning (DRL), portfolio management can be modeled and automated. In this paper, we propose a novel DRL-based multi-agent system to automatically make proper trading decisions on multiple cryptocurrencies and gain profits in the highly volatile cryptocurrency market. We also extend this multi-agent system with horizontal federated transfer learning for better adapting to the inclusion of new cryptocurrencies in our portfolio; therefore, we can, through the concept of diversification, maximize our profits and minimize the trading risks. Experimental results through multiple simulation scenarios reveal that this proposed algorithmic trading system can offer three promising key advantages over other systems, including maximized profits, minimized risks, and adaptability.Keywords: cryptocurrency portfolio management, algorithmic trading, federated learning, multi-agent reinforcement learning
Procedia PDF Downloads 119630 Reinforcement Learning for Quality-Oriented Production Process Parameter Optimization Based on Predictive Models
Authors: Akshay Paranjape, Nils Plettenberg, Robert Schmitt
Abstract:
Producing faulty products can be costly for manufacturing companies and wastes resources. To reduce scrap rates in manufacturing, process parameters can be optimized using machine learning. Thus far, research mainly focused on optimizing specific processes using traditional algorithms. To develop a framework that enables real-time optimization based on a predictive model for an arbitrary production process, this study explores the application of reinforcement learning (RL) in this field. Based on a thorough review of literature about RL and process parameter optimization, a model based on maximum a posteriori policy optimization that can handle both numerical and categorical parameters is proposed. A case study compares the model to state–of–the–art traditional algorithms and shows that RL can find optima of similar quality while requiring significantly less time. These results are confirmed in a large-scale validation study on data sets from both production and other fields. Finally, multiple ways to improve the model are discussed.Keywords: reinforcement learning, production process optimization, evolutionary algorithms, policy optimization, actor critic approach
Procedia PDF Downloads 97629 Detection of Concrete Reinforcement Damage Using Piezoelectric Materials: Analytical and Experimental Study
Authors: C. P. Providakis, G. M. Angeli, M. J. Favvata, N. A. Papadopoulos, C. E. Chalioris, C. G. Karayannis
Abstract:
An effort for the detection of damages in the reinforcement bars of reinforced concrete members using PZTs is presented. The damage can be the result of excessive elongation of the steel bar due to steel yielding or due to local steel corrosion. In both cases the damage is simulated by considering reduced diameter of the rebar along the damaged part of its length. An integration approach based on both electromechanical admittance methodology and guided wave propagation technique is used to evaluate the artificial damage on the examined longitudinal steel bar. Two actuator PZTs and a sensor PZT are considered to be bonded on the examined steel bar. The admittance of the Sensor PZT is calculated using COMSOL 3.4a. Fast Furrier Transformation for a better evaluation of the results is employed. An effort for the quantification of the damage detection using the root mean square deviation (RMSD) between the healthy condition and damage state of the sensor PZT is attempted. The numerical value of the RSMD yields a level for the difference between the healthy and the damaged admittance computation indicating this way the presence of damage in the structure. Experimental measurements are also presented.Keywords: concrete reinforcement, damage detection, electromechanical admittance, experimental measurements, finite element method, guided waves, PZT
Procedia PDF Downloads 255628 Detection of Concrete Reinforcement Damage Using Piezoelectric Materials: Analytical and Experimental Study
Authors: C. P. Providakis, G. M. Angeli, M. J. Favvata, N. A. Papadopoulos, C. E. Chalioris, C. G. Karayannis
Abstract:
An effort for the detection of damages in the reinforcement bars of reinforced concrete members using PZTs is presented. The damage can be the result of excessive elongation of the steel bar due to steel yielding or due to local steel corrosion. In both cases the damage is simulated by considering reduced diameter of the rebar along the damaged part of its length. An integration approach based on both electro-mechanical admittance methodology and guided wave propagation technique is used to evaluate the artificial damage on the examined longitudinal steel bar. Two actuator PZTs and a sensor PZT are considered to be bonded on the examined steel bar. The admittance of the Sensor PZT is calculated using COMSOL 3.4a. Fast Furrier Transformation for a better evaluation of the results is employed. An effort for the quantification of the damage detection using the root mean square deviation (RMSD) between the healthy condition and damage state of the sensor PZT is attempted. The numerical value of the RSMD yields a level for the difference between the healthy and the damaged admittance computation indicating this way the presence of damage in the structure. Experimental measurements are also presented.Keywords: concrete reinforcement, damage detection, electromechanical admittance, experimental measurements, finite element method, guided waves, PZT
Procedia PDF Downloads 293627 Using Personalized Spiking Neural Networks, Distinct Techniques for Self-Governing
Authors: Brwa Abdulrahman Abubaker
Abstract:
Recently, there has been a lot of interest in the difficult task of applying reinforcement learning to autonomous mobile robots. Conventional reinforcement learning (TRL) techniques have many drawbacks, such as lengthy computation times, intricate control frameworks, a great deal of trial and error searching, and sluggish convergence. In this paper, a modified Spiking Neural Network (SNN) is used to offer a distinct method for autonomous mobile robot learning and control in unexpected surroundings. As a learning algorithm, the suggested model combines dopamine modulation with spike-timing-dependent plasticity (STDP). In order to create more computationally efficient, biologically inspired control systems that are adaptable to changing settings, this work uses the effective and physiologically credible Izhikevich neuron model. This study is primarily focused on creating an algorithm for target tracking in the presence of obstacles. Results show that the SNN trained with three obstacles yielded an impressive 96% success rate for our proposal, with collisions happening in about 4% of the 214 simulated seconds.Keywords: spiking neural network, spike-timing-dependent plasticity, dopamine modulation, reinforcement learning
Procedia PDF Downloads 21626 Behavior of Beam-Column Nodes Reinforced Concrete in Earthquake Zones
Authors: Zaidour Mohamed, Ghalem Ali Jr., Achit Henni Mohamed
Abstract:
This project is destined to study pole junctions of reinforced concrete beams subjected to seismic loads. A literature review was made to clarify the work done by researchers in the last three decades and especially the results of the last two years that were studied for the determination of the method of calculating the transverse reinforcement in the different nodes of a structure. For implementation efforts in the columns and beams of a building R + 4 in zone 3 were calculated using the finite element method through software. These results are the basis of our work which led to the calculation of the transverse reinforcement of the nodes of the structure in question.Keywords: beam–column joints, cyclic loading, shearing force, damaged joint
Procedia PDF Downloads 550625 Introduction to Multi-Agent Deep Deterministic Policy Gradient
Authors: Xu Jie
Abstract:
As a key network security method, cryptographic services must fully cope with problems such as the wide variety of cryptographic algorithms, high concurrency requirements, random job crossovers, and instantaneous surges in workloads. Its complexity and dynamics also make it difficult for traditional static security policies to cope with the ever-changing situation. Cyber Threats and Environment. Traditional resource scheduling algorithms are inadequate when facing complex decisionmaking problems in dynamic environments. A network cryptographic resource allocation algorithm based on reinforcement learning is proposed, aiming to optimize task energy consumption, migration cost, and fitness of differentiated services (including user, data, and task security). By modeling the multi-job collaborative cryptographic service scheduling problem as a multiobjective optimized job flow scheduling problem, and using a multi-agent reinforcement learning method, efficient scheduling and optimal configuration of cryptographic service resources are achieved. By introducing reinforcement learning, resource allocation strategies can be adjusted in real time in a dynamic environment, improving resource utilization and achieving load balancing. Experimental results show that this algorithm has significant advantages in path planning length, system delay and network load balancing, and effectively solves the problem of complex resource scheduling in cryptographic services.Keywords: multi-agent reinforcement learning, non-stationary dynamics, multi-agent systems, cooperative and competitive agents
Procedia PDF Downloads 23624 A Comparative Study of Twin Delayed Deep Deterministic Policy Gradient and Soft Actor-Critic Algorithms for Robot Exploration and Navigation in Unseen Environments
Authors: Romisaa Ali
Abstract:
This paper presents a comparison between twin-delayed Deep Deterministic Policy Gradient (TD3) and Soft Actor-Critic (SAC) reinforcement learning algorithms in the context of training robust navigation policies for Jackal robots. By leveraging an open-source framework and custom motion control environments, the study evaluates the performance, robustness, and transferability of the trained policies across a range of scenarios. The primary focus of the experiments is to assess the training process, the adaptability of the algorithms, and the robot’s ability to navigate in previously unseen environments. Moreover, the paper examines the influence of varying environmental complexities on the learning process and the generalization capabilities of the resulting policies. The results of this study aim to inform and guide the development of more efficient and practical reinforcement learning-based navigation policies for Jackal robots in real-world scenarios.Keywords: Jackal robot environments, reinforcement learning, TD3, SAC, robust navigation, transferability, custom environment
Procedia PDF Downloads 102623 Experimental Behavior of Composite Shear Walls Having L Shape Steel Sections in Boundary Regions
Authors: S. Bahadır Yüksel, Alptuğ Ünal
Abstract:
The composite shear walls (CSW) with steel encased profiles can be used as lateral-load resisting systems for buildings that require considerable large lateral-load capacity. The aim of this work is to propose the experimental work conducted on CSW having L section folded plate (L shape steel made-up sections) as longitudinal reinforcement in boundary regions. The study in this paper present the experimental test conducted on CSW having L section folded plate as longitudinal reinforcement in boundary regions. The tested 1/3 geometric scaled CSW has aspect ratio of 3.2. L-shape structural steel materials with 2L-19x57x7mm dimensions were placed in shear wall boundary zones. The seismic behavior of CSW test specimen was investigated by evaluating and interpreting the hysteresis curves, envelope curves, rigidity and consumed energy graphs of this tested element. In addition to this, the experimental results, deformation and cracking patterns were evaluated, interpreted and suggestions of the design recommendations were proposed.Keywords: shear wall, composite shear wall, boundary reinforcement, earthquake resistant structural design, L section
Procedia PDF Downloads 328622 The Influence of the Geogrid Layers on the Bearing Capacity of Layered Soils
Authors: S. A. Naeini, H. R. Rahmani, M. Hossein Zade
Abstract:
Many classical bearing capacity theories assume that the natural soil's layers are homogenous for determining the bearing capacity of the soil. But, in many practical projects, we encounter multi-layer soils. Geosynthetic as reinforcement materials have been extensively used in the construction of various structures. In this paper, numerical analysis of the Plate Load Test (PLT) using of ABAQUS software in double-layered soils with different thicknesses of sandy and gravelly layers reinforced with geogrid was considered. The PLT is one of the common filed methods to calculate parameters such as soil bearing capacity, the evaluation of the compressibility and the determination of the Subgrade Reaction module. In fact, the influence of the geogrid layers on the bearing capacity of the layered soils is investigated. Finally, the most appropriate mode for the distance and number of reinforcement layers is determined. Results show that using three layers of geogrid with a distance of 0.3 times the width of the loading plate has the highest efficiency in bearing capacity of double-layer (sand and gravel) soils. Also, the significant increase in bearing capacity between unreinforced and reinforced soil with three layers of geogrid is caused by the condition that the upper layer (gravel) thickness is equal to the loading plate width.Keywords: bearing capacity, reinforcement, geogrid, plate load test, layered soils
Procedia PDF Downloads 174621 Improving the Strength Characteristics of Soil Using Cotton Fibers
Authors: Bindhu Lal, Karnika Kochal
Abstract:
Clayey soil contains clay minerals with traces of metal oxides and organic matter, which exhibits properties like low drainage, high plasticity, and shrinkage. To overcome these issues, various soil reinforcement techniques are used to elevate the stiffness, water tightness, and bearing capacity of the soil. Such techniques include cementation, bituminization, freezing, fiber inclusion, geo-synthetics, nailing, etc. Reinforcement of soil with fibers has been a cost-effective solution to soil improvement problems. An experimental study was undertaken involving the inclusion of cotton waste fibers in clayey soil as reinforcement with different fiber contents (1%, 1.5%, 2%, and 2.5% by weight) and analyzing its effects on the unconfined compressive strength of the soil. Two categories of soil were taken, comprising of natural clay and clay mixed with 5% sodium bentonite by weight. The soil specimens were subjected to proctor compaction and unconfined compression tests. The validated outcome shows that fiber inclusion has a strikingly positive impact on the compressive strength and axial strain at failure of the soil. Based on the commendatory results procured, compressive strength was found to be directly proportional to the fiber content, with the effect being more pronounced at lower water content.Keywords: bentonite clay, clay, cotton fibers, unconfined compressive strength
Procedia PDF Downloads 178620 Trajectory Design and Power Allocation for Energy -Efficient UAV Communication Based on Deep Reinforcement Learning
Authors: Yuling Cui, Danhao Deng, Chaowei Wang, Weidong Wang
Abstract:
In recent years, unmanned aerial vehicles (UAVs) have been widely used in wireless communication, attracting more and more attention from researchers. UAVs can not only serve as a relay for auxiliary communication but also serve as an aerial base station for ground users (GUs). However, limited energy means that they cannot work all the time and cover a limited range of services. In this paper, we investigate 2D UAV trajectory design and power allocation in order to maximize the UAV's service time and downlink throughput. Based on deep reinforcement learning, we propose a depth deterministic strategy gradient algorithm for trajectory design and power distribution (TDPA-DDPG) to solve the energy-efficient and communication service quality problem. The simulation results show that TDPA-DDPG can extend the service time of UAV as much as possible, improve the communication service quality, and realize the maximization of downlink throughput, which is significantly improved compared with existing methods.Keywords: UAV trajectory design, power allocation, energy efficient, downlink throughput, deep reinforcement learning, DDPG
Procedia PDF Downloads 150619 Mechanical and Tribological Properties of Al7075 Reinforced with Graphene-Beryl Hybrid Metal Matrix Composites
Authors: Mohamed Haneef, Shanawaz Patil, Syed Zameer, Mohammed Mohsin Ali
Abstract:
The emerging technologies and trends of present generation requires downsizing the unwieldy structures to light weight structures on one hand and integration of varied properties on other hand to meet the application demands. In the present investigation an attempt is made to familiarize and best possibilities of reinforcing agent in aluminum 7075 matrix with naturally occurring beryl (Be) and graphene (Gr) to develop a new hybrid composite material. A stir casting process was used to fabricate with fixed volume fraction of 6wt% weight beryl and various volume fractions of 0.5wt%, 1wt%, 1.5wt% and 2wt% of graphene. The properties such as tensile strength, hardness and dry sliding wear behavior of hybrid composites were examined. The crystallite size and morphology of the graphene and beryl particles were analyzed with X-ray diffraction (XRD) and scanning electron microscopy (SEM) respectively. It was observed that ultimate tensile strength and hardness of the hybrid composite increased with increasing reinforcement volume fraction as compared to specimen without reinforcement additions. The dry sliding wear behavior of the hybrid composites decreases as compared to Al7075 alloy without reinforcement.Keywords: Al7075, beryl, graphene, TEM, wear
Procedia PDF Downloads 151618 A Comparative Study of Mechanisms across Different Online Social Learning Types
Authors: Xinyu Wang
Abstract:
In the context of the rapid development of Internet technology and the increasing prevalence of online social media, this study investigates the impact of digital communication on social learning. Through three behavioral experiments, we explore both affective and cognitive social learning in online environments. Experiment 1 manipulates the content of experimental materials and two forms of feedback, emotional valence, sociability, and repetition, to verify whether individuals can achieve online emotional social learning through reinforcement using two social learning strategies. Results reveal that both social learning strategies can assist individuals in affective, social learning through reinforcement, with feedback-based learning strategies outperforming frequency-dependent strategies. Experiment 2 similarly manipulates the content of experimental materials and two forms of feedback to verify whether individuals can achieve online knowledge social learning through reinforcement using two social learning strategies. Results show that similar to online affective social learning, individuals adopt both social learning strategies to achieve cognitive social learning through reinforcement, with feedback-based learning strategies outperforming frequency-dependent strategies. Experiment 3 simultaneously observes online affective and cognitive social learning by manipulating the content of experimental materials and feedback at different levels of social pressure. Results indicate that online affective social learning exhibits different learning effects under different levels of social pressure, whereas online cognitive social learning remains unaffected by social pressure, demonstrating more stable learning effects. Additionally, to explore the sustained effects of online social learning and differences in duration among different types of online social learning, all three experiments incorporate two test time points. Results reveal significant differences in pre-post-test scores for online social learning in Experiments 2 and 3, whereas differences are less apparent in Experiment 1. To accurately measure the sustained effects of online social learning, the researchers conducted a mini-meta-analysis of all effect sizes of online social learning duration. Results indicate that although the overall effect size is small, the effect of online social learning weakens over time.Keywords: online social learning, affective social learning, cognitive social learning, social learning strategies, social reinforcement, social pressure, duration
Procedia PDF Downloads 46617 Comparative Study of Deep Reinforcement Learning Algorithm Against Evolutionary Algorithms for Finding the Optimal Values in a Simulated Environment Space
Authors: Akshay Paranjape, Nils Plettenberg, Robert Schmitt
Abstract:
Traditional optimization methods like evolutionary algorithms are widely used in production processes to find an optimal or near-optimal solution of control parameters based on the simulated environment space of a process. These algorithms are computationally intensive and therefore do not provide the opportunity for real-time optimization. This paper utilizes the Deep Reinforcement Learning (DRL) framework to find an optimal or near-optimal solution for control parameters. A model based on maximum a posteriori policy optimization (Hybrid-MPO) that can handle both numerical and categorical parameters is used as a benchmark for comparison. A comparative study shows that DRL can find optimal solutions of similar quality as compared to evolutionary algorithms while requiring significantly less time making them preferable for real-time optimization. The results are confirmed in a large-scale validation study on datasets from production and other fields. A trained XGBoost model is used as a surrogate for process simulation. Finally, multiple ways to improve the model are discussed.Keywords: reinforcement learning, evolutionary algorithms, production process optimization, real-time optimization, hybrid-MPO
Procedia PDF Downloads 112