Search results for: peripheral vision
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1429

Search results for: peripheral vision

1309 Analysis of Histogram Asymmetry for Waste Recognition

Authors: Janusz Bobulski, Kamila Pasternak

Abstract:

Despite many years of effort and research, the problem of waste management is still current. So far, no fully effective waste management system has been developed. Many programs and projects improve statistics on the percentage of waste recycled every year. In these efforts, it is worth using modern Computer Vision techniques supported by artificial intelligence. In the article, we present a method of identifying plastic waste based on the asymmetry analysis of the histogram of the image containing the waste. The method is simple but effective (94%), which allows it to be implemented on devices with low computing power, in particular on microcomputers. Such de-vices will be used both at home and in waste sorting plants.

Keywords: waste management, environmental protection, image processing, computer vision

Procedia PDF Downloads 86
1308 Plant Identification Using Convolution Neural Network and Vision Transformer-Based Models

Authors: Virender Singh, Mathew Rees, Simon Hampton, Sivaram Annadurai

Abstract:

Plant identification is a challenging task that aims to identify the family, genus, and species according to plant morphological features. Automated deep learning-based computer vision algorithms are widely used for identifying plants and can help users narrow down the possibilities. However, numerous morphological similarities between and within species render correct classification difficult. In this paper, we tested custom convolution neural network (CNN) and vision transformer (ViT) based models using the PyTorch framework to classify plants. We used a large dataset of 88,000 provided by the Royal Horticultural Society (RHS) and a smaller dataset of 16,000 images from the PlantClef 2015 dataset for classifying plants at genus and species levels, respectively. Our results show that for classifying plants at the genus level, ViT models perform better compared to CNN-based models ResNet50 and ResNet-RS-420 and other state-of-the-art CNN-based models suggested in previous studies on a similar dataset. ViT model achieved top accuracy of 83.3% for classifying plants at the genus level. For classifying plants at the species level, ViT models perform better compared to CNN-based models ResNet50 and ResNet-RS-420, with a top accuracy of 92.5%. We show that the correct set of augmentation techniques plays an important role in classification success. In conclusion, these results could help end users, professionals and the general public alike in identifying plants quicker and with improved accuracy.

Keywords: plant identification, CNN, image processing, vision transformer, classification

Procedia PDF Downloads 67
1307 Deep Learning based Image Classifiers for Detection of CSSVD in Cacao Plants

Authors: Atuhurra Jesse, N'guessan Yves-Roland Douha, Pabitra Lenka

Abstract:

The detection of diseases within plants has attracted a lot of attention from computer vision enthusiasts. Despite the progress made to detect diseases in many plants, there remains a research gap to train image classifiers to detect the cacao swollen shoot virus disease or CSSVD for short, pertinent to cacao plants. This gap has mainly been due to the unavailability of high quality labeled training data. Moreover, institutions have been hesitant to share their data related to CSSVD. To fill these gaps, image classifiers to detect CSSVD-infected cacao plants are presented in this study. The classifiers are based on VGG16, ResNet50 and Vision Transformer (ViT). The image classifiers are evaluated on a recently released and publicly accessible KaraAgroAI Cocoa dataset. The best performing image classifier, based on ResNet50, achieves 95.39\% precision, 93.75\% recall, 94.34\% F1-score and 94\% accuracy on only 20 epochs. There is a +9.75\% improvement in recall when compared to previous works. These results indicate that the image classifiers learn to identify cacao plants infected with CSSVD.

Keywords: CSSVD, image classification, ResNet50, vision transformer, KaraAgroAI cocoa dataset

Procedia PDF Downloads 67
1306 Mathematics Vision of the Companies' Growth with Educational Technologies

Authors: Valencia P. L. Rodrigo, Morita A. Adelina, Vargas V. Martin

Abstract:

This proposal consists of an analysis of macro concepts involved within an organization growth using educational technologies, which will relate each concept, in a mathematical way with a vision of harmonic work. Working collaboratively, competitively and cooperatively so that this growth is harmonious and homogenous, coining a new term, Harmonic Work. The Harmonic Work ensures that the organization grows in all business directions, allowing managers to project a much more accurate growth, making clear the contribution of each department, resulting in an algorithm that analyzes each of the variables both endogenous and exogenous, establishing different performance indicators in its process of growth.

Keywords: business projection, collaboration, competitiveness, educational technology, harmonious growth

Procedia PDF Downloads 294
1305 Rapid Soil Classification Using Computer Vision, Electrical Resistivity and Soil Strength

Authors: Eugene Y. J. Aw, J. W. Koh, S. H. Chew, K. E. Chua, Lionel L. J. Ang, Algernon C. S. Hong, Danette S. E. Tan, Grace H. B. Foo, K. Q. Hong, L. M. Cheng, M. L. Leong

Abstract:

This paper presents a novel rapid soil classification technique that combines computer vision with four-probe soil electrical resistivity method and cone penetration test (CPT), to improve the accuracy and productivity of on-site classification of excavated soil. In Singapore, excavated soils from local construction projects are transported to Staging Grounds (SGs) to be reused as fill material for land reclamation. Excavated soils are mainly categorized into two groups (“Good Earth” and “Soft Clay”) based on particle size distribution (PSD) and water content (w) from soil investigation reports and on-site visual survey, such that proper treatment and usage can be exercised. However, this process is time-consuming and labour-intensive. Thus, a rapid classification method is needed at the SGs. Computer vision, four-probe soil electrical resistivity and CPT were combined into an innovative non-destructive and instantaneous classification method for this purpose. The computer vision technique comprises soil image acquisition using industrial grade camera; image processing and analysis via calculation of Grey Level Co-occurrence Matrix (GLCM) textural parameters; and decision-making using an Artificial Neural Network (ANN). Complementing the computer vision technique, the apparent electrical resistivity of soil (ρ) is measured using a set of four probes arranged in Wenner’s array. It was found from the previous study that the ANN model coupled with ρ can classify soils into “Good Earth” and “Soft Clay” in less than a minute, with an accuracy of 85% based on selected representative soil images. To further improve the technique, the soil strength is measured using a modified mini cone penetrometer, and w is measured using a set of time-domain reflectometry (TDR) probes. Laboratory proof-of-concept was conducted through a series of seven tests with three types of soils – “Good Earth”, “Soft Clay” and an even mix of the two. Validation was performed against the PSD and w of each soil type obtained from conventional laboratory tests. The results show that ρ, w and CPT measurements can be collectively analyzed to classify soils into “Good Earth” or “Soft Clay”. It is also found that these parameters can be integrated with the computer vision technique on-site to complete the rapid soil classification in less than three minutes.

Keywords: Computer vision technique, cone penetration test, electrical resistivity, rapid and non-destructive, soil classification

Procedia PDF Downloads 182
1304 Phase Synchronization of Skin Blood Flow Oscillations under Deep Controlled Breathing in Human

Authors: Arina V. Tankanag, Gennady V. Krasnikov, Nikolai K. Chemeris

Abstract:

The development of respiration-dependent oscillations in the peripheral blood flow may occur by at least two mechanisms. The first mechanism is related to the change of venous pressure due to mechanical activity of lungs. This phenomenon is known as ‘respiratory pump’ and is one of the mechanisms of venous return of blood from the peripheral vessels to the heart. The second mechanism is related to the vasomotor reflexes controlled by the respiratory modulation of the activity of centers of the vegetative nervous system. Early high phase synchronization of respiration-dependent blood flow oscillations of left and right forearm skin in healthy volunteers at rest was shown. The aim of the work was to study the effect of deep controlled breathing on the phase synchronization of skin blood flow oscillations. 29 normotensive non-smoking young women (18-25 years old) of the normal constitution without diagnosed pathologies of skin, cardiovascular and respiratory systems participated in the study. For each of the participants six recording sessions were carried out: first, at the spontaneous breathing rate; and the next five, in the regimes of controlled breathing with fixed breathing depth and different rates of enforced breathing regime. The following rates of controlled breathing regime were used: 0.25, 0.16, 0.10, 0.07 and 0.05 Hz. The breathing depth amounted to 40% of the maximal chest excursion. Blood perfusion was registered by laser flowmeter LAKK-02 (LAZMA, Russia) with two identical channels (wavelength 0.63 µm; emission power, 0.5 mW). The first probe was fastened to the palmar surface of the distal phalanx of left forefinger; the second probe was attached to the external surface of the left forearm near the wrist joint. These skin zones were chosen as zones with different dominant mechanisms of vascular tonus regulation. The degree of phase synchronization of the registered signals was estimated from the value of the wavelet phase coherence. The duration of all recording was 5 min. The sampling frequency of the signals was 16 Hz. The increasing of synchronization of the respiratory-dependent skin blood flow oscillations for all controlled breathing regimes was obtained. Since the formation of respiration-dependent oscillations in the peripheral blood flow is mainly caused by the respiratory modulation of system blood pressure, the observed effects are most likely dependent on the breathing depth. It should be noted that with spontaneous breathing depth does not exceed 15% of the maximal chest excursion, while in the present study the breathing depth was 40%. Therefore it has been suggested that the observed significant increase of the phase synchronization of blood flow oscillations in our conditions is primarily due to an increase of breathing depth. This is due to the enhancement of both potential mechanisms of respiratory oscillation generation: venous pressure and sympathetic modulation of vascular tone.

Keywords: deep controlled breathing, peripheral blood flow oscillations, phase synchronization, wavelet phase coherence

Procedia PDF Downloads 183
1303 The Effect of Postural Sway and Technical Parameters of 8 Weeks Technical Training Performed with Restrict of Visual Input on the 10-12 Ages Soccer Players

Authors: Nurtekin Erkmen, Turgut Kaplan, Halil Taskin, Ahmet Sanioglu, Gokhan Ipekoglu

Abstract:

The aim of this study was to determine the effects of an 8 week soccerspecific technical training with limited vision perception on postural control and technical parameters in 10-12 aged soccer players. Subjects in this study were 24 male young soccer players (age: 11.00 ± 0.56 years, height: 150.5 ± 4.23 cm, body weight: 41.49 ± 7.56 kg). Subjects were randomly divided as two groups: Training and control. Balance performance was measured by Biodex Balance System (BBS). Short pass, speed dribbling, 20 m speed with ball, ball control, juggling tests were used to measure soccer players’ technical performances with a ball. Subjects performed soccer training 3 times per week for 8 weeks. In each session, training group with limited vision perception and control group with normal vision perception committed soccer-specific technical drills for 20 min. Data analyzed with t-test for independent samples and Mann-Whitney U between groups and paired t-test and Wilcoxon test between pre-posttests. No significant difference was found balance scores and with eyes open and eyes closed and LOS test between training and control groups after training (p>0.05). After eight week of training there are no significant difference in balance score with eyes open for both training and control groups (p>0.05). Balance scores decreased in training and control groups after the training (p<0.05). The completion time of LOS test shortened in both training and control groups after training (p<0.05). The training developed speed dribbling performance of training group (p<0.05). On the other hand, soccer players’ performance in training and control groups increased in 20 m speed with a ball after eight week training (p<0.05). In conclusion; the results of this study indicate that soccer-specific training with limited vision perception may not improves balance performance in 10-12 aged soccer players, but it develops speed dribbling performance.

Keywords: Young soccer players, vision perception, postural control, technical

Procedia PDF Downloads 449
1302 Rapid Soil Classification Using Computer Vision with Electrical Resistivity and Soil Strength

Authors: Eugene Y. J. Aw, J. W. Koh, S. H. Chew, K. E. Chua, P. L. Goh, Grace H. B. Foo, M. L. Leong

Abstract:

This paper presents the evaluation of various soil testing methods such as the four-probe soil electrical resistivity method and cone penetration test (CPT) that can complement a newly developed novel rapid soil classification scheme using computer vision, to improve the accuracy and productivity of on-site classification of excavated soil. In Singapore, excavated soils from the local construction industry are transported to Staging Grounds (SGs) to be reused as fill material for land reclamation. Excavated soils are mainly categorized into two groups (“Good Earth” and “Soft Clay”) based on particle size distribution (PSD) and water content (w) from soil investigation reports and on-site visual survey, such that proper treatment and usage can be exercised. However, this process is time-consuming and labor-intensive. Thus, a rapid classification method is needed at the SGs. Four-probe soil electrical resistivity and CPT were evaluated for their feasibility as suitable additions to the computer vision system to further develop this innovative non-destructive and instantaneous classification method. The computer vision technique comprises soil image acquisition using an industrial-grade camera; image processing and analysis via calculation of Grey Level Co-occurrence Matrix (GLCM) textural parameters; and decision-making using an Artificial Neural Network (ANN). It was found from the previous study that the ANN model coupled with ρ can classify soils into “Good Earth” and “Soft Clay” in less than a minute, with an accuracy of 85% based on selected representative soil images. To further improve the technique, the following three items were targeted to be added onto the computer vision scheme: the apparent electrical resistivity of soil (ρ) measured using a set of four probes arranged in Wenner’s array, the soil strength measured using a modified mini cone penetrometer, and w measured using a set of time-domain reflectometry (TDR) probes. Laboratory proof-of-concept was conducted through a series of seven tests with three types of soils – “Good Earth”, “Soft Clay,” and a mix of the two. Validation was performed against the PSD and w of each soil type obtained from conventional laboratory tests. The results show that ρ, w and CPT measurements can be collectively analyzed to classify soils into “Good Earth” or “Soft Clay” and are feasible as complementing methods to the computer vision system.

Keywords: computer vision technique, cone penetration test, electrical resistivity, rapid and non-destructive, soil classification

Procedia PDF Downloads 213
1301 An Effective Change in the Strategic Structure of Quality Management Systems: The Organization’s Needs Management

Authors: Joel Carlos Vieira Reinhardt, Mariana de Freitas Dewes, Odair Lelis Gonçalez

Abstract:

This paper proposes a method to implement a strategic framework for the quality management system that considers the analysis of prospective scenarios in the determination of policy, mission, vision, objectives, processes, monitoring, and goals. Semantic categorization of qualitative testimonial research on employee perception shows it was possible to implement an effective change in the organizations at the Department of Aerospace Science and Technology through the focus on the organization's needs management, producing a rupture with the historical managerial practice.

Keywords: management of company needs, mission, prospective scenarios, quality management, quality policy, vision

Procedia PDF Downloads 78
1300 Development a Battery of Measurements to Assess Giftedness Initiatives in Light of the Objectives of Saudi Arabia's Future Vision of Gifted Education

Authors: Saeed M. Al Qahtani, Alaa Eldin A. Ayoub

Abstract:

The study aimed to develop a battery of measures to assessment gifted initiatives in Saudi Arabia. The battery consisted of 17 measures developed in light of Saudi Arabia's future vision objectives for gifted education. A battery was applied to 193 gifted students who benefit from gifted initiatives and programs, 42 teachers of gifted as well as, 40 experts of gifted. Samples were taken from three main regions: Riyadh, Sharqia, Gharbia in Saudi Arabia. The results indicated that battery measures have a reliability and stability index ranging from 0.6 to 0.87. Besides that, results showed that the educational environment lacks many basic components such as facilities, laboratories, and activities that may stimulate creativity and innovation. Furthermore, results showed that there is a weakness in private sector involvement in the construction of educational buildings, special centers for gifted people and the provision of certain facilities that support talented programs. The recommendations of the study indicate the need for the private sector participation in the provision of services and projects for the care of gifted students in Saudi Arabia.

Keywords: battery of measures, gifted care initiatives, Saudi future vision, gifted student

Procedia PDF Downloads 146
1299 AI-Based Autonomous Plant Health Monitoring and Control System with Visual Health-Scoring Models

Authors: Uvais Qidwai, Amor Moursi, Mohamed Tahar, Malek Hamad, Hamad Alansi

Abstract:

This paper focuses on the development and implementation of an advanced plant health monitoring system with an AI backbone and IoT sensory network. Our approach involves addressing the critical environmental factors essential for preserving a plant’s well-being, including air temperature, soil moisture, soil temperature, soil conductivity, pH, water levels, and humidity, as well as the presence of essential nutrients like nitrogen, phosphorus, and potassium. Central to our methodology is the utilization of computer vision technology, particularly a night vision camera. The captured data is then compared against a reference database containing different health statuses. This comparative analysis is implemented using an AI deep learning model, which enables us to generate accurate assessments of plant health status. By combining the AI-based decision-making approach, our system aims to provide precise and timely insights into the overall health and well-being of plants, offering a valuable tool for effective plant care and management.

Keywords: deep learning image model, IoT sensing, cloud-based analysis, remote monitoring app, computer vision, fuzzy control

Procedia PDF Downloads 10
1298 The Yield of Neuroimaging in Patients Presenting to the Emergency Department with Isolated Neuro-Ophthalmological Conditions

Authors: Dalia El Hadi, Alaa Bou Ghannam, Hala Mostafa, Hana Mansour, Ibrahim Hashim, Soubhi Tahhan, Tharwat El Zahran

Abstract:

Introduction: Neuro-ophthalmological emergencies require prompt assessment and management to avoid vision or life-threatening sequelae. Some would require neuroimaging. Most commonly used are the CT and MRI of the Brain. They can be over-used when not indicated. Their yield remains dependent on multiple factors relating to the clinical scenario. Methods: A retrospective cross-sectional study was conducted by reviewing the electronic medical records of patients presenting to the Emergency Department (ED) with isolated neuro-ophthalmologic complaints. For each patient, data were collected on the clinical presentation, whether neuroimaging was performed (and which type), and the result of neuroimaging. Analysis of the performed neuroimaging was made, and its yield was determined. Results: A total of 211 patients were reviewed. The complaints or symptoms at presentation were: blurry vision, change in the visual field, transient vision loss, floaters, double vision, eye pain, eyelid droop, headache, dizziness and others such as nausea or vomiting. In the ED, a total of 126 neuroimaging procedures were performed. Ninety-four imagings (74.6%) were normal, while 32 (25.4%) had relevant abnormal findings. Only 2 symptoms were significant for abnormal imaging: blurry vision (p-value= 0.038) and visual field change (p-value= 0.014). While 4 physical exam findings had significant abnormal imaging: visual field defect (p-value= 0.016), abnormal pupil reactivity (p-value= 0.028), afferent pupillary defect (p-value= 0.018), and abnormal optic disc exam (p-value= 0.009). Conclusion: Risk indicators for abnormal neuroimaging in the setting of neuro-ophthalmological emergencies are blurred vision or changes in the visual field on history taking. While visual field irregularities, abnormal pupil reactivity with or without afferent pupillary defect, or abnormal optic discs, are risk factors related to physical testing. These findings, when present, should sway the ED physician towards neuroimaging but still individualizing each case is of utmost importance to prevent time-consuming, resource-draining, and sometimes unnecessary workup. In the end, it suggests a well-structured patient-centered algorithm to be followed by ED physicians.

Keywords: emergency department, neuro-ophthalmology, neuroimaging, risk indicators

Procedia PDF Downloads 152
1297 Robotic Lingulectomy for Primary Lung Cancer: A Video Presentation

Authors: Abraham J. Rizkalla, Joanne F. Irons, Christopher Q. Cao

Abstract:

Purpose: Lobectomy was considered the standard of care for early-stage non-small lung cancer (NSCLC) after the Lung Cancer Study Group trial demonstrated increased locoregional recurrence for sublobar resections. However, there has been heightened interest in segmentectomies for selected patients with peripheral lesions ≤2cm, as investigated by the JCOG0802 and CALGB140503 trials. Minimally invasive robotic surgery facilitates segmentectomies with improved maneuverability and visualization of intersegmental planes using indocyanine green. We hereby present a patient who underwent robotic lingulectomy for an undiagnosed ground-glass opacity. Methodology: This video demonstrates a robotic portal lingulectomy using three 8mm ports and a 12mm port. Stereoscopic direct vision facilitated the identification of the lingula artery and vein, and intra-operative bronchoscopy was performed to confirm the lingula bronchus. The intersegmental plane was identified by indocyanine green and a near-infrared camera. Thorough lymph node sampling was performed in accordance with international standards. Results: The 18mm lesion was successfully excised with clear margins to achieve R0 resection with no evidence of malignancy in the 8 lymph nodes sampled. Histopathological examination revealed lepidic predominant adenocarcinoma, pathological stage IA. Conclusion: This video presentation exemplifies the standard approach for robotic portal lingulectomy in appropriately selected patients.

Keywords: lung cancer, robotic segmentectomy, indocyanine green, lingulectomy

Procedia PDF Downloads 37
1296 Public-Private Partnership in Tourism Development: Kuwait Experience within 2035 Vision

Authors: Obaid Alotaibi

Abstract:

Tourism and recreation have become one of the important and influential sectors in most of the modern economies. This sector has been accepted as one of the alternative sources of national income, employment, and foreign exchange. Kuwait has many potentialities in tourism and recreation, and exploitation of this leads to more diversification of the economy besides augmenting its contribution to the GDP. It is an import-oriented economy; it requires hard currencies (foreign exchange) to meet the import costs as well as to maintain stability in the international market. To compensate for the revenue fall stemmed from fluctuations in oil prices -where the agriculture, fisheries, and industrial sectors are too immune and inelastic- the only alternative solution is the regeneration of the tourism and recreation to surface. This study envisages the characteristics of tourism and recreation, the economic and social importance for the society, the physical and human endowments, as well as the tourist pattern and plans for promoting and sustaining tourism in the country. The study summarizes many recommendations, including the necessity of establishing authority or a council for tourism, linking the planning of tourism development with the comprehensive planning for economic and social development in Kuwait in the shadow of 2035 vision, and to encourage the investors to develop new tourist and recreation projects.

Keywords: Kuwait, public-private, partnership, tourism, 2035 vision

Procedia PDF Downloads 96
1295 Convolutional Neural Network and LSTM Applied to Abnormal Behaviour Detection from Highway Footage

Authors: Rafael Marinho de Andrade, Elcio Hideti Shiguemori, Rafael Duarte Coelho dos Santos

Abstract:

Relying on computer vision, many clever things are possible in order to make the world safer and optimized on resource management, especially considering time and attention as manageable resources, once the modern world is very abundant in cameras from inside our pockets to above our heads while crossing the streets. Thus, automated solutions based on computer vision techniques to detect, react, or even prevent relevant events such as robbery, car crashes and traffic jams can be accomplished and implemented for the sake of both logistical and surveillance improvements. In this paper, we present an approach for vehicles’ abnormal behaviors detection from highway footages, in which the vectorial data of the vehicles’ displacement are extracted directly from surveillance cameras footage through object detection and tracking with a deep convolutional neural network and inserted into a long-short term memory neural network for behavior classification. The results show that the classifications of behaviors are consistent and the same principles may be applied to other trackable objects and scenarios as well.

Keywords: artificial intelligence, behavior detection, computer vision, convolutional neural networks, LSTM, highway footage

Procedia PDF Downloads 137
1294 IL-21 Production by CD4+ Effector T Cells and Frequency of Circulating Follicular Helper T Cells Are Increased in Type 1 Diabetes Patients

Authors: Ferreira RC, Simons HZ, Thompson WS, Cutler AJ, Dopico XC, Smyth DJ, Mashar M, Schuilenburg H, Walker NM, Dunger DB, Wallace C, Todd JA, Wicker LS, Pekalski ML

Abstract:

Type 1 diabetes is caused by autoimmune destruction of insulin-secreting beta cells in the pancreas. T cells are known to play an important role in this immune-mediated destruction; however, there is no general consensus regarding alterations in cytokine production or T cell subsets in peripheral blood of patients with type 1 diabetes. Using polychromatic flow cytometry of peripheral blood mononuclear cells (PBMCs), we assessed production of the proinflammatory cytokines IL-21, IFN-γ and IL-17 by memory CD4 T effector (Teff) cells in 69 patients with type 1 diabetes and 61 healthy donors. We found a 21.9% (95% CI 5.8, 40.2; p = 3.9 × 10(-3)) higher frequency of IL-21(+) CD45RA(-) memory CD4(+) Teffs in patients with type 1 diabetes (geometric mean 5.92% [95% CI 5.44, 6.44]) compared with healthy donors (geometric mean 4.88% [95% CI 4.33, 5.50]). In a separate cohort of 30 patients with type 1 diabetes and 32 healthy donors, we assessed the frequency of circulating T follicular helper (Tfh) cells in whole blood. Consistent with the increased production of IL-21, we also found a 14.9% increase in circulating Tfh cells in the patients with type 1 diabetes (95% CI 2.9, 26.9; p = 0.016). Analysis of IL-21 production by PBMCs from a subset of 46 of the 62 donors immunophenotyped for Tfh showed that frequency of Tfh cells was associated with the frequency of IL-21+ cells (r2 = 0.174, p = 0.004). These results indicate that increased IL-21 production is likely to be an aetiological factor in the pathogenesis of type 1 diabetes that could be considered as a potential therapeutic target.

Keywords: T follicular helper cell, IL-21, IL-17, type 1 diabetes

Procedia PDF Downloads 355
1293 Industrial Engineering Higher Education in Saudi Arabia: Assessing the Current Status

Authors: Mohammed Alkahtani, Ahmed El-Sherbeeny

Abstract:

Industrial engineering is among engineering disciplines that have been introduced relatively recently to higher education in Saudi Arabian engineering colleges. The objective of this paper is to shed light on the history and status of IE higher education in different Saudi universities, including statistics comparing student enrollment and graduation in different Saudi public and private universities. This paper then proposes how industrial engineering programs could participate successfully in the Saudi Vision 2030. Finally, the authors show the results of a survey conducted on a number of IE students evaluating various academic and administrative aspects of the IE program at King Saud University.

Keywords: higher education, history, industrial engineering, Vision 2030

Procedia PDF Downloads 290
1292 UAV Based Visual Object Tracking

Authors: Vaibhav Dalmia, Manoj Phirke, Renith G

Abstract:

With the wide adoption of UAVs (unmanned aerial vehicles) in various industries by the government as well as private corporations for solving computer vision tasks it’s necessary that their potential is analyzed completely. Recent advances in Deep Learning have also left us with a plethora of algorithms to solve different computer vision tasks. This study provides a comprehensive survey on solving the Visual Object Tracking problem and explains the tradeoffs involved in building a real-time yet reasonably accurate object tracking system for UAVs by looking at existing methods and evaluating them on the aerial datasets. Finally, the best trackers suitable for UAV-based applications are provided.

Keywords: deep learning, drones, single object tracking, visual object tracking, UAVs

Procedia PDF Downloads 127
1291 Challenges in Video Based Object Detection in Maritime Scenario Using Computer Vision

Authors: Dilip K. Prasad, C. Krishna Prasath, Deepu Rajan, Lily Rachmawati, Eshan Rajabally, Chai Quek

Abstract:

This paper discusses the technical challenges in maritime image processing and machine vision problems for video streams generated by cameras. Even well documented problems of horizon detection and registration of frames in a video are very challenging in maritime scenarios. More advanced problems of background subtraction and object detection in video streams are very challenging. Challenges arising from the dynamic nature of the background, unavailability of static cues, presence of small objects at distant backgrounds, illumination effects, all contribute to the challenges as discussed here.

Keywords: autonomous maritime vehicle, object detection, situation awareness, tracking

Procedia PDF Downloads 426
1290 The Effect of Peripheral Fatigue and Visual Feedback on Postural Control and Strength in Obese People

Authors: Elham Azimzadeh, Saeedeh Sepehri, Hamidollah Hassanlouei

Abstract:

Obesity is associated with postural instability, might influence the quality of daily life, and could be considered a potential factor for falling in obese people. The fat body mass especially in the abdominal area may increase body sway. Furthermore, loss of visual feedback may induce a larger postural sway in obese people. Moreover, Muscle fatigue may impair the work capacity of the skeletal muscle and may alter joint proprioception. So, the purpose of this study was to investigate the effect of physical fatigue and visual feedback on body sway and strength of lower extremities in obese people. 12 obese (4 female, 8 male; BMI >30 kg/m2), and 12 normal weight (4 female, 8 male; BMI: 20-25 kg/m2) subjects aged 37- 47 years participated in this study. The postural stability test on the Biodex balance system was used to characterize postural control along the anterior-posterior (AP) and mediolateral (ML) directions in eyes open and eyes closed conditions and maximal voluntary contraction (MVC) of knee extensors and flexors were measured before and after the high-intensity exhausting exercise protocol on the ergometer bike to confirm the presence of fatigue. Results indicated that the obese group demonstrated significantly greater body sway, in all indices (ML, AP, overall) compared with the normal weight group (eyes open). However, when visual feedback was eliminated, fatigue impaired the balance in the overall and AP indicators in both groups; ML sway was higher only in the obese group after exerting the fatigue in the eyes closed condition. Also, maximal voluntary contraction of knee extensors was impaired in the fatigued normal group but, there was no significant impairment in knee flexors MVC in both group. According to the findings, peripheral fatigue was associated with altered postural control in upright standing when eyes were closed, and that mechanoreceptors of the feet may be less able to estimate the position of the body COM over the base of support in the loss of visual feedback. This suggests that the overall capability of the postural control system during upright standing especially in the ML direction could be lower due to fatigue in obese individuals and could be a predictor of future falls.

Keywords: maximal voluntary contraction, obesity, peripheral fatigue, postural control, visual feedback

Procedia PDF Downloads 66
1289 A Vision Making Exercise for Twente Region; Development and Assesment

Authors: Gelareh Ghaderi

Abstract:

the overall objective of this study is to develop two alternative plans of spatial and infrastructural development for the Netwerkstad Twente (Twente region) until 2040 and to assess the impacts of those two alternative plans. This region is located on the eastern border of the Netherlands, and it comprises of five municipalities. Based on the strengths and opportunities of the five municipalities of the Netwerkstad Twente, and in order develop the region internationally, strengthen the job market and retain skilled and knowledgeable young population, two alternative visions have been developed; environmental oriented vision, and economical oriented vision. Environmental oriented vision is based mostly on preserving beautiful landscapes. Twente would be recognized as an educational center, driven by green technologies and environment-friendly economy. Market-oriented vision is based on attracting and developing different economic activities in the region based on visions of the five cities of Netwerkstad Twente, in order to improve the competitiveness of the region in national and international scale. On the basis of the two developed visions and strategies for achieving the visions, land use and infrastructural development are modeled and assessed. Based on the SWOT analysis, criteria were formulated and employed in modeling the two contrasting land use visions by the year 2040. Land use modeling consists of determination of future land use demand, assessment of suitability land (Suitability analysis), and allocation of land uses on suitable land. Suitability analysis aims to determine the available supply of land for future development as well as assessing their suitability for specific type of land uses on the basis of the formulated set of criteria. Suitability analysis was operated using CommunityViz, a Planning Support System application for spatially explicit land suitability and allocation. Netwerkstad Twente has highly developed transportation infrastructure, consists of highways network, national road network, regional road network, street network, local road network, railway network and bike-path network. Based on the assumptions of speed limitations on different types of roads provided, infrastructure accessibility level of predicted land use parcels by four different transport modes is investigated. For evaluation of the two development scenarios, the Multi-criteria Evaluation (MCE) method is used. The first step was to determine criteria used for evaluation of each vision. All factors were categorized as economical, ecological and social. Results of Multi-criteria Evaluation show that Environmental oriented cities scenario has higher overall score. Environment-oriented scenario has impressive scores in relation to economical and ecological factors. This is due to the fact that a large percentage of housing tends towards compact housing. Twente region has immense potential, and the success of this project will define the Eastern part of The Netherlands and create a real competitive local economy with innovations and attractive environment as its backbone.

Keywords: economical oriented vision, environmental oriented vision, infrastructure, land use, multi criteria assesment, vision

Procedia PDF Downloads 201
1288 Peripheral Facial Nerve Palsy after Lip Augmentation

Authors: Sana Ilyas, Kishalaya Mukherjee, Suresh Shetty

Abstract:

Lip Augmentation has become more common in recent years. Patients do not expect to experience facial palsy after having lip augmentation. This poster will present the findings of such a presentation and will discuss the possible pathophysiology and management. (This poster has been published as a paper in the dental update, June 2022) Aim: The aim of the study was to explore the link between facial nerve palsy and lip fillers, to explore the literature surrounding facial nerve palsy, and to discuss the case of a patient who presented with facial nerve palsy with seemingly unknown cause. Methodology: There was a thorough assessment of the current literature surrounding the topic. This included published papers in journals through PubMed database searches and printed books on the topic. A case presentation was discussed in detail of a patient presenting with peripheral facial nerve palsy and associating it with lip augmentation that she had a day prior. Results and Conclusion: Even though the pathophysiology may not be clear for this presentation, it is important to highlight uncommon presentations or complications that may occur after treatment. This can help with understanding and managing similar cases, should they arise.It is also important to differentiate cause and association in order to make an accurate diagnosis. This may be difficult if there is little scientific literature. Therefore, further research can help to improve the understanding of the pathophysiology of similar presentations. This poster has been published as a paper in dental update, June 2022, and therefore shares a similar conclusiom.

Keywords: facial palsy, lip augmentation, causation and correlation, dental cosmetics

Procedia PDF Downloads 124
1287 The Effect of Vitamin "E" on the Peripheral Neurotoxicity of Antimony in Adult Male Albino Rat

Authors: Pymaneh Bairami Rad

Abstract:

The present work was planned with the aim to study the histological changes that might occur in the sciatic nerve of adult male albino rat following antimony trioxide exposure and to throw more light on the protective role of vitamin "E" on the peripheral neurotoxicity induced by this environmental toxin Sixty adult male albino rats, weighing 183 - 235 grams, were utilized in this work. The animals were divided into 3 groups; each of 20 rats: animals of group I served as control, animals of group II received antimony trioxide daily for 12 successive weeks , animals of group III received antimony trioxide and vitamin "E" daily for the same duration. Antimony trioxide was given in a daily dose of 500 mg/ kg body weight which represents 1/40 of the known LD50 and vitamin "E" was administered in a daily dose of 300 mg/kg body weight. Both antimony trioxide and vitamin "E" were given to the animals by gastric intubation. This research revealed many histological changes in the sciatic nerve, following exposure to antimony trioxide, including Wallerian degeneration in most myelinated nerve fibers with pleomorphic destruction, fragmentation, loss of normal lamination and rupture of myelin sheaths. The axoplasms of these nerve fibers were irregular, degenerated and contained myelin fragments with loss of neurofibrils. Obvious increase in endoneurium was also observed. Concomitant administration of vitamin "E" with antimony trioxide resulted in marked improvement in the histological changes observed in the sciatic nerve.

Keywords: neurotoxicity, antimony, vitamin e, anatomy, histology

Procedia PDF Downloads 409
1286 Vision-Based Hand Segmentation Techniques for Human-Computer Interaction

Authors: M. Jebali, M. Jemni

Abstract:

This work is the part of vision based hand gesture recognition system for Natural Human Computer Interface. Hand tracking and segmentation are the primary steps for any hand gesture recognition system. The aim of this paper is to develop robust and efficient hand segmentation algorithm such as an input to another system which attempt to bring the HCI performance nearby the human-human interaction, by modeling an intelligent sign language recognition system based on prediction in the context of dialogue between the system (avatar) and the interlocutor. For the purpose of hand segmentation, an overcoming occlusion approach has been proposed for superior results for detection of hand from an image.

Keywords: HCI, sign language recognition, object tracking, hand segmentation

Procedia PDF Downloads 383
1285 Gender Differences in Walking Capacity and Cardiovascular Regulation in Patients with Peripheral Arterial Disease

Authors: Gabriel Cucato, Marilia Correia, Wagner Domingues, Aline Palmeira, Paulo Longano, Nelson Wolosker, Raphael Ritti-Dias

Abstract:

Women with peripheral arterial disease (PAD) present lower walking capacity in comparison with men. However, whether cardiovascular regulation is also different between genders is unknown. Thus, the aim of this study was to compare walking capacity and cardiovascular regulation between men and women with PAD. A total of 23 women (66±7 yrs) and 31 men (64±9 yrs) were recruited. Patients performed a 6-minute test and the onset claudication distance and total walking distance were measured. Additionally, cardiovascular regulation was assessed by arterial stiffness (pulse wave velocity and augmentation index) and heart rate variability (frequency domain). Independent T test or Mann-Whitney U test were performed. In comparison with men, women present lower onset claudication distance (108±66m vs. 143±50m; P=0.032) and total walking distance (286±83m vs. 361±91 m, P=0.007). Regarding cardiovascular regulation, there were no differences in heart rate variability SDNN (72±160ms vs. 32±22ms, P=0.587); RMSSD (75±209 vs. 25±22ms, P=0.726); pNN50 (11±17ms vs. 8±14ms, P=0.836) in women and men, respectively. Moreover, there were no difference in augmentation index (39±10% vs. 34±11%, P=0.103); pulse pressure (59±17mmHg vs. 56±19mmHg, P=0.593) and pulse wave velocity (8.6±2.6m\s vs. 9.0±2.7m/s, P=0.580). In conclusion, women have impaired walking capacity compared to men. However, sex differences were not observed on cardiovascular regulation in patients with PAD.

Keywords: exercise, intermittent claudication, cardiovascular load, arterial stiffness

Procedia PDF Downloads 369
1284 Proposal for a Web System for the Control of Fungal Diseases in Grapes in Fruits Markets

Authors: Carlos Tarmeño Noriega, Igor Aguilar Alonso

Abstract:

Fungal diseases are common in vineyards; they cause a decrease in the quality of the products that can be sold, generating distrust of the customer towards the seller when buying fruit. Currently, technology allows the classification of fruits according to their characteristics thanks to artificial intelligence. This study proposes the implementation of a control system that allows the identification of the main fungal diseases present in the Italia grape, making use of a convolutional neural network (CNN), OpenCV, and TensorFlow. The methodology used was based on a collection of 20 articles referring to the proposed research on quality control, classification, and recognition of fruits through artificial vision techniques.

Keywords: computer vision, convolutional neural networks, quality control, fruit market, OpenCV, TensorFlow

Procedia PDF Downloads 50
1283 An Investigation on Smartphone-Based Machine Vision System for Inspection

Authors: They Shao Peng

Abstract:

Machine vision system for inspection is an automated technology that is normally utilized to analyze items on the production line for quality control purposes, it also can be known as an automated visual inspection (AVI) system. By applying automated visual inspection, the existence of items, defects, contaminants, flaws, and other irregularities in manufactured products can be easily detected in a short time and accurately. However, AVI systems are still inflexible and expensive due to their uniqueness for a specific task and consuming a lot of set-up time and space. With the rapid development of mobile devices, smartphones can be an alternative device for the visual system to solve the existing problems of AVI. Since the smartphone-based AVI system is still at a nascent stage, this led to the motivation to investigate the smartphone-based AVI system. This study is aimed to provide a low-cost AVI system with high efficiency and flexibility. In this project, the object detection models, which are You Only Look Once (YOLO) model and Single Shot MultiBox Detector (SSD) model, are trained, evaluated, and integrated with the smartphone and webcam devices. The performance of the smartphone-based AVI is compared with the webcam-based AVI according to the precision and inference time in this study. Additionally, a mobile application is developed which allows users to implement real-time object detection and object detection from image storage.

Keywords: automated visual inspection, deep learning, machine vision, mobile application

Procedia PDF Downloads 96
1282 An Exponential Field Path Planning Method for Mobile Robots Integrated with Visual Perception

Authors: Magdy Roman, Mostafa Shoeib, Mostafa Rostom

Abstract:

Global vision, whether provided by overhead fixed cameras, on-board aerial vehicle cameras, or satellite images can always provide detailed information on the environment around mobile robots. In this paper, an intelligent vision-based method of path planning and obstacle avoidance for mobile robots is presented. The method integrates visual perception with a new proposed field-based path-planning method to overcome common path-planning problems such as local minima, unreachable destination and unnecessary lengthy paths around obstacles. The method proposes an exponential angle deviation field around each obstacle that affects the orientation of a close robot. As the robot directs toward, the goal point obstacles are classified into right and left groups, and a deviation angle is exponentially added or subtracted to the orientation of the robot. Exponential field parameters are chosen based on Lyapunov stability criterion to guarantee robot convergence to the destination. The proposed method uses obstacles' shape and location, extracted from global vision system, through a collision prediction mechanism to decide whether to activate or deactivate obstacles field. In addition, a search mechanism is developed in case of robot or goal point is trapped among obstacles to find suitable exit or entrance. The proposed algorithm is validated both in simulation and through experiments. The algorithm shows effectiveness in obstacles' avoidance and destination convergence, overcoming common path planning problems found in classical methods.

Keywords: path planning, collision avoidance, convergence, computer vision, mobile robots

Procedia PDF Downloads 162
1281 Vision-Based Collision Avoidance for Unmanned Aerial Vehicles by Recurrent Neural Networks

Authors: Yao-Hong Tsai

Abstract:

Due to the sensor technology, video surveillance has become the main way for security control in every big city in the world. Surveillance is usually used by governments for intelligence gathering, the prevention of crime, the protection of a process, person, group or object, or the investigation of crime. Many surveillance systems based on computer vision technology have been developed in recent years. Moving target tracking is the most common task for Unmanned Aerial Vehicle (UAV) to find and track objects of interest in mobile aerial surveillance for civilian applications. The paper is focused on vision-based collision avoidance for UAVs by recurrent neural networks. First, images from cameras on UAV were fused based on deep convolutional neural network. Then, a recurrent neural network was constructed to obtain high-level image features for object tracking and extracting low-level image features for noise reducing. The system distributed the calculation of the whole system to local and cloud platform to efficiently perform object detection, tracking and collision avoidance based on multiple UAVs. The experiments on several challenging datasets showed that the proposed algorithm outperforms the state-of-the-art methods.

Keywords: unmanned aerial vehicle, object tracking, deep learning, collision avoidance

Procedia PDF Downloads 132
1280 Artificial Intelligence and Machine Vision-Based Defect Detection Methodology for Solid Rocket Motor Propellant Grains

Authors: Sandip Suman

Abstract:

Mechanical defects (cracks, voids, irregularities) in rocket motor propellant are not new and it is induced due to various reasons, which could be an improper manufacturing process, lot-to-lot variation in chemicals or just the natural aging of the products. These defects are normally identified during the examination of radiographic films by quality inspectors. However, a lot of times, these defects are under or over-classified by human inspectors, which leads to unpredictable performance during lot acceptance tests and significant economic loss. The human eye can only visualize larger cracks and defects in the radiographs, and it is almost impossible to visualize every small defect through the human eye. A different artificial intelligence-based machine vision methodology has been proposed in this work to identify and classify the structural defects in the radiographic films of rocket motors with solid propellant. The proposed methodology can extract the features of defects, characterize them, and make intelligent decisions for acceptance or rejection as per the customer requirements. This will automatize the defect detection process during manufacturing with human-like intelligence. It will also significantly reduce production downtime and help to restore processes in the least possible time. The proposed methodology is highly scalable and can easily be transferred to various products and processes.

Keywords: artificial intelligence, machine vision, defect detection, rocket motor propellant grains

Procedia PDF Downloads 68