Search results for: palm oil yield and quality
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11684

Search results for: palm oil yield and quality

11564 The Effects on Yield and Yield Components of Different Level Cluster Tip Reduction and Foliar Boric Acid Applications on Alphonse Lavallee Grape Cultivar

Authors: A. Akın, H. Çoban

Abstract:

This study was carried out to determine the effects of Control (C), 1/3 Cluster Tip Reduction (1/3 CTR), 1/6 Cluster Tip Reduction (1/6 CTR), 1/9 Cluster Tip Reduction (1/9 CTR), 1/3 CTR + Boric Acid (BA), 1/6 CTR + BA, 1/9 CTR + BA applications on yield and yield components of four years old Alphonse Lavallee grape variety (Vitis vinifera L.) grown on grafted 110 Paulsen rootstock in Konya province in Turkey in the vegetation period in 2015. According to the results, the highest maturity index 21.46 with 1/9 CTR application; the highest grape juice yields 736.67 ml with 1/3 CTR + BA application; the highest L* color value 32.07 with 1/9 CTR application; the highest a* color value 1.74 with 1/9 CTR application; the highest b* color value 3.72 with 1/9 CTR application were obtained. The effects of applications on grape fresh yield, cluster weight and berry weight were not found statistically significant.

Keywords: alphonse lavallee grape cultivar, different cluster tip reduction (1/3, 1/6, 1/9), foliar boric acid application, yield, quality

Procedia PDF Downloads 266
11563 Census and Mapping of Oil Palms Over Satellite Dataset Using Deep Learning Model

Authors: Gholba Niranjan Dilip, Anil Kumar

Abstract:

Conduct of accurate reliable mapping of oil palm plantations and census of individual palm trees is a huge challenge. This study addresses this challenge and developed an optimized solution implemented deep learning techniques on remote sensing data. The oil palm is a very important tropical crop. To improve its productivity and land management, it is imperative to have accurate census over large areas. Since, manual census is costly and prone to approximations, a methodology for automated census using panchromatic images from Cartosat-2, SkySat and World View-3 satellites is demonstrated. It is selected two different study sites in Indonesia. The customized set of training data and ground-truth data are created for this study from Cartosat-2 images. The pre-trained model of Single Shot MultiBox Detector (SSD) Lite MobileNet V2 Convolutional Neural Network (CNN) from the TensorFlow Object Detection API is subjected to transfer learning on this customized dataset. The SSD model is able to generate the bounding boxes for each oil palm and also do the counting of palms with good accuracy on the panchromatic images. The detection yielded an F-Score of 83.16 % on seven different images. The detections are buffered and dissolved to generate polygons demarcating the boundaries of the oil palm plantations. This provided the area under the plantations and also gave maps of their location, thereby completing the automated census, with a fairly high accuracy (≈100%). The trained CNN was found competent enough to detect oil palm crowns from images obtained from multiple satellite sensors and of varying temporal vintage. It helped to estimate the increase in oil palm plantations from 2014 to 2021 in the study area. The study proved that high-resolution panchromatic satellite image can successfully be used to undertake census of oil palm plantations using CNNs.

Keywords: object detection, oil palm tree census, panchromatic images, single shot multibox detector

Procedia PDF Downloads 153
11562 Development of Non-Structural Crushed Palm Kernel Shell Fine Aggregate Concrete

Authors: Kazeem K. Adewole, Ismail A. Yahya

Abstract:

In the published literature, Palm Kernel Shell (PKS), an agricultural waste has largely been used as a large aggregate in PKS concrete production. In this paper, the development of Crushed Palm Kernel Shell Fine Aggregate Concrete (CPKSFAC) with crushed PKS (CPKS) as the fine aggregate and granite as the coarse aggregate is presented. 100mm x 100mm x 100mm 1:11/2:3 and 1:2:4 CPKSFAC and River Sand Fine Aggregate Concrete (RSFAC) cubes were molded, cured for 28 days and subjected to a compressive strength test. The average wet densities of the 1:11/2:3 and 1:2:4 CPKSFAC cubes are 2240kg/m3 and 2335kg/m3 respectively. The average wet densities of the 1:11/2:3 and 1:2:4 RSFAC cubes are 2606kg/m3 and 2553kg/m3 respectively. The average compressive strengths of the 1:11/2:3 and 1:2:4 CPKSFAC cubes are 15.40MPa and 14.30MPa respectively. This study demonstrates that CPKSFA is suitable for the production of non-structural C8/10 and C12/15 concrete specified in BS EN 206-1:2000.

Keywords: crushed palm kernel shell, fine aggregate, lightweight concrete, non-structural concrete

Procedia PDF Downloads 398
11561 Assessment of Water Quality Used for Irrigation: Case Study of Josepdam Irrigation Scheme

Authors: M. A. Adejumobi, J. O. Ojediran

Abstract:

The aim of irrigation is to recharge the available water in the soil. Quality of irrigation water is essential for the yield and quality of crops produced, maintenance of soil productivity and protection of the environment. The analysis of irrigation water arises as a need to know the impact of irrigation water on the yield of crops, the effect, and the necessary control measures to rectify the effect of this for optimum production and yield of crops. This study was conducted to assess the quality of irrigation water with its performance on crop planted, in Josepdam irrigation scheme Bacita, Nigeria. Field visits were undertaken to identify and locate water supply sources and collect water samples from these sources; X1 Drain, Oshin, River Niger loop and Ndafa. Laboratory experiments were then undertaken to determine the quality of raw water from these sources. The analysis was carried for various parameters namely; physical and chemical analyses after water samples have been taken from four sources. The samples were tested in laboratory. Results showed that the raw water sources shows no salinity tendencies with SAR values less than 1me/l and Ecvaules at Zero while the pH were within the recommended range by FAO, there are increase in potassium and sulphate content contamination in three of the location. From this, it is recommended that there should be proper monitoring of the scheme by conducting analysis of water and soil in the environment, preferable test should be carried out at least one year to cover the impact of seasonal variations and to determine the physical and chemical analysis of the water used for irrigation at the scheme.

Keywords: irrigation, salinity, raw water quality, scheme

Procedia PDF Downloads 418
11560 Response of Barley Quality Traits, Yield and Antioxidant Enzymes to Water-Stress and Chemical Inducers

Authors: Emad Hafez, Mahmoud Seleiman

Abstract:

Two field experiments were carried out in order to investigate the effect of chemical inducers [benzothiadiazole 0.9 mM L-1, oxalic acid 1.0 mM L-1, salicylic acid 0.2 mM L-1] on physiological and technological traits as well as on yields and antioxidant enzyme activities of barley grown under abiotic stress (i.e. water surplus and deficit conditions). Results showed that relative water content, leaf area, chlorophyll and yield as well as technological properties of barley were improved with chemical inducers application under water surplus and water-stress conditions. Antioxidant enzymes activity (i.e. catalase and peroxidase) were significantly increased in barley grown under water-stress and treated with chemical inducers. Yield and related parameters of barley presented also significant decrease under water-stress treatment, while chemical inducers application enhanced the yield-related traits. Starch and protein contents were higher in plants treated with salicylic acid than in untreated plants when water-stress was applied. In conclusion, results show that chemical inducers application have a positive interaction and synergetic influence and should be suggested to improve plant growth, yield and technological properties of water stressed barley. Salicylic acid application was better than oxalic acid and benzothiadiazole in terms of plant growth and yield improvement.

Keywords: antioxidant enzymes, drought stress, Hordeum vulgare L., quality, yield

Procedia PDF Downloads 289
11559 Differential Impacts of Whole-Growth-Duration Warming on the Grain Yield and Quality between Early and Late Rice

Authors: Shan Huang, Guanjun Huang, Yongjun Zeng, Haiyuan Wang

Abstract:

The impacts of whole-growth warming on grain yield and quality in double rice cropping systems still remain largely unknown. In this study, a two-year field whole-growth warming experiment was conducted with two inbred indica rice cultivars (Zhongjiazao 17 and Xiangzaoxian 45) for early season and two hybrid indica rice cultivars (Wanxiangyouhuazhan and Tianyouhuazhan) for late season. The results showed that whole-growth warming did not affect early rice yield but significantly decreased late rice yield, which was caused by the decreased grain weight that may be related to the increased plant respiration and reduced translocation of dry matter accumulated during the pre-heading phase under warming. Whole-growth warming improved the milling quality of late rice but decreased that of early rice; however, the chalky rice rate and chalkiness degree were increased by 20.7% and 33.9% for early rice and 37.6 % and 51.6% for late rice under warming, respectively. We found that the crude protein content of milled rice was significantly increased by warming in both early and late rice, which would result in deterioration of eating quality. Besides, compared with the control treatment, the setback of late rice was significantly reduced by 17.8 % under warming, while that of early rice was not significantly affected by warming. These results suggest that the negative impacts of whole-growth warming on grain quality may be more severe in early rice than in late rice. Therefore, adaptation in both rice breeding and agronomic practices is needed to alleviate climate warming on the production of a double rice cropping system. Climate-smart agricultural practices ought to be implemented to mitigate the detrimental effects of warming on rice grain quality. For instance, fine-tuning the application rate and timing of inorganic nitrogen fertilizers, along with the introduction of organic amendments and the cultivation of heat-tolerant rice varieties, can help reduce the negative impact of rising temperatures on rice quality. Furthermore, to comprehensively understand the influence of climate warming on rice grain quality, future research should encompass a wider range of rice cultivars and experimental sites.

Keywords: climate warming, double rice cropping, dry matter, grain quality, grain yield

Procedia PDF Downloads 17
11558 Analysis of Particulate Matter Concentration, EC, OC Emission and Elemental Composition for Biodiesel-Fuelled Diesel Engine

Authors: A. M. Ashraful, H .H. Masjuki, M. A. Kalam

Abstract:

Comparative investigations were performed on the particles matter emitted from a DI diesel engine utilizing palm biodiesel. In this experiment, palm biodiesel PB10 (90% diesel and 10% palm biodiesel), PB20 (80% diesel, 20% palm biodiesel) and diesel fuel samples exhaust were investigated at different working condition (25% and 50% load at 1500 rpm constant speed). Observation of this experiment it clearly seen that at low load condition particle matter concentration of palm biodiesel exhaust were de-creased than that of diesel fuel. At no load and 25% load condition PB10 biodiesel blend exhibited 2.2 times lower PM concentration than that of diesel fuel. On the other hand, elemental carbon (EC) and organic emission for PB10 showed decreases trend as varies 4.2% to 6.6% and 32 to 39% respectively, while elemental carbon percentage increased by 0.85 to 10% respectively. Similarly, metal composition of PB10 biodiesel blend increased by 4.8 to 26.5% respectively. SEM images for B10 and B20 demonstrated granular structure particulates with greater grain sizes compared with diesel fuel. Finally, the experimental outcomes showed that the blend composition and degree of unsaturation of the methyl ester present in biodiesel influence on the particulate matter formation.

Keywords: particulate matter, elemental carbon, organic carbon, biodiesel

Procedia PDF Downloads 375
11557 Fabrication of Activated Carbon from Palm Trunksfor Removal of Harmful Dyes

Authors: Eman Alzahrani

Abstract:

Date palm trees are abundant and cheap natural resources in Saudi Arabia. In this study, an activated carbon was prepared from palm trunks by chemical processes. The chemical activation was performed by impregnation of the raw materials after grinding with H3PO4 solution (63%), followed by placing of the sample solution on a muffle furnace at 400ºC for 30 min, and then at 800ºC for 10 min. The morphology of the fabricated material was checked using scanning electron microscopy that showed the rough surfaces on the carbon samples. The use of fabricated activated carbon for removal of eosin dye from aqueous solutions at different contact time, initial dye concentration, pH and adsorbent doses was investigated. The experimental results show that the adsorption process attains equilibrium within 20 min. The adsorption isotherm equilibrium was studied by means of the Langmuir and Freundlich isotherms, and it was found that the data fit the Langmuir isotherm equation with maximum monolayer adsorption capacity of 126.58 mg g-1. The results indicated that the home made activated carbon prepared from palm trunks has the ability to remove eosin dye from aqueous solution and it will be a promising adsorbent for the removal of harmful dyes from waste water.

Keywords: activated carbon, date palm trunks, H3PO4 activation, adsorption, dye removal, eosin dye, isotherm

Procedia PDF Downloads 353
11556 White-Rot Hymenomycetes as Oil Palm Log Treatments: Accelerating Biodegradation of Basal Stem Rot-Affected Oil Palm Stumps

Authors: Yuvarani Naidu, Yasmeen Siddiqui, Mohd Yusof Rafii , Abu Seman Idris

Abstract:

Sustainability of oil palm production in Southeast Asia, especially in Indonesia and Malaysia, is jeopardized by Ganoderma boninense, the fungus which causes basal stem rot (BSR) in oil palm. The root contact with unattended infected debris left in the plantations during replanting is known to be the primary source of inoculum. Abiding by the law, potentially effective technique of managing Ganoderma infected oil palm debris is deemed necessary because of the zero-burning policy in Malaysian oil palm plantations. White-rot hymenomycetes antagonistic to Ganoderma sp were selected to test their efficacy as log treatments in degrading Ganoderma infected oil palm logs and to minimize the survival of Ganoderma inoculum. Decay rate in terms of mass loss was significantly higher after the application of solid-state cultivation (SSC) of Trametes lactinea FBW (64% ±1.2), followed by Pycnoporus sanguineus FBR (55% ±1.7) in infected log block tissues, after 10 months of treatments. The degradation pattern was clearly distinguished between the treated and non-treated log blocks with the developed SSC formulations. The control infected log blocks showed the highest, whereas infected log blocks treated with either P. sanguineus FBR or T. lactinea FBW SSC formulations exhibited statistically lowest number of Ganoderma spp. recovery on Ganoderma Selective Medium (GSM), after 8 months of treatment. Out of that, the lowest recovery of Ganoderma spp. was reported in infected log blocks inoculated with the strain T. lactinea FBW (21% ± 0.9) followed by P. sanguineus FBR (33% ± 2.2), after 8 months, Further, no recovery of Ganoderma was noticeable, 10 months after treatment applications in log blocks treated with both of the formulations. This is the first nursery-base study to substantiate the initial colonization of white-rot hymenomycetes on oil palm log blocks previously infected with BSR pathogen, G. boninense. The present study has indicated that log blocks treatment with white-rot hymenomycetes significantly affected the mass loss of diseased and healthy log block tissues. This study provides a basis of biotechnological approaches inefficient degradation of oil palm-generated crop debris, under natural conditions with an ultimate aim of reducing the Ganoderma inoculum under heavy BSR infection pressure in eco-friendly manner.

Keywords: basal stem rot disease, ganoderma boninense, oil palm, white-rot fungi

Procedia PDF Downloads 195
11555 Modification of Date Palm Leaflets Fibers Used as Thermoplastic Reinforcement

Authors: K. Almi, S.Lakel, A. Benchabane, A. Kriker

Abstract:

The fiber–matrix compatibility can be improved if suitable enforcements are chosen. Whenever the reinforcements have more thermal stability, they can resist to the main processes for wood–thermoplastic composites. This paper is an investigation of effect of different treatment process on the mechanical proprieties and on the thermal stability of date palm leaflets fibers with a view to improve the date palm fiber proprieties used as reinforcement of thermoplastic materials which main processes require extrusion, hot press. To compare the effect of alkali and acid treatment on the date palm leaflets fiber properties, different treatment were used such as Sodium hydroxide NaOH solution, aluminium chloride AlCl3 and acid treatment with HCL solution. All treatments were performed at 70°C for 4h and 48 h. The mechanical performance (tensile strength and elongation) is affected by immersion time in alkaline and acid solutions. The reduction of the tensile strength and elongation of fibers at 48h was higher in acid treatment than in alkali treatment at high concentration. No significant differences were observed in mechanical and thermal proprieties of raw fibers and fibers submerged in AlCl3 at low concentration 1% for 48h. Fibers treated by NaOH at 6% for 4h showed significant increase in the mechanical proprieties and thermal stability of date palm leaflets fibers. Hence, soda treatment is necessary to improve the fibers proprieties and consequently optimize the composite performance.

Keywords: date palm fibers, surface treatments, thermoplastic composites, thermal analysis

Procedia PDF Downloads 330
11554 A Study to Evaluate Some Physical and Mechanical Properties, Relevant in Estimating Energy Requirements in Grinding the Palm Kernel and Coconut Shells

Authors: Saheed O. Akinwale, Olufemi A. Koya

Abstract:

Based on the need to modify palm kernel shell (PKS) and coconut shell (CNS) for some engineering applications, the study evaluated some physical characteristics and fracture resistance, relevant in estimating energy requirements in comminution of the nutshells. The shells, obtained from local processing mills, were washed, sun-dried and sorted to remove kernels, nuts and other extraneous materials. Experiments were then conducted to determine the thickness, density, moisture content, and hardness of the shells. Fracture resistances were characterised by the average compressive load, stiffness and toughness at bio-yield point of specially prepared section of the shells, under quasi-static compression loading. The densities of the dried PKS at 7.12% and the CNS at 6.47% (wb) moisture contents were 1291.20 and 1247.40 kg/m3, respectively. The corresponding Brinnel Hardness Numbers were 58.40 ± 1.91 and 56.33 ± 4.33. Close shells thickness of both PKS and CNS exhibited identical physical properties although; CNS is relatively larger in physical dimensions than PKS. The findings further showed that both shell types exhibited higher resistance with compression along the longitudinal axes than the transverse axes. With compressions along the longitudinal axes, the fracture force were 1.41 ± 0.11 and 3.62 ± 0.09 kN; bio-stiffness; 934.70 ± 67.03 kN/m and 1980.74 ± 8.92 kN/m; and toughness, 2.17 ± 0.16 and 6.51 ± 0.15 KN mm for the PKS and CNS, respectively. With the estimated toughness of CNS higher than that of PKS, the study showed the requirement of higher comminution energy for CNS.

Keywords: bio-stiffness, coconut shell, comminution, crushing strength, energy requirement, palm kernel shell, toughness

Procedia PDF Downloads 224
11553 Forage Quality of Chickpea - Barley as Affected by Mixed Cropping System in Water Stress Condition

Authors: Masoud Rafiee

Abstract:

To study the quality response of forage to chickpea-barley mixed cropping under drought stress and vermicompost consumption, an experiment was carried out under well watered and %70 water requirement (stress condition) in RCBD as split plot with four replications in temperate condition of Khorramabad in 2013. Chickpea-barley mix cropping (%100 chickpea, %75:25 chickpea:barley, %50:50 chickpea:barley, %25:75 chickpea:barley, and %100 barley) was studied. Results showed that wet and dry forage yield were significantly affected by environment and decreased in stress condition. Also, crude protein content decreased from %26.2 in well watered to %17.3 in stress condition.

Keywords: crude protein, wet forage yield, dry forage yield, water stress condition, well watered

Procedia PDF Downloads 333
11552 Waste Water Treatment and Emerging Waste Water Contaminants in Developing Countries

Authors: Opata Obinna Johnpaul

Abstract:

Wastewater is one of the day-to–day concerns of humans and the environment, in general, due to its importance to the environment. This is because of the presence of various contaminants that are involved in waste water. Wastewater treatment can be defined as the proportion of wastewater that is treated, in order to reduce pollutants before being discharged to the environment, by the level of treatment. This work discusses wastewater treatment, its contaminants, as well as the technologies, involved.The major focus is to analyze Okomu Oil Palm Company Plc, their effluent treatment facility. Okomu Oil Palm Company is based in Nigeria, which is one of the developing countries of the world. Okomu Oil Palm Company uses aquatic treatment technology for their effluent treatment and applies the physio-chemical level of advanced chemical treatment of wastewater treatment process. This work will discuss the outcome of the laboratory sample taken on the 30th January, 2015 and analyzed between 30th January- 4th February 2015.

Keywords: wastewater treatment, contaminants, physio-chemical process, Okomu oil palm

Procedia PDF Downloads 345
11551 Karyotyping the Date Palm (Phoenix dactylifera L.)

Authors: Abdullah M. Alzahrani

Abstract:

The karyotypes of Khalas (KH), Sukkary (SK), Sheeshi (SS), Shibeebi (SB) and Sillije (SJ) date palm cultivars were investigated. Data showed no variation in chromosome number, 2n = 36, 34 autosomes in addition to XX in females and XY in males. Mean autosomes length ranged from 3.85-9.93 μm and 3.71-2.73 μm for X and Y chromosomes, respectively. The formula of female date palm karyotype was 8m + 4sm +2st + 4t, and submedian Y chromosome. Relative chromosome length ranged from 3.3- 9.38 μm. SS cultivar showed high asymmetry levels by scoring low values of Syi (45.51), TF (42.8) and high values for A1 (0.53), A (0.41) and AI (0.29). Syi developed an inverse relation with A1 and A while A exhibited a direct correlation with A1. Cultivars SK, SB and SJ score medium values of Syi, A1, AI and A. KH cultivar exhibited high symmetry by scoring highest values of Syi (53.68), TF (51.81) and lowest values of A1 (0.44), A (0.34) and AI (0.18). Higher DI value was obtained in SB cultivar (1.34) followed by SJ (1.15) and low DI scores of 0.99, 0.86 and 0.71 were detected in KH, SS and SK, respectively. Stebbins classification assorted SS as 3B and the other cultivars as 2B, insuring the evolution and asymmetry of SS compared to the other karyotypes. Scatter diagram of Syi-A1 couple has the advantage of revealing high degree of sensitivity to present karyotype interrelationships, followed by AI-A and CVCL-CVCI couples.

Keywords: Karyotype, date palm, Khalas, Sukkary, Sheeshi

Procedia PDF Downloads 357
11550 Decolorization and Phenol Removal of Palm Oil Mill Effluent by Termite-Associated Yeast

Authors: P. Chaijak, M. Lertworapreecha, C. Sukkasem

Abstract:

A huge of dark color palm oil mill effluent (POME) cannot pass the discharge standard. It has been identified as the major contributor to the pollution load into ground water. Here, lignin-degrading yeast isolated from a termite nest was tested to treat the POME. Its lignin-degrading and decolorizing ability was determined. The result illustrated that Galactomyces sp. was successfully grown in POME. The decolorizing test demonstrated that 40% of Galactomyces sp. could reduce the color of POME (50% v/v) about 74-75% in 5 days without nutrient supplement. The result suggested that G. reessii has a potential to apply for decolorizing the dark wastewater like POME and other industrial wastewaters.

Keywords: decolorization, palm oil mill effluent, termite, yeast

Procedia PDF Downloads 196
11549 Determination of Yield and Yield Components of Fodder Beet (Beta vulgaris L. var. rapacea Koch.) Cultivars under the Konya Region Conditions

Authors: A. Ozkose

Abstract:

This study was conducted to determination of yield and yield components of some fodder beet types (Amarilla Barres, Feldherr, Kyros, Magnum, and Rota) under the Konya region conditions. Fodder beet was obtained from the Selcuk University, Faculty of Agriculture, at 2006-2007 season and the experiment was established in a randomized complete block design with three replicates. Differences among the averages of the fodder beet cultivars are statistically important in terms of all the characteristics investigated. Leaf attitude value was 1.2–2.2 (1=erect; 5= prostrate), root shape scale value was (1=spheroidal – 9=cylindrical), root diameter 11.0–12.2 cm, remaining part of root on the ground was 6.3–13.7 cm, root length was 21.4 – 29.6 cm, leaf yield 1592 – 1917 kg/da, root yield was 10083–12258 kg/da, root dry matter content was %8.2– 18.6 and root dry matter yield was 889–1887 kg/da. As a result of the study, it was determined that fodder beet cultivars are different conditions in terms of yield and yield components. Therefore, determination of appropriate cultivars for each region affect crop yield importantly.

Keywords: fedder beet, root yield, yield components, Konya, agriculture

Procedia PDF Downloads 471
11548 Effect on Yield and Yield Components of Different Irrigation Levels in Edible Seed Pumpkin Growing

Authors: Musa Seymen, Duran Yavuz, Nurcan Yavuz, Önder Türkmen

Abstract:

Edible seed pumpkin (Cucurbita pepo L.) is one of the important edibles preferred by consumer in Turkey due to its higher nutrient contents. However, there is almost very few study on water consumption and irrigation water requirement of confectionary edible seed pumpkin in Turkey. Therefore, a 2-year study (2013-2014) was conducted to determine the effects of irrigation levels on the seed yield and yield components of drip-irrigated confectionary edible seed pumpkin under Turkey conditions. In the study, the experimental design was made in randomized blocks with three replications. Treatments consisted of five irrigation water levels that compensated for the 100% (I100, full irrigation), 75% (I75), 50% (I50), 25% (I25) and 0% (I0, no irrigation) of crop water requirements at 14-day irrigation intervals. Seasonal evapotranspiration of treatments varied from 194.2 to 625.2 mm in 2013 and from 208.6 to 556.6 mm in 2014. In both years, the highest seasonal evapotranspiration was obtained in I100 treatment. Average across years, the seed yields ranged between 1090 (I100) and 422 (I0) kg ha-1. The irrigation treatments were found to significantly affect the yield parameters such as the seed yield, oil seed yield number of seeds per fruit, seed size, seed width, fruit size, fruit width and fruit index.

Keywords: irrigation level, edible seed pumpkin, seed quality, seed yield

Procedia PDF Downloads 289
11547 Application of Tocopherol as Antioxidant to Reduce Decomposition Process on Palm Oil Biodiesel

Authors: Supriyono, Sumardiyono, Rendy J. Pramono

Abstract:

Biodiesel is one of the alternative fuels promising for substituting petrodiesel as energy source which has an advantage as it is sustainable and eco-friendly. Due to the raw material that tends to decompose during storage, biodiesel also has the same characteristic that tends to decompose during storage. Biodiesel decomposition will form higher acid value as the result of oxidation to double bond on a fatty acid compound on biodiesel. Thus, free fatty acid value could be used to evaluate degradation of biodiesel due to the oxidation process. High free fatty acid on biodiesel could impact on the engine performance. Decomposition of biodiesel due to oxidation reaction could prevent by introducing a small amount of antioxidant. The origin of raw materials and the process for producing biodiesel will determine the effectiveness of antioxidant. Biodiesel made from high free fatty acid (FFA) crude palm oil (CPO) by using two steps esterification is vulnerable to oxidation process which is resulted in increasing on the FFA value. Tocopherol also known as vitamin E is one of the antioxidant that could improve the stability of biodiesel due to decomposition by the oxidation process. Tocopherol 0.5% concentration on palm oil biodiesel could reduce 13% of increasing FFA under temperature 80 °C and exposing time 180 minute.

Keywords: antioxidant, palm oil biodiesel, decomposition, oxidation, tocopherol

Procedia PDF Downloads 340
11546 The Influence of Zinc Applications from Soil and Foliar at Different Levels on Some Quality Characteristics of Sultana Raisins

Authors: Harun Çoban, Aydın Akın

Abstract:

In this study, the effects of different dose zinc application from soil and foliar on drying yield and some quality characters of raisins ‘Sultana’ were investigated. The experiment was conducted in randomized blocks with four replications, zinc treatment was used at one time (before pre- bloom) and from foliar in three times (pre-bloom, fruit set, and veraison). At harvest, both soil and foliar zinc sulphate applications increased the amount of fresh grapes per vine. Fresh grapes were dried on the drying place. However, the most efficient applications for drying yield and quality of raisins were observed from foliar. Therefore, it was preferred that foliar application dosage level at 0.10 %.

Keywords: zinc, raisins, soil application, foliar application, sultana, expertise value

Procedia PDF Downloads 304
11545 Evaluation and Selection of Elite Jatropha Genotypes for Biofuel

Authors: Bambang Heliyanto, Rully Dyah Purwati, Hasnam, Fadjry Djufry

Abstract:

Jatropha curcas L., a drought tolerant and monoecious perennial shrub, has received attention worldwide during the past decade. Realizing the facts, the Indonesian government has decided to option for Jatropha and palm oil for in country biofuel production. To support the program development of high yielding jatropha varieties is necessary. This paper reviews Jatropha improvement program in Indonesia using mass selection and hybrid development. To start with, at the end of 2005, in-country germplasm collection was mobilized to Lampung and Nusa Tenggara Barat (NTB) provinces and successfully collected 15 provenances/sub-provenances which serves as a base population for selection. A significant improvement has been achieved through a simple recurrent breeding selection during 2006 to 2007. Seed yield productivity increased more than double, from 0.36 to 0.97 ton dry seed per hectare during the first selection cycle (IP-1), and then increased to 2.2 ton per hectare during the second cycles (IP-2) in Lampung provenance. Similar result was also observed in NTB provenance. Seed yield productivity increased from 0.43 ton to 1 ton dry seed per hectare in the first cycle (IP-1), and then 1.9 ton in the second cycle (IP-2). In 2008, the population IP-3 resulted from the third cycle of selection have been identified which were capable of producing 2.2 to 2.4 ton seed yield per hectare. To improve the seed yield per hectare, jatropha hybrid varieties was developed involving superior provenances. As a result a Jatropha Energy Terbarukan (JET) variety-2 was released in 2017 with seed yield potential of 2.6 ton per hectare. The use of this high yielding genotypes for biofuel is discussed.

Keywords: Jatropha curcas, provenance, biofuel, improve population, hybrid

Procedia PDF Downloads 158
11544 Preparation of Water Hyacinth and Oil Palm Fiber for Plastic Waste Composite

Authors: Pattamaphorn Phuangngamphan, Rewadee Anuwattana, Narumon Soparatana, Nestchanok Yongpraderm, Atiporn Jinpayoon, Supinya Sutthima, Saroj Klangkongsub, Worapong Pattayawan

Abstract:

This research aims to utilize the agricultural waste and plastic waste in Thailand in a study of the optimum conditions for preparing composite materials from water hyacinth and oil palm fiber and plastic waste in landfills. The water hyacinth and oil palm fiber were prepared by alkaline treatment with NaOH (5, 15 wt%) at 25-60 °C for 1 h. The treated fiber (5 and 10 phr) was applied to plastic waste composite. The composite was prepared by using a screw extrusion process from 185 °C to 200 °C with a screw speed of 60 rpm. The result confirmed that alkaline treatment can remove lignin, hemicellulose and other impurities on the fiber surface and also increase the cellulose content. The optimum condition of composite material is 10 phr of fiber coupling with 3 wt% PE-g-MA as compatibilizer. The composite of plastic waste and oil palm fiber has good adhesion between fiber and plastic matrix. The PE-g-MA has improved fiber-plastic interaction. The results suggested that the composite material from plastic waste and agricultural waste has the potential to be used as value-added products.

Keywords: agricultural waste, waste utilization, biomaterials, cellulose fiber, composite material

Procedia PDF Downloads 395
11543 Biochar from Empty Fruit Bunches Generated in the Palm Oil Extraction and Its Nutrients Contribution in Cultivated Soils with Elaeis guineensis in Casanare, Colombia

Authors: Alvarado M. Lady G., Ortiz V. Yaylenne, Quintero B. Quelbis R.

Abstract:

The oil palm sector has seen significant growth in Colombia after the insertion of policies to stimulate the use of biofuels, which eventually contributes to the reduction of greenhouse gases (GHG) that deteriorate not only the environment but the health of people. However, the policy of using biofuels has been strongly questioned by the impacts that can generate; an example is the increase of other more harmful GHGs like the CH₄ that underlies the amount of solid waste generated. Casanare's department is estimated be one of the major producers of palm oil of the country given that has recently expanded its sowed area, which implies an increase in waste generated primarily in the industrial stage. For this reason, the following study evaluated the agronomic potential of the biochar obtained from empty fruit bunches and its nutritional contribution in cultivated soils with Elaeis guineensis in Casanare, Colombia. The biochar was obtained by slow pyrolysis of the clusters in a retort oven at an average temperature of 190 °C and a residence time of 8 hours. The final product was taken to the laboratory for its physical and chemical analysis as well as a soil sample from a cultivation of Elaeis guineensis located in Tauramena-Casanare. With the results obtained plus the bibliographical reports of the nutrient demand in this cultivation, the possible nutritional contribution of the biochar was determined. It is estimated that the cultivation requirements of nitrogen is 12.1 kg.ha⁻¹, potassium is 59.3 kg.ha⁻¹, magnesium is -31.5 kg.ha⁻¹ and phosphorus is 5.6 kg.ha⁻¹ obtaining a biochar contribution of 143.1 kg.ha⁻¹, 1204.5 kg.ha⁻¹, 39.2 kg.ha⁻¹ and 71.6 kg.ha⁻¹ respectively. The incorporation of biochar into the soil would significantly improve the concentrations of N, P, K and Mg, nutrients considered important in the yield of palm oil, coupled with the importance of nutrient recycling in agricultural production systems sustainable. The biochar application improves the physical properties of soils, mainly in the humidity retention. On the other hand, it regulates the availability of nutrients for plants absorption, with economic savings in the application of synthetic fertilizers and water by irrigation. It also becomes an alternative to manage agricultural waste, reducing the involuntary emissions of greenhouse gases to the environment by decomposition in the field, reducing the CO₂ content in the atmosphere.

Keywords: biochar, nutrient recycling, oil palm, pyrolysis

Procedia PDF Downloads 146
11542 Thermal Proprieties of Date Palm Wood

Authors: K. Almi, S. Lakel, A. Benchabane, A. Kriker

Abstract:

Several researches are focused on natural resources for the production of biomaterials intended for technical applications. Date palm wood present one of the world’s most important natural resource. Its use as insulating materials will help to solve the severe environmental and recycling problems which other artificial insulating materials caused. This paper reports the results of an experimental investigation on the thermal proprieties of date palm wood from Algeria. A study of physical, chemical, and mechanical properties is also carried out. The goal is to use this natural material in the manufacture of thermal insulation materials for buildings. The local natural resources used in this study are the date palm fibers from Biskra oasis in Algeria. The results have shown that there is no significant difference in the morphological proprieties of the four types of residues. Their chemical composition differed slightly; with the lowest amounts of cellulose and lignin content belong to Petiole. Water absorption study proved that Rachis has a low value of sorption whereas Petiole and Fibrillium have a high value of sorption what influenced their mechanical properties. It is seen that the Rachis and leaflets exhibit high tensile strength values compared to the other residue. On the other hand, the low value of the bulk density of Petiole and Fibrillium leads to a high value of specific tensile strength and young modulus. It was found that the specific young modulus of Petiole and Fibrillium was higher than that of Rachis and Leaflets and that of other natural fibers or even artificial fibers. Compared to the other materials date palm wood provide a good thermal proprieties thus, date palm wood will be a good candidate for the manufacturing efficient and safe insulating materials.

Keywords: composite materials, date palm fiber, natural fibers, tensile tests, thermal proprieties

Procedia PDF Downloads 281
11541 Stability and Rheology of Sodium Diclofenac-Loaded and Unloaded Palm Kernel Oil Esters Nanoemulsion Systems

Authors: Malahat Rezaee, Mahiran Basri, Raja Noor Zaliha Raja Abdul Rahman, Abu Bakar Salleh

Abstract:

Sodium diclofenac is one of the most commonly used drugs of nonsteroidal anti-inflammatory drugs (NSAIDs). It is especially effective in the controlling the severe conditions of inflammation and pain, musculoskeletal disorders, arthritis, and dysmenorrhea. Formulation as nanoemulsions is one of the nanoscience approaches that have been progressively considered in pharmaceutical science for transdermal delivery of drug. Nanoemulsions are a type of emulsion with particle sizes ranging from 20 nm to 200 nm. An emulsion is formed by the dispersion of one liquid, usually the oil phase in another immiscible liquid, water phase that is stabilized using surfactant. Palm kernel oil esters (PKOEs), in comparison to other oils; contain higher amounts of shorter chain esters, which suitable to be applied in micro and nanoemulsion systems as a carrier for actives, with excellent wetting behavior without the oily feeling. This research was aimed to study the effect of O/S ratio on stability and rheological behavior of sodium diclofenac loaded and unloaded palm kernel oil esters nanoemulsion systems. The effect of different O/S ratio of 0.25, 0.50, 0.75, 1.00 and 1.25 on stability of the drug-loaded and unloaded nanoemulsion formulations was evaluated by centrifugation, freeze-thaw cycle and storage stability tests. Lecithin and cremophor EL were used as surfactant. The stability of the prepared nanoemulsion formulations was assessed based on the change in zeta potential and droplet size as a function of time. Instability mechanisms including coalescence and Ostwald ripening for the nanoemulsion system were discussed. In comparison between drug-loaded and unloaded nanoemulsion formulations, drug-loaded formulations represented smaller particle size and higher stability. In addition, the O/S ratio of 0.5 was found to be the best ratio of oil and surfactant for production of a nanoemulsion with the highest stability. The effect of O/S ratio on rheological properties of drug-loaded and unloaded nanoemulsion systems was studied by plotting the flow curves of shear stress (τ) and viscosity (η) as a function of shear rate (γ). The data were fitted to the Power Law model. The results showed that all nanoemulsion formulations exhibited non-Newtonian flow behaviour by displaying shear thinning behaviour. Viscosity and yield stress were also evaluated. The nanoemulsion formulation with the O/S ratio of 0.5 represented higher viscosity and K values. In addition, the sodium diclofenac loaded formulations had more viscosity and higher yield stress than drug-unloaded formulations.

Keywords: nanoemulsions, palm kernel oil esters, sodium diclofenac, rheoligy, stability

Procedia PDF Downloads 409
11540 Sustainable Radiation Curable Palm Oil-Based Products for Advanced Materials Applications

Authors: R. Tajau, R. Rohani, M. S. Alias, N. H. Mudri, K. A. Abdul Halim, M. H. Harun, N. Mat Isa, R. Che Ismail, S. Muhammad Faisal, M. Talib, M. R. Mohamed Zin

Abstract:

Bio-based polymeric materials are increasingly used for a variety of applications, including surface coating, drug delivery systems, and tissue engineering. These polymeric materials are ideal for the aforementioned applications because they are derived from natural resources, non-toxic, low-cost, biocompatible, and biodegradable, and have promising thermal and mechanical properties. The nature of hydrocarbon chains, carbon double bonds, and ester bonds allows various sources of oil (edible), such as soy, sunflower, olive, and oil palm, to fine-tune their particular structures in the development of innovative materials. Palm oil can be the most eminent raw material used for manufacturing new and advanced natural polymeric materials involving radiation techniques, such as coating resins, nanoparticles, scaffold, nanotubes, nanocomposites, and lithography for different branches of the industry in countries where oil palm is abundant. The radiation technique is among the most versatile, cost-effective, simple, and effective methods. Crosslinking, reversible addition-fragmentation chain transfer (RAFT), polymerisation, grafting, and degradation are among the radiation mechanisms. Exposure to gamma, EB, UV, or laser irradiation, which are commonly used in the development of polymeric materials, is used in these mechanisms. Therefore, this review focuses on current radiation processing technologies for the development of various radiation-curable bio-based polymeric materials with a promising future in biomedical and industrial applications. The key focus of this review is on radiation curable palm oil-based products, which have been published frequently in recent studies.

Keywords: palm oil, radiation processing, surface coatings, VOC

Procedia PDF Downloads 175
11539 Olfactometer Response of Red Palm Weevil (Rhynchophorus ferrugineus) (Coleoptera: Curculionidae) and Its Biology for the Evaluation of Resistance in the Commercially Grown Date Palm (Phoenix dactylifera L.) Cultivars in Pakistan

Authors: Mujahid Manzoor, Muhammad Shafique, Jam Nazeer Ahmad, Farman Ahmad, Muhammad Ali, Muhammad Rizwan Tariq, Shahbaz Ahmad, Muhammad Saleem Haider

Abstract:

Date palms (P. dactylifera L.) are prominent in the Kingdom of Saudi Arabia (KSA), Iran, UAE, and Iraq, as well as Algeria, Egypt, and Pakistan. Insect pests' attacks on different palm cultivars adversely affected their production in the last few decades. Pakistan ranked sixth for date production around the world. The most commercially grown cultivars are Aseel, Dhaki, Falsi, Karbalai, Mozawati, Jan Swore, Kohra, Hillawi, Kohra, and Begum Jhangi. Red palm weevils are considered as hazardous insect pests responsible for economic loss in palm orchards. This research work depicts the infestation of red palm weevils in eleven different palm cultivars (Hillawi, Mozawati, Kechanr, Aseel, Shamrani, Khudravi, Dhaki, Zeri, Kobra, Zaidi, Denda), which frequently grow in different regions of Pakistan through Y-shaped olfactometer analysis. In addition, the level of both antixenosis and antibiosis was spotted by examining the various parameters such as %age lure of weevils of mature females, general count of laid eggs in addition to their activeness. Furthermore, obtained results depicted that a positive contact was established with minimum antixenotic consequence revealed by a cultivar, “Hillawi” among most hold of RPW adults (22.32%), number of eggs laid (16.66%) and egg hatching (84.66%), while other cultivars, including Mozawati, Aseel, Kechanr, Shamrani, Khudravi, Dhaki, Zeri, and Zaidi, exhibited a greater level of antixenosis. Moreover, “Hillawi” documented the maximum number of eggs, while Kechanr, Mozawati, Aseel Kobra, and Denda showed minimum attraction by red palm weevils. Maximum red palm weevils were attracted in an olfactometer assay of sugarcane varieties.

Keywords: P. dactylifera, R. ferrugineus, olfactometer, antixenosis

Procedia PDF Downloads 97
11538 Development of Palm Kernel Shell Lightweight Masonry Mortar

Authors: Kazeem K. Adewole

Abstract:

There need to construct building walls with lightweight masonry bricks/blocks and mortar to reduce the weight and cost of cooling/heating of buildings in hot/cold climates is growing partly due to legislations on energy use and global warming. In this paper, the development of Palm Kernel Shell masonry mortar (PKSMM) prepared with Portland cement and crushed PKS fine aggregate (an agricultural waste) is demonstrated. We show that PKSMM can be used as a lightweight mortar for the construction of lightweight masonry walls with good thermal insulation efficiency than the natural river sand commonly used for masonry mortar production.

Keywords: building walls, fine aggregate, lightweight masonry mortar, palm kernel shell, wall thermal insulation efficacy

Procedia PDF Downloads 306
11537 Pathogenicity of Entomopathogenic Fungi, Beauveria bassiana Against Red Palm Weevil, (Rhynchophorus ferrugineus)

Authors: Muhammad Mamoon-Ur-Rashid, Gul Rehman

Abstract:

Entomopathogenic fungi are considered effective bio-control agents for the management of a range of insect pests including red palm weevil. The research studies were conducted under laboratory and field conditions against 5th and 6th instars larvae and adults of [Rhynchophorus ferrugineus (Olivier)] at the faculty of Agriculture, Gomal University Dera Ismail Khan (KPK) Pakistan. The 5th instar larvae were used under field conditions whereas, the 6th instar larvae and newly emerged adults were used under lab conditions. Conidial suspensions were used at five different concentrations of 1×10⁴, 1×10⁵, 1×10⁶, 1×10⁷ and 1×10⁸, conidia per ml. The data were recorded on the mortality, total larval duration, weight of larvae, pre-pupal and pupal durations, percent pupal formation, pupal weight, percent adult emergence, and adult longevity (♂ and ♀) of red palm weevil. The B. bassiana had varying degrees of pathogenicity against different developmental stages of red palm weevil. The maximum larval duration (113.40 days) was noted when 5th instar larvae were treated with the maximum concentration (1 × 10⁸) of B. bassiana, whereas; the minimum total larval duration of 87.20 days was recorded on the lowest concentration (1 × 10⁴) of B. bassiana. The maximum pre-pual and pupal durations were noted at the maximum concentration. The maximum life span of adult male and females were noted at the lowest concentration, whereas; the minimum values were noted at the maximum concentration. The earliest mortality of red palm weevil was observed 1-day after treatment at higher concentrations of 1 × 10⁷ and 1 × 10⁸, whereas; it was recorded 3 and 4 days after treatment at lower concentrations of 1 × 10⁵ and 1 × 10⁴. At 10 days after treatment, the entomopathogenic fungus caused > 80% cumulative mortality of 5th and 6th instar larvae and adult weevils at the maximum concentrations which were more than double than those recorded at the lowest concentration. Overall, the 5th instar larvae of red palm weevils were most susceptible to the fungus compared to the 6th instar larvae and adult weevils. Based on current findings, it is suggested that entomopathogenic fungi could be used for the safer management of red palm weevil.

Keywords: entomopathogenic nematodes, mortality, red palm weevil, sub-lethal effects

Procedia PDF Downloads 84
11536 Durability of Lightweight Concrete Material Made from Date Palma Seeds

Authors: Mohammed Almograbi

Abstract:

Libya is one of the largest producers of dates from date palm, generating about 60000 tonnes of date palm seeds (DPS) annually. This large amount of seeds led to studies into the possible use as aggregates in lightweight concrete for some special structures. The utilization of DPS as aggregate in concrete provides a good solution as alternative aggregate to the stone aggregate. It has been recognized that, DPS can be used as coarse aggregate in structural lightweight concrete industry. For any structure member, the durability is one of the most important considerations during its service life. This paper presents the durability properties of DPS concrete. These include the water permeability, water absorption, sorptivity and chloride penetration. The test results obtained were comparable to the conventional lightweight concrete.

Keywords: date palm seeds, lightweight concrete, durability, sustainability, permeability of concrete, water absorption of concrete, sorptivity of concrete

Procedia PDF Downloads 638
11535 Effect of Plowing the Soil of Faba Bean on Soil Productivity and Quality Improvement

Authors: Khattab E. A., Gehan A. Amin

Abstract:

The aim of the experiment was to investigate yield and yield components under effect of three different tillage systems and three faba bean varieties on clay-loamy soils. The experiment was conducted as split plot design having tillage systems in main plot and varieties in subplot. A field trial was conducted during the winter seasons of 2021-2022 and 2022-2-23, respectively in private of the agricultural lands of Shobra Beddin village, which belongs to Mansoura District of Dakahlia Province 31°, (04457)- N latitude and 31°4757- E longitude. The soil was prepared. The Seeds covered with a thin layer of soil, sown and watered. Three weeks later, the developed plants were thinned. Finally, the plants collected after 110 days of growth. Growth, yield and chemical contents determined. The results showed that the highest yield in the traditional tillage system corresponds to the superior to other tillage systems. In addition, In the variety comparison, the Sakha 1 variety was characterized by the highest yield as well as the highest values of plant growth properties among the three varieties. Conclusion: The traditional tillage system is increase grain yield of variety Sakha 1 compared with other varieties.

Keywords: yield, tillage system, varieties, faba bean

Procedia PDF Downloads 49