Search results for: multivariate chemometric
571 Sex Work Practice and Health Seeking Behavior among Hiv Positive Female Sex Workers in Rural Karnataka, India
Authors: Rajeshwari Biradar
Abstract:
Background: The anecdotal evidences indicate that utilization of HIV services especially in Government facilities is affected by stigma and discrimination among HIV positive female sex workers (FSWs) in Karnataka. To our knowledge, there is no quantitative study on this issue. In this study an attempt is made to examine these aspects among positive FSWs exposed to prevention programs. Methods: This is a cross‐ sectional quantitative survey of HIV positive FSWs in the 3 districts of northern Karnataka using a structured questionnaire. The list of HIV Positive FSWs was organized by stratification, and 607 positive FSWs were selected using a systematic random selection. The data were analyzed using both bivariate and multivariate statistical techniques. Results: Half of the sex workers (52%) are traditional (devadasi, dedicated to the temple), 22% are widowed and the mean age is 33 years. The FSWs practice sex work on an average 13 days a month with 2.3 clients per day and was in sex work for about 13 years. Almost all of them (97%) used condom with the clients they had on the last day of sex work. About 74% were ever registered in the ART center and 47% of them reported being ever on ART, of which 6% dropped out. Multivariate results support the hypothesis that the interventions addressing stigma and discrimination enabled accessing health services in the government facilities (AOR=1.37; p=0.17). Conclusions: Based on the results of the study, programs addressing stigma, discrimination and positive prevention can be implemented in places where government health services are not utilized by HIV positive FSWs. However, the study may be limited by the fact that majority of the FSWs entered into sex work through the traditional devadasi system, which may not be the case in other parts of India.Keywords: sex work, HIV/AIDS, female sex workers, health
Procedia PDF Downloads 188570 Supplier Risk Management: A Multivariate Statistical Modelling and Portfolio Optimization Based Approach for Supplier Delivery Performance Development
Authors: Jiahui Yang, John Quigley, Lesley Walls
Abstract:
In this paper, the authors develop a stochastic model regarding the investment in supplier delivery performance development from a buyer’s perspective. The authors propose a multivariate model through a Multinomial-Dirichlet distribution within an Empirical Bayesian inference framework, representing both the epistemic and aleatory uncertainties in deliveries. A closed form solution is obtained and the lower and upper bound for both optimal investment level and expected profit under uncertainty are derived. The theoretical properties provide decision makers with useful insights regarding supplier delivery performance improvement problems where multiple delivery statuses are involved. The authors also extend the model from a single supplier investment into a supplier portfolio, using a Lagrangian method to obtain a theoretical expression for an optimal investment level and overall expected profit. The model enables a buyer to know how the marginal expected profit/investment level of each supplier changes with respect to the budget and which supplier should be invested in when additional budget is available. An application of this model is illustrated in a simulation study. Overall, the main contribution of this study is to provide an optimal investment decision making framework for supplier development, taking into account multiple delivery statuses as well as multiple projects.Keywords: decision making, empirical bayesian, portfolio optimization, supplier development, supply chain management
Procedia PDF Downloads 289569 Ranking of Provinces in Iran for Capital Formation in Spatial Planning with Numerical Taxonomy Technique (An Improvement) Case Study: Agriculture Sector
Authors: Farhad Nouparast
Abstract:
For more production we need more capital formation. Capital formation in each country should be based on comparative advantages in different economic sectors due to the different production possibility curves. In regional planning, recognizing the relative advantages and consequently investing in more production requires identifying areas with the necessary capabilities and location of each region compared to other regions. In this article, ranking of Iran's provinces is done according to the specific and given variables as the best investment position in agricultural activity. So we can provide the necessary background for investment analysis in different regions of the country to formulate national and regional planning and execute investment projects. It is used factor analysis technique and numerical taxonomy analysis to do this in thisarticle. At first, the provinces are homogenized and graded according to the variables using cross-sectional data obtained from the agricultural census and population and housing census of Iran as data matrix. The results show that which provinces have the most potential for capital formation in agronomy sub-sector. Taxonomy classifies organisms based on similar genetic traits in biology and botany. Numerical taxonomy using quantitative methods controls large amounts of information and get the number of samples and categories and take them based on inherent characteristics and differences indirectly accommodates. Numerical taxonomy is related to multivariate statistics.Keywords: Capital Formation, Factor Analysis, Multivariate statistics, Numerical Taxonomy Analysis, Production, Ranking, Spatial Planning
Procedia PDF Downloads 141568 Near Infrared Spectrometry to Determine the Quality of Milk, Experimental Design Setup and Chemometrics: Review
Authors: Meghana Shankara, Priyadarshini Natarajan
Abstract:
Infrared (IR) spectroscopy has revolutionized the way we look at materials around us. Unraveling the pattern in the molecular spectra of materials to analyze the composition and properties of it has been one of the most interesting challenges in modern science. Applications of the IR spectrometry are numerous in the field’s pharmaceuticals, health, food and nutrition, oils, agriculture, construction, polymers, beverage, fabrics and much more limited only by the curiosity of the people. Near Infrared (NIR) spectrometry is applied robustly in analyzing the solids and liquid substances because of its non-destructive analysis method. In this paper, we have reviewed the application of NIR spectrometry in milk quality analysis and have presented the modes of measurement applied in NIRS measurement setup, Design of Experiment (DoE), classification/quantification algorithms used in the case of milk composition prediction like Fat%, Protein%, Lactose%, Solids Not Fat (SNF%) along with different approaches for adulterant identification. We have also discussed the important NIR ranges for the chosen milk parameters. The performance metrics used in the comparison of the various Chemometric approaches include Root Mean Square Error (RMSE), R^2, slope, offset, sensitivity, specificity and accuracyKeywords: chemometrics, design of experiment, milk quality analysis, NIRS measurement modes
Procedia PDF Downloads 271567 Off-Line Detection of "Pannon Wheat" Milling Fractions by Near-Infrared Spectroscopic Methods
Authors: E. Izsó, M. Bartalné-Berceli, Sz. Gergely, A. Salgó
Abstract:
The aims of this investigation is to elaborate near-infrared methods for testing and recognition of chemical components and quality in “Pannon wheat” allied (i.e. true to variety or variety identified) milling fractions as well as to develop spectroscopic methods following the milling processes and evaluate the stability of the milling technology by different types of milling products and according to sampling times, respectively. This wheat categories produced under industrial conditions where samples were collected versus sampling time and maximum or minimum yields. The changes of the main chemical components (such as starch, protein, lipid) and physical properties of fractions (particle size) were analysed by dispersive spectrophotometers using visible (VIS) and near-infrared (NIR) regions of the electromagnetic radiation. Close correlation were obtained between the data of spectroscopic measurement techniques processed by various chemometric methods (e.g. principal component analysis (PCA), cluster analysis (CA) and operation condition of milling technology. Its obvious that NIR methods are able to detect the deviation of the yield parameters and differences of the sampling times by a wide variety of fractions, respectively. NIR technology can be used in the sensitive monitoring of milling technology.Keywords: near infrared spectroscopy, wheat categories, milling process, monitoring
Procedia PDF Downloads 407566 In Silico Design of Organometallic Complexes as Potential Antibacterial Agents
Authors: Sanja O. Podunavac-Kuzmanović, Strahinja Z. Kovačević, Lidija R. Jevrić, Stela Jokić
Abstract:
The complexes of transition metals with various organic ligands have been extensively studied as models of some important pharmaceutical molecules. It was found that biological properties of different substituted organic molecules are improved when they are complexed by different metals. Therefore, it is of great importance for the development of coordination chemistry to explore the assembly of functional organic ligands with metal ion and to investigate the relationship between the structure and property. In the present work, we have bioassayed the antibacterial potency of benzimidazoles and their metal salts (Cu or Zn) against yeast Sarcina lutea. In order to validate our in vitro study, we performed in silico studies using molecular docking software. The investigated compounds and their metal complexes (Cu, Zn) showed good to moderate inhibitory activity against Sarcina lutea. In silico docking studies of the synthesized compounds suggested that complexed benzimidazoles have a greater binding affinity and improved antibacterial activity in comparison with non-complexed ligands. These results are part of the CMST COST Action No. 1105 "Functional metal complexes that bind to biomolecules".Keywords: organometallic complexes, benzimidazoles, chemometric design, Sarcina lutea
Procedia PDF Downloads 343565 Developing HRCT Criterion to Predict the Risk of Pulmonary Tuberculosis
Authors: Vandna Raghuvanshi, Vikrant Thakur, Anupam Jhobta
Abstract:
Objective: To design HRCT criterion to forecast the threat of pulmonary tuberculosis. Material and methods: This was a prospective study of 69 patients with clinical suspicion of pulmonary tuberculosis. We studied their medical characteristics, numerous separate HRCT-results, and a combination of HRCT findings to foresee the danger for PTB by utilizing univariate and multivariate investigation. Temporary HRCT diagnostic criteria were planned in view of these outcomes to find out the risk of PTB and tested these criteria on our patients. Results: The results of HRCT chest were analyzed, and Rank was given from 1 to 4 according to the HRCT chest findings. Sensitivity, specificity, positive predictive value, and negative predictive value were calculated. Rank 1: Highly suspected PTB. Rank 2: Probable PTB Rank 3: Nonspecific or difficult to differentiate from other diseases Rank 4: Other suspected diseases • Rank 1 (Highly suspected TB) was present in 22 (31.9%) patients, all of them finally diagnosed to have pulmonary tuberculosis. The sensitivity, specificity, and negative likelihood ratio for RANK 1 on HRCT chest was 53.6%, 100%, and 0.43, respectively. • Rank 2 (Probable TB) was present in 13 patients, out of which 12 were tubercular, and 1 was non-tubercular. • The sensitivity, specificity, positive likelihood ratio, and negative likelihood ratio of the combination of Rank 1 and Rank 2 was 82.9%, 96.4%, 23.22, and 0.18, respectively. • Rank 3 (Non-specific TB) was present in 25 patients, and out of these, 7 were tubercular, and 18 were non-tubercular. • When all these 3 ranks were considered together, the sensitivity approached 100% however, the specificity reduced to 35.7%. The positive likelihood ratio and negative likelihood ratio were 1.56 and 0, respectively. • Rank 4 (Other specific findings) was given to 9 patients, and all of these were non-tubercular. Conclusion: HRCT is useful in selecting individuals with greater chances of pulmonary tuberculosis.Keywords: pulmonary, tuberculosis, multivariate, HRCT
Procedia PDF Downloads 172564 Adjustment of Parents of Children with Autism: A Multivariate Model
Authors: Ayelet Siman-Tov, Shlomo Kaniel
Abstract:
Objectives: The research validates a multivariate model that predicts parental adjustment to coping successfully with an autistic child. The model comprises four elements: parental stress, parental resources, parental adjustment and the child's autism symptoms. Background and aims: The purpose of the current study is the construction and validation of a model for the adjustment of parents and a child with autism. The suggested model is based on theoretical views on stress and links personal resources, stress, perception, parental mental health and quality of marriage and child adjustment with autism. The family stress approach focuses on the family as a system made up of a dynamic interaction between its members, who constitute interdependent parts of the system, and thus, a change in one family member brings about changes in the processes of the entire family system. From this perspective, a rise of new demands in the family and stress in the role of one family member affects the family system as a whole. Materials and methods: 176 parents of children aged between 6 to 16 diagnosed with ASD answered several questionnaires measuring parental stress, personal resources (sense of coherence, locus of control, social support), adjustment (mental health and marriage quality) and the child's autism symptoms. Results: Path analysis showed that a sense of coherence, internal locus of control, social support and quality of marriage increase the ability to cope with the stress of parenting an autistic child. Directions for further research are suggested.Keywords: stress, adjustment, resources, Autism, parents, coherence
Procedia PDF Downloads 140563 Women, Quality of Life, and Infertility: The Mediating Role of Social Support and Hope
Authors: Saeideh Lotfi Nikoo, Azadeh Ghaheri, Reza Omani Samani
Abstract:
Context: In most cultures around the globe, infertility is recognized as a crisis and exposed infertile couples are under psychosocial pressure. Indeed, the quality of life (QoL) for infertile women is lower in comparison with fertile control. Objective, The purpose of this study, was to investigate the impact of social support and hope on QoL in women undergoing infertility treatment. Methods: A cross-sectional study. Patient(s): In this cross-sectional study, 350 infertile women were recruited who were referred to an infertility clinic for the first time and had no history of Assisted Reproductive Techniques (ART) failure. Intervention(s): Questionnaires on the Fertility Quality of Life (FertiQoL), Multi-dimensional Scale of Perceived Social Support (family and friends), and Snyder Hope Scale (pathway and agency) were used to collect data. Data analysis was done by univariate and multivariate analysis. P value <0.05 was considered statistically significant. Result(s): Multivariate analysis indicated that infertile women with a higher score of social support (by family & friends) (b= 0.59 (CI 95%: 0.03, 1.15) (P = 0.040), b= 0.61 (CI 95%: 0.17, 1.04) (P = 0.006)) and hope (pathway & agency) (b= 0.94 (CI 95%: 0.29, 1.59) (P = 0.005), b= 1.13 (CI 95%: 0.45, 1.82) (P = 0.001) respectively) have significantly better Core FertiQoL. The result revealed that social support and hope are significantly and positively associated with other subscales of FertiQoL as well. Conclusions: According to the results, lifestyle interventions such as receiving social support, building a sound family with effective communication, and providing appropriate health education are of crucial importance to address psychological distress and improve the fertility QoL of women experiencing fertility problems.Keywords: inertility, social support, infertile women, hope
Procedia PDF Downloads 95562 The Impact of Prior Cancer History on the Prognosis of Salivary Gland Cancer Patients: A Population-based Study from the Surveillance, Epidemiology, and End Results (SEER) Database
Authors: Junhong Li, Danni Cheng, Yaxin Luo, Xiaowei Yi, Ke Qiu, Wendu Pang, Minzi Mao, Yufang Rao, Yao Song, Jianjun Ren, Yu Zhao
Abstract:
Background: The number of multiple cancer patients was increasing, and the impact of prior cancer history on salivary gland cancer patients remains unclear. Methods: Clinical, demographic and pathological information on salivary gland cancer patients were retrospectively collected from the Surveillance, Epidemiology, and End Results (SEER) database from 2004 to 2017, and the characteristics and prognosis between patients with a prior cancer and those without prior caner were compared. Univariate and multivariate cox proportional regression models were used for the analysis of prognosis. A risk score model was established to exam the impact of treatment on patients with a prior cancer in different risk groups. Results: A total of 9098 salivary gland cancer patients were identified, and 1635 of them had a prior cancer history. Salivary gland cancer patients with prior cancer had worse survival compared with those without a prior cancer (p<0.001). Patients with a different type of first cancer had a distinct prognosis (p<0.001), and longer latent time was associated with better survival (p=0.006) in the univariate model, although both became nonsignificant in the multivariate model. Salivary gland cancer patients with a prior cancer were divided into low-risk (n= 321), intermediate-risk (n=223), and high-risk (n=62) groups and the results showed that patients at high risk could benefit from surgery, radiation therapy, and chemotherapy, and those at intermediate risk could benefit from surgery. Conclusion: Prior cancer history had an adverse impact on the survival of salivary gland cancer patients, and individualized treatment should be seriously considered for them.Keywords: prior cancer history, prognosis, salivary gland cancer, SEER
Procedia PDF Downloads 147561 Molecular Modeling of 17-Picolyl and 17-Picolinylidene Androstane Derivatives with Anticancer Activity
Authors: Sanja Podunavac-Kuzmanović, Strahinja Kovačević, Lidija Jevrić, Evgenija Djurendić, Jovana Ajduković
Abstract:
In the present study, the molecular modeling of a series of 24 17-picolyl and 17-picolinylidene androstane derivatives whit significant anticancer activity was carried out. Modelling of studied compounds was performed by CS ChemBioDraw Ultra v12.0 program for drawing 2D molecular structures and CS ChemBio3D Ultra v12.0 for 3D molecular modelling. The obtained 3D structures were subjected to energy minimization using molecular mechanics force field method (MM2). The cutoff for structure optimization was set at a gradient of 0.1 kcal/Åmol. Full geometry optimization was done by the Austin Model 1 (AM1) until the root mean square (RMS) gradient reached a value smaller than 0.0001 kcal/Åmol using Molecular Orbital Package (MOPAC) program. The obtained physicochemical, lipophilicity and topological descriptors were used for analysis of molecular similarities and dissimilarities applying suitable chemometric methods (principal component analysis and cluster analysis). These results are the part of the project No. 114-451-347/2015-02, financially supported by the Provincial Secretariat for Science and Technological Development of Vojvodina and CMST COST Action CM1306.Keywords: androstane derivatives, anticancer activity, chemometrics, molecular descriptors
Procedia PDF Downloads 365560 Confidence Envelopes for Parametric Model Selection Inference and Post-Model Selection Inference
Authors: I. M. L. Nadeesha Jayaweera, Adao Alex Trindade
Abstract:
In choosing a candidate model in likelihood-based modeling via an information criterion, the practitioner is often faced with the difficult task of deciding just how far up the ranked list to look. Motivated by this pragmatic necessity, we construct an uncertainty band for a generalized (model selection) information criterion (GIC), defined as a criterion for which the limit in probability is identical to that of the normalized log-likelihood. This includes common special cases such as AIC & BIC. The method starts from the asymptotic normality of the GIC for the joint distribution of the candidate models in an independent and identically distributed (IID) data framework and proceeds by deriving the (asymptotically) exact distribution of the minimum. The calculation of an upper quantile for its distribution then involves the computation of multivariate Gaussian integrals, which is amenable to efficient implementation via the R package "mvtnorm". The performance of the methodology is tested on simulated data by checking the coverage probability of nominal upper quantiles and compared to the bootstrap. Both methods give coverages close to nominal for large samples, but the bootstrap is two orders of magnitude slower. The methodology is subsequently extended to two other commonly used model structures: regression and time series. In the regression case, we derive the corresponding asymptotically exact distribution of the minimum GIC invoking Lindeberg-Feller type conditions for triangular arrays and are thus able to similarly calculate upper quantiles for its distribution via multivariate Gaussian integration. The bootstrap once again provides a default competing procedure, and we find that similar comparison performance metrics hold as for the IID case. The time series case is complicated by far more intricate asymptotic regime for the joint distribution of the model GIC statistics. Under a Gaussian likelihood, the default in most packages, one needs to derive the limiting distribution of a normalized quadratic form for a realization from a stationary series. Under conditions on the process satisfied by ARMA models, a multivariate normal limit is once again achieved. The bootstrap can, however, be employed for its computation, whence we are once again in the multivariate Gaussian integration paradigm for upper quantile evaluation. Comparisons of this bootstrap-aided semi-exact method with the full-blown bootstrap once again reveal a similar performance but faster computation speeds. One of the most difficult problems in contemporary statistical methodological research is to be able to account for the extra variability introduced by model selection uncertainty, the so-called post-model selection inference (PMSI). We explore ways in which the GIC uncertainty band can be inverted to make inferences on the parameters. This is being attempted in the IID case by pivoting the CDF of the asymptotically exact distribution of the minimum GIC. For inference one parameter at a time and a small number of candidate models, this works well, whence the attained PMSI confidence intervals are wider than the MLE-based Wald, as expected.Keywords: model selection inference, generalized information criteria, post model selection, Asymptotic Theory
Procedia PDF Downloads 90559 Modelling the Effect of Psychological Capital on Climate Change Adaptation among Smallholders from South Africa
Authors: Unity Chipfupa, Aluwani Tagwi, Edilegnaw Wale
Abstract:
Climate change adaptation studies are challenged by a limited understanding of how non-cognitive factors such as psychological capital affect adaptation decisions of smallholder farmers. The concept of psychological capital has not been fully applied in the empirical literature on climate change adaptation strategies. Hence, the study was meant to assess how psychological capital endowment affects climate change adaptation among smallholder farmers. A multivariate probit regression model was estimated using data collected from 328 smallholder farmers in KwaZulu-Natal, South Africa. The findings indicate that, among other factors, self-confidence and hope or aspirations in farming influence climate change adaptation decisions of smallholders. The psychological capital theory proved to be comprehensive in identifying specific psychological dimensions associated with adaptation decisions. However, the non-alignment of approaches for measuring non-cognitive factors made it difficult to compare results among different studies. In conclusion, the study recommends the need for practical ways for enhancing smallholders’ endowment with key non-cognitive abilities. Researchers should develop and agree on a comprehensive framework for assessing non-cognitive factors critical for climate change adaptation. This will improve the use of positive psychology theories to advance the literature on climate change adaptation. Other key recommendations include targeted support for communities facing higher risks of climate change, improving smallholders’ ability to adapt, promotion of social networks and the inclusion of farming objectives as an important indicator in climate change adaptation research.Keywords: adaptive capacity, climate change adaptation, psychological capital, multivariate probit, non-cognitive factors.
Procedia PDF Downloads 151558 Copper Price Prediction Model for Various Economic Situations
Authors: Haidy S. Ghali, Engy Serag, A. Samer Ezeldin
Abstract:
Copper is an essential raw material used in the construction industry. During the year 2021 and the first half of 2022, the global market suffered from a significant fluctuation in copper raw material prices due to the aftermath of both the COVID-19 pandemic and the Russia-Ukraine war, which exposed its consumers to an unexpected financial risk. Thereto, this paper aims to develop two ANN-LSTM price prediction models, using Python, that can forecast the average monthly copper prices traded in the London Metal Exchange; the first model is a multivariate model that forecasts the copper price of the next 1-month and the second is a univariate model that predicts the copper prices of the upcoming three months. Historical data of average monthly London Metal Exchange copper prices are collected from January 2009 till July 2022, and potential external factors are identified and employed in the multivariate model. These factors lie under three main categories: energy prices and economic indicators of the three major exporting countries of copper, depending on the data availability. Before developing the LSTM models, the collected external parameters are analyzed with respect to the copper prices using correlation and multicollinearity tests in R software; then, the parameters are further screened to select the parameters that influence the copper prices. Then, the two LSTM models are developed, and the dataset is divided into training, validation, and testing sets. The results show that the performance of the 3-Month prediction model is better than the 1-Month prediction model, but still, both models can act as predicting tools for diverse economic situations.Keywords: copper prices, prediction model, neural network, time series forecasting
Procedia PDF Downloads 114557 Geostatistical Analysis of Contamination of Soils in an Urban Area in Ghana
Authors: S. K. Appiah, E. N. Aidoo, D. Asamoah Owusu, M. W. Nuonabuor
Abstract:
Urbanization remains one of the unique predominant factors which is linked to the destruction of urban environment and its associated cases of soil contamination by heavy metals through the natural and anthropogenic activities. These activities are important sources of toxic heavy metals such as arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), and lead (Pb), nickel (Ni) and zinc (Zn). Often, these heavy metals lead to increased levels in some areas due to the impact of atmospheric deposition caused by their proximity to industrial plants or the indiscriminately burning of substances. Information gathered on potentially hazardous levels of these heavy metals in soils leads to establish serious health and urban agriculture implications. However, characterization of spatial variations of soil contamination by heavy metals in Ghana is limited. Kumasi is a Metropolitan city in Ghana, West Africa and is challenged with the recent spate of deteriorating soil quality due to rapid economic development and other human activities such as “Galamsey”, illegal mining operations within the metropolis. The paper seeks to use both univariate and multivariate geostatistical techniques to assess the spatial distribution of heavy metals in soils and the potential risk associated with ingestion of sources of soil contamination in the Metropolis. Geostatistical tools have the ability to detect changes in correlation structure and how a good knowledge of the study area can help to explain the different scales of variation detected. To achieve this task, point referenced data on heavy metals measured from topsoil samples in a previous study, were collected at various locations. Linear models of regionalisation and coregionalisation were fitted to all experimental semivariograms to describe the spatial dependence between the topsoil heavy metals at different spatial scales, which led to ordinary kriging and cokriging at unsampled locations and production of risk maps of soil contamination by these heavy metals. Results obtained from both the univariate and multivariate semivariogram models showed strong spatial dependence with range of autocorrelations ranging from 100 to 300 meters. The risk maps produced show strong spatial heterogeneity for almost all the soil heavy metals with extremely risk of contamination found close to areas with commercial and industrial activities. Hence, ongoing pollution interventions should be geared towards these highly risk areas for efficient management of soil contamination to avert further pollution in the metropolis.Keywords: coregionalization, heavy metals, multivariate geostatistical analysis, soil contamination, spatial distribution
Procedia PDF Downloads 301556 An Adaptive Controller Method Based on Full-State Linear Model of Variable Cycle Engine
Authors: Jia Li, Huacong Li, Xiaobao Han
Abstract:
Due to the more variable geometry parameters of VCE (variable cycle aircraft engine), presents an adaptive controller method based on the full-state linear model of VCE and has simulated to solve the multivariate controller design problem of the whole flight envelops. First, analyzes the static and dynamic performances of bypass ratio and other state parameters caused by variable geometric components, and develops nonlinear component model of VCE. Then based on the component model, through small deviation linearization of main fuel (Wf), the area of tail nozzle throat (A8) and the angle of rear bypass ejector (A163), setting up multiple linear model which variable geometric parameters can be inputs. Second, designs the adaptive controllers for VCE linear models of different nominal points. Among them, considering of modeling uncertainties and external disturbances, derives the adaptive law by lyapunov function. The simulation results showed that, the adaptive controller method based on full-state linear model used the angle of rear bypass ejector as input and effectively solved the multivariate control problems of VCE. The performance of all nominal points could track the desired closed-loop reference instructions. The adjust time was less than 1.2s, and the system overshoot was less than 1%, at the same time, the errors of steady states were less than 0.5% and the dynamic tracking errors were less than 1%. In addition, the designed controller could effectively suppress interference and reached the desired commands with different external random noise signals.Keywords: variable cycle engine (VCE), full-state linear model, adaptive control, by-pass ratio
Procedia PDF Downloads 318555 Replicating Brain’s Resting State Functional Connectivity Network Using a Multi-Factor Hub-Based Model
Authors: B. L. Ho, L. Shi, D. F. Wang, V. C. T. Mok
Abstract:
The brain’s functional connectivity while temporally non-stationary does express consistency at a macro spatial level. The study of stable resting state connectivity patterns hence provides opportunities for identification of diseases if such stability is severely perturbed. A mathematical model replicating the brain’s spatial connections will be useful for understanding brain’s representative geometry and complements the empirical model where it falls short. Empirical computations tend to involve large matrices and become infeasible with fine parcellation. However, the proposed analytical model has no such computational problems. To improve replicability, 92 subject data are obtained from two open sources. The proposed methodology, inspired by financial theory, uses multivariate regression to find relationships of every cortical region of interest (ROI) with some pre-identified hubs. These hubs acted as representatives for the entire cortical surface. A variance-covariance framework of all ROIs is then built based on these relationships to link up all the ROIs. The result is a high level of match between model and empirical correlations in the range of 0.59 to 0.66 after adjusting for sample size; an increase of almost forty percent. More significantly, the model framework provides an intuitive way to delineate between systemic drivers and idiosyncratic noise while reducing dimensions by more than 30 folds, hence, providing a way to conduct attribution analysis. Due to its analytical nature and simple structure, the model is useful as a standalone toolkit for network dependency analysis or as a module for other mathematical models.Keywords: functional magnetic resonance imaging, multivariate regression, network hubs, resting state functional connectivity
Procedia PDF Downloads 153554 Utilizing Mahogany (Swietenia Macrophylla) Fruits, Leaves, and Branches as Biochar for Soil Amendment in Okra (Abelmoschus Esculentus) Plant
Authors: Ayaka A. Matsuo, Gweyneth Victoria I. Maranan, Shawn Mikel Hobayan
Abstract:
In this study, we delve into the application of mahogany fruits as biochar for soil amendment, aiming to evaluate their effectiveness in improving soil quality and influencing the growth parameters of okra plants through a comprehensive analysis employing various multivariate tests. In a more straightforward approach, our results show that biochar derived from isn't just a minor player but emerges as a key contributor to our study. This finding holds profound implications, as it highlights the material significance of biochar derived from Mahogany (Swietenia macrophylla) fruits, leaves, and branches in shaping the outcomes. The importance of this discovery lies in its contribution to an enhanced comprehension of the overall effects of biochar on the variables explored in our investigation. Notably, the positive changes observed in height, number of leaves, and width of leaves in okra plants further support the premise that the incorporation of biochar improves soil quality. These findings provide valuable insights for agricultural practices, suggesting that biochar derived from Mahogany (Swietenia macrophylla) fruits, leaves, and branches holds promise as a sustainable soil amendment with positive implications for plant growth. The statistical results from multivariate tests serve to solidify the conclusion that biochar plays a pivotal role in driving the observed outcomes in our study. In essence, this research not only sheds light on the potential of mahogany fruit-derived biochar but also emphasizes its significance in fostering healthier soil conditions and, consequently, enhanced plant growth.Keywords: soil amendment, biochar, mahogany, soil health
Procedia PDF Downloads 76553 Characterizing Multivariate Thresholds in Industrial Engineering
Authors: Ali E. Abbas
Abstract:
This paper highlights some of the normative issues that might result by setting independent thresholds in risk analyses and particularly with safety regions. A second objective is to explain how such regions can be specified appropriately in a meaningful way. We start with a review of the importance of setting deterministic trade-offs among target requirements. We then show how to determine safety regions for risk analysis appropriately using utility functions.Keywords: decision analysis, thresholds, risk, reliability
Procedia PDF Downloads 313552 The Association of Smoking and Body Mass Index with Acne Vulgaris in Adolescents and Young Adults
Authors: Almutazballlah Qablan, Jihan M. Muhaidat, Bana Abu Rajab
Abstract:
Background: Acne vulgaris is the most common skin condition that general practitioners and dermatologists encounter. It represents a chronic inflammatory disease affecting the pilosebaceous unit. Although acne vulgaris is not a life-threatening condition, it has a considerable psychological impact on the affected person. Acne patients have poor body image, low self-esteem, social isolation, and restricted activities. As part of the emotional impact, increased levels of anxiety, anger, depression, and frustration have also been observed in acne patients. (1) In this study, we want to assess the association between two modifiable risk factors; BMI and smoking, regarding acne vulgaris. Methods: A case-control study was conducted at King Abdullah University Hospital in Irbid, north Jordan in 2019/2020. A total number of 163 Acne cases were collected and interviewed by the author; on the other hand, there were 162 control cases. Anthropometric measures for Acne patients and control individuals were taken, and BMI was calculated. Both groups were asked about smoking habits. Data on subjects between 14 and 33 years of age were extracted. The characteristics of people who reported acne were compared with those with no acne using univariate and multivariate analysis. The Statistical Package for Social Sciences (SPSS) was relied on to analyze the collected data. The crosstabs methods (chi-square) and odd ratios were relied on to test the study hypothesis. Results: Cigarette smoking was highly associated with no-acne, with an odds ratio of 0.4 (95% CI: 0.2–0.9), P-value = 0.018. BMI and waterpipe smoking were not significantly associated with acne in the multivariate analysis. Conclusion: Cigarette smoking was found to be protective from Acne. No significant relation between BMI nor waterpipe smoking and the development of Acne Vulgaris.Keywords: acne, BMI, smoking, case-control
Procedia PDF Downloads 98551 The Prognostic Prediction Value of Positive Lymph Nodes Numbers for the Hypopharyngeal Squamous Cell Carcinoma
Authors: Wendu Pang, Yaxin Luo, Junhong Li, Yu Zhao, Danni Cheng, Yufang Rao, Minzi Mao, Ke Qiu, Yijun Dong, Fei Chen, Jun Liu, Jian Zou, Haiyang Wang, Wei Xu, Jianjun Ren
Abstract:
We aimed to compare the prognostic prediction value of positive lymph node number (PLNN) to the American Joint Committee on Cancer (AJCC) tumor, lymph node, and metastasis (TNM) staging system for patients with hypopharyngeal squamous cell carcinoma (HPSCC). A total of 826 patients with HPSCC from the Surveillance, Epidemiology, and End Results database (2004–2015) were identified and split into two independent cohorts: training (n=461) and validation (n=365). Univariate and multivariate Cox regression analyses were used to evaluate the prognostic effects of PLNN in patients with HPSCC. We further applied six Cox regression models to compare the survival predictive values of the PLNN and AJCC TNM staging system. PLNN showed a significant association with overall survival (OS) and cancer-specific survival (CSS) (P < 0.001) in both univariate and multivariable analyses, and was divided into three groups (PLNN 0, PLNN 1-5, and PLNN>5). In the training cohort, multivariate analysis revealed that the increased PLNN of HPSCC gave rise to significantly poor OS and CSS after adjusting for age, sex, tumor size, and cancer stage; this trend was also verified by the validation cohort. Additionally, the survival model incorporating a composite of PLNN and TNM classification (C-index, 0.705, 0.734) performed better than the PLNN and AJCC TNM models. PLNN can serve as a powerful survival predictor for patients with HPSCC and is a surrogate supplement for cancer staging systems.Keywords: hypopharyngeal squamous cell carcinoma, positive lymph nodes number, prognosis, prediction models, survival predictive values
Procedia PDF Downloads 155550 Acne Vulgaris Association with Smoking and Body Mass Index in Jordanian Young Adults
Authors: Almutazballlah Bassam Qablan, Jihan M. Muhaidat, bana Abu Rajab
Abstract:
Background: Acne vulgaris is considered one of the most common skin conditions encountered by dermatologists. It is a chronic inflammation affecting the pilosebaceous unit. Although acne vulgaris is not fatal, it leads to permanent scarring and disfigurement, and even without scarring, it has a huge effect on patients, causing negative health outcomes. Acne vulgaris patients experience psychological, and emotional ramifications as those with chronic health problems; they feel depressed, angry, anxious, and confused. Although acne is a popular disease, many thoughts and myths are still discussed about its origins and triggering factors. These myths can make you feel guilt as if you were somehow responsible for your acne. In this case control study, we want to define the relationship between two modifiable risk factors ;BMI and smoking, with acne vulgaris. Methods: A case-control study was conducted at King Abdullah University Hospital in Ramtha, Jordan in 2019/2020. A total number of 325 participants between 14 and 33 years of age were interviewed by the authors; including 163 acne vulgaris cases and 162 controls without acne vulgaris. Anthropometric measures and smoking for Acne patients and control participants were the independent variables used to assess acne. Univariate and multivariate analysis were used to compare the characteristics of people who reported acne with those with no acne. The collected data analyzed by using the Statistical Package for Social Sciences (SPSS). Results: Cigarette smoking was highly associated with controls; odds ratio 0.4 (95% CI: 0.2–0.9) , P-value = 0.018. BMI and waterpipe smoking were statistically insignificant with acne in the multivariate analysis. Conclusion: We found that cigarette smoking was protective against Acne. There was a statistically insignificant relation between BMI, waterpipe smoking and the development of Acne Vulgaris.Keywords: acne, adolescents, BMI, smoking, case-control, risk factors
Procedia PDF Downloads 95549 Analyzing the Influence of Principals’ Cultural Intelligence on Teachers’ Perceived Diversity Climate
Authors: Meghry Nazarian, Ibrahim Duyar
Abstract:
Effective management of a diverse workforce in the United Arab Emirates (UAE) presents peculiar importance as two-thirds of residents are expatriates who have diverse ethnic and cultural backgrounds. Like any other organization in the country, UAE schools have become upmost diverse settings in the world. The purpose of this study was to examine whether principals’ cultural intelligence has direct and indirect (moderating) influences on teachers’ perceived diversity climate. A quantitative causal-comparative research design was employed to analyze the data. Participants included random samples of principals and teachers working in the private and charter schools in the Emirate of Abu Dhabi. The data-gathering online questionnaires included previously developed and validated scales as the measures of study variables. More specifically, the multidimensional short-form measure of Cultural Intelligence (CQ) and the diversity climate scale were used to measure the study variables. Multivariate statistics, including the analysis of multivariate analysis of variance (MANCOVA) and structural equation modeling (SEM), were employed to examine the relationships between the study variables. The preliminary analyses of data showed that principals and teachers have differing views of diversity management and climate in schools. Findings also showed that principals’ cultural intelligence has both direct and moderating influences on teachers’ perceived diversity climate. The study findings are expected to inform policymakers and practicing educational leaders in addressing diversity management in a country where the majority of the residents are the minority who have diverse ethnic and cultural backgrounds.Keywords: diversity management, united arab emirates, school principals’ cultural intelligence (CQ), teachers’ perceived diversity climate
Procedia PDF Downloads 112548 A Multivariate Analysis of Patent Price Variations in the Emerging United States Patent Auction Market: Role of Patent, Seller, and Bundling Related Characteristics
Authors: Pratheeba Subramanian, Anjula Gurtoo, Mary Mathew
Abstract:
Transaction of patents in emerging patent markets is gaining momentum. Pricing patents for a transaction say patent sale remains a challenge. Patents vary in their pricing with some patents fetching higher prices than others. Sale of patents in portfolios further complicates pricing with multiple patents playing a role in pricing a bundle. In this paper, a set of 138 US patents sold individually as single invention lots and 462 US patents sold in bundles of 120 portfolios are investigated to understand the dynamics of selling prices of singletons and portfolios and their determinants. Firstly, price variations when patents are sold individually as singletons and portfolios are studied. Multivariate statistical techniques are used for analysis both at the lot level as well as at the individual patent level. The results show portfolios fetching higher prices than singletons at the lot level. However, at the individual patent level singletons show higher prices than per patent price of individual patent members within the portfolio. Secondly, to understand the price determinants, the effect of patent, seller, and bundling related characteristics on selling prices is studied separately for singletons and portfolios. The results show differences in the set of characteristics determining prices of singletons and portfolios. Selling prices of singletons are found to be dependent on the patent related characteristics, unlike portfolios whose prices are found to be dependent on all three aspects – patent, seller, and bundling. The specific patent, seller and bundling characteristics influencing selling price are discussed along with the implications.Keywords: auction, patents, portfolio bundling, seller type, selling price, singleton
Procedia PDF Downloads 329547 Risk of Androgen Deprivation Therapy-Induced Metabolic Syndrome-Related Complications for Prostate Cancer in Taiwan
Authors: Olivia Rachel Hwang, Yu-Hsuan Joni Shao
Abstract:
Androgen Deprivation Therapy (ADT) has been a primary treatment for patients with advanced prostate cancer. However, it is associated with numerous adverse effects related to Metabolic Syndrome (MetS), including hypertension, diabetes, hyperlipidaemia, heart diseases and ischemic strokes. However, complications associated with ADT for prostate cancer in Taiwan is not well documented. The purpose of this study is to utilize the data from NHIRD (National Health Insurance Research Database) to examine the trajectory changes of MetS-related complications in men receiving ADT. The risks of developing complications after the treatment were analyzed with multivariate Cox regression model. Covariates including in the model were the complications before the diagnosis of prostate cancer, the age, and the year at cancer diagnosis. A total number of 17268 patients from 1997-2013 were included in this study. The exclusion criteria were patients with any other types of cancer or with the existing MetS-related complications. Changes in MetS-related complications were observed among two treatment groups: 1) ADT (n=9042), and 2) non-ADT (n=8226). The ADT group appeared to have an increased risk in hypertension (hazard ratio 1.08, 95% confidence interval 1.03-1.13, P = 0.001) and hyperlipidemia (hazard ratio 1.09, 95% confidence interval 1.01-1.17, P = 0.02) when compared with non-ADT group in the multivariate Cox regression analyses. In the risk of diabetes, heart diseases, and ischemic strokes, ADT group appeared to have an increased but not significant hazard ratio. In conclusion, ADT was associated with an increased risk in hypertension and hyperlipidemia in prostate cancer patients in Taiwan. The risk of hypertension and hyperlipidemia should be considered while deciding on ADT, especially those with the known history of hypertension and hyperlipidemia.Keywords: androgen deprivation therapy, ADT, complications, metabolic syndrome, MetS, prostate cancer
Procedia PDF Downloads 289546 Space Telemetry Anomaly Detection Based On Statistical PCA Algorithm
Authors: Bassem Nassar, Wessam Hussein, Medhat Mokhtar
Abstract:
The crucial concern of satellite operations is to ensure the health and safety of satellites. The worst case in this perspective is probably the loss of a mission but the more common interruption of satellite functionality can result in compromised mission objectives. All the data acquiring from the spacecraft are known as Telemetry (TM), which contains the wealth information related to the health of all its subsystems. Each single item of information is contained in a telemetry parameter, which represents a time-variant property (i.e. a status or a measurement) to be checked. As a consequence, there is a continuous improvement of TM monitoring systems in order to reduce the time required to respond to changes in a satellite's state of health. A fast conception of the current state of the satellite is thus very important in order to respond to occurring failures. Statistical multivariate latent techniques are one of the vital learning tools that are used to tackle the aforementioned problem coherently. Information extraction from such rich data sources using advanced statistical methodologies is a challenging task due to the massive volume of data. To solve this problem, in this paper, we present a proposed unsupervised learning algorithm based on Principle Component Analysis (PCA) technique. The algorithm is particularly applied on an actual remote sensing spacecraft. Data from the Attitude Determination and Control System (ADCS) was acquired under two operation conditions: normal and faulty states. The models were built and tested under these conditions and the results shows that the algorithm could successfully differentiate between these operations conditions. Furthermore, the algorithm provides competent information in prediction as well as adding more insight and physical interpretation to the ADCS operation.Keywords: space telemetry monitoring, multivariate analysis, PCA algorithm, space operations
Procedia PDF Downloads 416545 Mean and Volatility Spillover between US Stocks Market and Crude Oil Markets
Authors: Kamel Malik Bensafta, Gervasio Bensafta
Abstract:
The purpose of this paper is to investigate the relationship between oil prices and socks markets. The empirical analysis in this paper is conducted within the context of Multivariate GARCH models, using a transform version of the so-called BEKK parameterization. We show that mean and uncertainty of US market are transmitted to oil market and European market. We also identify an important transmission from WTI prices to Brent Prices.Keywords: oil volatility, stock markets, MGARCH, transmission, structural break
Procedia PDF Downloads 486544 Prognostic Impact of Pre-transplant Ferritinemia: A Survival Analysis Among Allograft Patients
Authors: Mekni Sabrine, Nouira Mariem
Abstract:
Background and aim: Allogeneic hematopoietic stem cell transplantation is a curative treatment for several hematological diseases; however, it has a non-negligible morbidity and mortality depending on several prognostic factors, including pre-transplant hyperferritinemia. The aim of our study was to estimate the impact of hyperferritinemia on survivals and on the occurrence of post-transplant complications. Methods: It was a longitudinal study conducted over 8 years and including all patients who had a first allograft. The impact of pretransplant hyperferritinemia (ferritinemia ≥1500) on survivals was studied using the Kaplan Meier method and the COX model for uni- and multivariate analysis. The Khi-deux test and binary logistic regression were used to study the association between pretransplant ferritinemia and post-transplant complications. Results: One hundred forty patients were included with an average age of 26.6 years and a sex ratio (M/F)=1.4. Hyperferritinemia was found in 33% of patients. It had no significant impact on either overall survival (p=0.9) or event -free survival (p=0.6). In multivariate analysis, only the type of disease was independently associated with overall survival (p=0.04) and event-free survival (p=0.002). For post-allograft complications: The occurrence of early documented infections was independently associated with pretransplant hyperferritinemia (p=0.02) and the presence of acute graft versus host disease( GVHD) (p<10-3). The occurrence of acute GVHD was associated with early documented infection (p=0.002) and Cytomegalovirus reactivation (p<10-3). The occurrence of chronic GVHD was associated with the presence of Cytomegalovirus reactivation (p=0.006) and graft source (p=0.009). Conclusion: Our study showed the significant impact of pre-transplant hyperferritinemia on the occurrence of early infections but not on survivals. Early and more accurate assessment iron overload by other tests such as liver magnetic resonance imaging with initiation of chelating treatment could prevent the occurrence of such complications after transplantation.Keywords: allogeneic, transplants, ferritin, survival
Procedia PDF Downloads 66543 Multivariate Analysis on Water Quality Attributes Using Master-Slave Neural Network Model
Authors: A. Clementking, C. Jothi Venkateswaran
Abstract:
Mathematical and computational functionalities such as descriptive mining, optimization, and predictions are espoused to resolve natural resource planning. The water quality prediction and its attributes influence determinations are adopted optimization techniques. The water properties are tainted while merging water resource one with another. This work aimed to predict influencing water resource distribution connectivity in accordance to water quality and sediment using an innovative proposed master-slave neural network back-propagation model. The experiment results are arrived through collecting water quality attributes, computation of water quality index, design and development of neural network model to determine water quality and sediment, master–slave back propagation neural network back-propagation model to determine variations on water quality and sediment attributes between the water resources and the recommendation for connectivity. The homogeneous and parallel biochemical reactions are influences water quality and sediment while distributing water from one location to another. Therefore, an innovative master-slave neural network model [M (9:9:2)::S(9:9:2)] designed and developed to predict the attribute variations. The result of training dataset given as an input to master model and its maximum weights are assigned as an input to the slave model to predict the water quality. The developed master-slave model is predicted physicochemical attributes weight variations for 85 % to 90% of water quality as a target values.The sediment level variations also predicated from 0.01 to 0.05% of each water quality percentage. The model produced the significant variations on physiochemical attribute weights. According to the predicated experimental weight variation on training data set, effective recommendations are made to connect different resources.Keywords: master-slave back propagation neural network model(MSBPNNM), water quality analysis, multivariate analysis, environmental mining
Procedia PDF Downloads 478542 Achieving Appropriate Use of Antibiotics through Pharmacists’ Intervention at Practice Point: An Indian Study Report
Authors: Parimalakrishnan Sundararjan, Madheswaran Murugan, Dhanya Dharman, Yatindra Kumar, Sudhir Singh Gangwar, Guru Prasad Mohanta
Abstract:
Antibiotic resistance AR is a global issue, India started to redress the issues of antibiotic resistance late and it plans to have: active surveillance of microbial resistance and promote appropriate use of antibiotics. The present study attempted to achieve appropriate use of antibiotics through pharmacists’ intervention at practice point. In a quasi-experimental prospective cohort study, the cases with bacteremia from four hospitals were identified during 2015 and 2016 for intervention. The pharmacists centered intervention: active screening of each prescription and comparing with the selection of antibiotics with susceptibility of the bacteria. Wherever irrationality noticed, it was brought to the notice of the treating physician for making changes. There were two groups: intervention group and control group without intervention. The active screening and intervention in 915 patients has reduced therapeutic regimen time in patients with bacteremia. The intervention group showed the decreased duration of hospital stay 3.4 days from 5.1 days. Further, multivariate modeling of patients who were in control group showed that patients in the intervention group had a significant decrease in both duration of hospital stay and infection-related mortality. Unlike developed countries, pharmacists are not active partners in patient care in India. This unique attempt of pharmacist’ invention was planned in consultation with hospital authorities which proved beneficial in terms of reducing the duration of treatment, hospital stay, and infection-related mortality. This establishes the need for a collaborative decision making among the health workforce in patient care at least for promoting rational use of antibiotics, an attempt to combat resistance.Keywords: antibiotics resistance, intervention, bacteremia, multivariate modeling
Procedia PDF Downloads 182