Search results for: knowledge graph
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7852

Search results for: knowledge graph

7732 Pairwise Relative Primality of Integers and Independent Sets of Graphs

Authors: Jerry Hu

Abstract:

Let G = (V, E) with V = {1, 2, ..., k} be a graph, the k positive integers a₁, a₂, ..., ak are G-wise relatively prime if (aᵢ, aⱼ ) = 1 for {i, j} ∈ E. We use an inductive approach to give an asymptotic formula for the number of k-tuples of integers that are G-wise relatively prime. An exact formula is obtained for the probability that k positive integers are G-wise relatively prime. As a corollary, we also provide an exact formula for the probability that k positive integers have exactly r relatively prime pairs.

Keywords: graph, independent set, G-wise relatively prime, probability

Procedia PDF Downloads 93
7731 Graph Neural Networks and Rotary Position Embedding for Voice Activity Detection

Authors: YingWei Tan, XueFeng Ding

Abstract:

Attention-based voice activity detection models have gained significant attention in recent years due to their fast training speed and ability to capture a wide contextual range. The inclusion of multi-head style and position embedding in the attention architecture are crucial. Having multiple attention heads allows for differential focus on different parts of the sequence, while position embedding provides guidance for modeling dependencies between elements at various positions in the input sequence. In this work, we propose an approach by considering each head as a node, enabling the application of graph neural networks (GNN) to identify correlations among the different nodes. In addition, we adopt an implementation named rotary position embedding (RoPE), which encodes absolute positional information into the input sequence by a rotation matrix, and naturally incorporates explicit relative position information into a self-attention module. We evaluate the effectiveness of our method on a synthetic dataset, and the results demonstrate its superiority over the baseline CRNN in scenarios with low signal-to-noise ratio and noise, while also exhibiting robustness across different noise types. In summary, our proposed framework effectively combines the strengths of CNN and RNN (LSTM), and further enhances detection performance through the integration of graph neural networks and rotary position embedding.

Keywords: voice activity detection, CRNN, graph neural networks, rotary position embedding

Procedia PDF Downloads 76
7730 Problem Solving in Chilean Higher Education: Figurations Prior in Interpretations of Cartesian Graphs

Authors: Verónica Díaz

Abstract:

A Cartesian graph, as a mathematical object, becomes a tool for configuration of change. Its best comprehension is done through everyday life problem-solving associated with its representation. Despite this, the current educational framework favors general graphs, without consideration of their argumentation. Students are required to find the mathematical function without associating it to the development of graphical language. This research describes the use made by students of configurations made prior to Cartesian graphs with regards to an everyday life problem related to a time and distance variation phenomenon. The theoretical framework describes the function conditions of study and their modeling. This is a qualitative, descriptive study involving six undergraduate case studies that were carried out during the first term in 2016 at University of Los Lagos. The research problem concerned the graphic modeling of a real person’s movement phenomenon, and two levels of analysis were identified. The first level aims to identify local and global graph interpretations; a second level describes the iconicity and referentiality degree of an image. According to the results, students were able to draw no figures before the Cartesian graph, highlighting the need for students to represent the context and the movement of which causes the phenomenon change. From this, they managed Cartesian graphs representing changes in position, therefore, achieved an overall view of the graph. However, the local view only indicates specific events in the problem situation, using graphic and verbal expressions to represent movement. This view does not enable us to identify what happens on the graph when the movement characteristics change based on possible paths in the person’s walking speed.

Keywords: cartesian graphs, higher education, movement modeling, problem solving

Procedia PDF Downloads 218
7729 Data Mining As A Tool For Knowledge Management: A Review

Authors: Maram Saleh

Abstract:

Knowledge has become an essential resource in today’s economy and become the most important asset of maintaining competition advantage in organizations. The importance of knowledge has made organizations to manage their knowledge assets and resources through all multiple knowledge management stages such as: Knowledge Creation, knowledge storage, knowledge sharing and knowledge use. Researches on data mining are continues growing over recent years on both business and educational fields. Data mining is one of the most important steps of the knowledge discovery in databases process aiming to extract implicit, unknown but useful knowledge and it is considered as significant subfield in knowledge management. Data miming have the great potential to help organizations to focus on extracting the most important information on their data warehouses. Data mining tools and techniques can predict future trends and behaviors, allowing businesses to make proactive, knowledge-driven decisions. This review paper explores the applications of data mining techniques in supporting knowledge management process as an effective knowledge discovery technique. In this paper, we identify the relationship between data mining and knowledge management, and then focus on introducing some application of date mining techniques in knowledge management for some real life domains.

Keywords: Data Mining, Knowledge management, Knowledge discovery, Knowledge creation.

Procedia PDF Downloads 210
7728 A Graph Theoretic Algorithm for Bandwidth Improvement in Computer Networks

Authors: Mehmet Karaata

Abstract:

Given two distinct vertices (nodes) source s and target t of a graph G = (V, E), the two node-disjoint paths problem is to identify two node-disjoint paths between s ∈ V and t ∈ V . Two paths are node-disjoint if they have no common intermediate vertices. In this paper, we present an algorithm with O(m)-time complexity for finding two node-disjoint paths between s and t in arbitrary graphs where m is the number of edges. The proposed algorithm has a wide range of applications in ensuring reliability and security of sensor, mobile and fixed communication networks.

Keywords: disjoint paths, distributed systems, fault-tolerance, network routing, security

Procedia PDF Downloads 444
7727 Implementation in Python of a Method to Transform One-Dimensional Signals in Graphs

Authors: Luis Andrey Fajardo Fajardo

Abstract:

We are immersed in complex systems. The human brain, the galaxies, the snowflakes are examples of complex systems. An area of interest in Complex systems is the chaos theory. This revolutionary field of science presents different ways of study than determinism and reductionism. Here is where in junction with the Nonlinear DSP, chaos theory offer valuable techniques that establish a link between time series and complex theory in terms of complex networks, so that, the study of signals can be explored from the graph theory. Recently, some people had purposed a method to transform time series in graphs, but no one had developed a suitable implementation in Python with signals extracted from Chaotic Systems or Complex systems. That’s why the implementation in Python of an existing method to transform one dimensional chaotic signals from time domain to graph domain and some measures that may reveal information not extracted in the time domain is proposed.

Keywords: Python, complex systems, graph theory, dynamical systems

Procedia PDF Downloads 511
7726 Investigating the Impact of Knowledge Management Components on Employee Productivity

Authors: Javad Moghtader Kargaran

Abstract:

Today, attention to knowledge and management Knowledge as a strategy is very important has taken with economy becoming knowledge-oriented, how and knowing the effective management and integration of different types Knowledge (obvious-implicit) to preserve and create advantage. Competition has become very important. Knowledge is a valuable resource for empowering organizations in the direction of innovation and competition. Due to the importance of human resources in the survival of organizations, extensive efforts are made to empower them. This knowledge can lead to awareness among employees. Employees and the knowledge that is in their minds are very valuable resources for the organization, which must be managed and developed. In fact, the ultimate goal of knowledge management is to increase the intelligence and productivity of employees and the organization.

Keywords: knowledge, management, productivity, human

Procedia PDF Downloads 97
7725 The Effectiveness of Exchange of Tacit and Explicit Knowledge Using Digital and Face to Face Sharing

Authors: Delio I. Castaneda, Paul Toulson

Abstract:

The purpose of this study was to investigate the knowledge sharing effectiveness of two types of knowledge, tacit and explicit, depending on two channels: face to face or digital. Participants were 217 knowledge workers in New Zealand and researchers who attended a knowledge management conference in the United Kingdom. In the study, it was found that digital tools are effective to share explicit knowledge. In addition, digital tools that facilitated dialogue were effective to share tacit knowledge. It was also found that face to face communication was an effective way to share tacit and explicit knowledge. Results of this study contribute to clarify in what cases digital tools are effective to share tacit knowledge. Additionally, even though explicit knowledge can be easily shared using digital tools, this type of knowledge is also possible to be shared through dialogue. Result of this study may support practitioners to redesign programs and activities based on knowledge sharing to make strategies more effective.

Keywords: digital knowledge, explicit knowledge, knowledge sharing, tacit knowledge

Procedia PDF Downloads 256
7724 Tool for Fast Detection of Java Code Snippets

Authors: Tomáš Bublík, Miroslav Virius

Abstract:

This paper presents general results on the Java source code snippet detection problem. We propose the tool which uses graph and sub graph isomorphism detection. A number of solutions for all of these tasks have been proposed in the literature. However, although that all these solutions are really fast, they compare just the constant static trees. Our solution offers to enter an input sample dynamically with the Scripthon language while preserving an acceptable speed. We used several optimizations to achieve very low number of comparisons during the matching algorithm.

Keywords: AST, Java, tree matching, scripthon source code recognition

Procedia PDF Downloads 426
7723 Optimal Management of Internal Capital of Company

Authors: S. Sadallah

Abstract:

In this paper, dynamic programming is used to determine the optimal management of financial resources in company. Solution of the problem by consider into simpler substructures is constructed. The optimal management of internal capital of company are simulated. The tools applied in this development are based on graph theory. The software of given problems is built by using greedy algorithm. The obtained model and program maintenance enable us to define the optimal version of management of proper financial flows by using visual diagram on each level of investment.

Keywords: management, software, optimal, greedy algorithm, graph-diagram

Procedia PDF Downloads 285
7722 A Framework for Customer Knowledge Management (CKM) as a Key Role in Relationship

Authors: Mehrnoosh Askarizadeh

Abstract:

The customer’s value has become obvious for the leading companies in today’s competitive environment. Therefore they are constantly trying to improve their relationship with customers. Customer Knowledge has been recognized as a strategic resource and a key to the success of any company. Talking about the Customer Knowledge Management is closely associated with Knowledge Management and Customer Relationship Management (CRM). Recent studies conducted in the fields of Knowledge Management (KM) and Customer Relationship Management (CRM) has explained that the two approaches can have great synergies. In this paper, our aim is to provide an understanding of Customer Knowledge Management (CKM) as an integrated management approach and competence it requires. We describe CKM as an ongoing process of generating, disseminating and using customer knowledge within an organization and between an organization and its customers. In addition, we propose a comprehensive framework of CKM, the ability to integrate customer knowledge into customer relationship management processes.

Keywords: e-commerce, knowledge management (KM), customer relationship management (CRM), customer knowledge management (CKM)

Procedia PDF Downloads 557
7721 An Algorithm to Find Fractional Edge Domination Number and Upper Fractional Edge Domination Number of an Intuitionistic Fuzzy Graph

Authors: Karunambigai Mevani Govindasamy, Sathishkumar Ayyappan

Abstract:

In this paper, we formulate the algorithm to find out the dominating function parameters of Intuitionistic Fuzzy Graphs(IFG). The methodology we adopted here is converting any physical problem into an IFG, and that has been transformed into Intuitionistic Fuzzy Matrix. Using Linear Program Solver software (LiPS), we found the defined parameters for the given IFG. We obtained these parameters for a path and cycle IFG. This study can be extended to other varieties of IFG. In particular, we obtain the definition of edge dominating function, minimal edge dominating function, fractional edge domination number (γ_if^') and upper fractional edge domination number (Γ_if^') of an intuitionistic fuzzy graph. Also, we formulated an algorithm which is appropriate to work on LiPS to find fractional edge domination number and upper fractional edge domination number of an IFG.

Keywords: fractional edge domination number, intuitionistic fuzzy cycle, intuitionistic fuzzy graph, intuitionistic fuzzy path

Procedia PDF Downloads 177
7720 Inferring Cognitive Skill in Concept Space

Authors: Rania A. Aboalela, Javed I. Khan

Abstract:

This research presents a learning assessment theory of Cognitive Skill in Concept Space (CS2) to measure the assessed knowledge in terms of cognitive skill levels of the concepts. The cognitive skill levels refer to levels such as if a student has acquired the state at the level of understanding, or applying, or analyzing, etc. The theory is comprised of three constructions: Graph paradigm of a semantic/ ontological scheme, the concept states of the theory and the assessment analytics which is the process to estimate the sets of concept state at a certain skill level. Concept state means if a student has already learned, or is ready to learn, or is not ready to learn a certain skill level. The experiment is conducted to prove the validation of the theory CS2.

Keywords: cognitive skill levels, concept states, concept space, knowledge assessment theory

Procedia PDF Downloads 324
7719 Understanding Tacit Knowledge and Its Role in Military Organizations: Methods of Managing Tacit Knowledge

Authors: M. Erhan Orhan, Onur Ozdemir

Abstract:

Expansion of area of operation and increasing diversity of threats forced the military organizations to change in many ways. However, tacit knowledge still is the most fundamental component of organizational knowledge. Since it is human oriented and in warfare human stands at the core of the organization. Therefore, military organizations should find effective ways of systematically utilizing tacit knowledge. In this context, this article suggest some methods for turning tacit knowledge into explicit in military organizations.

Keywords: tacit knowledge, military, knowledge management, warfare, technology

Procedia PDF Downloads 488
7718 Weighted-Distance Sliding Windows and Cooccurrence Graphs for Supporting Entity-Relationship Discovery in Unstructured Text

Authors: Paolo Fantozzi, Luigi Laura, Umberto Nanni

Abstract:

The problem of Entity relation discovery in structured data, a well covered topic in literature, consists in searching within unstructured sources (typically, text) in order to find connections among entities. These can be a whole dictionary, or a specific collection of named items. In many cases machine learning and/or text mining techniques are used for this goal. These approaches might be unfeasible in computationally challenging problems, such as processing massive data streams. A faster approach consists in collecting the cooccurrences of any two words (entities) in order to create a graph of relations - a cooccurrence graph. Indeed each cooccurrence highlights some grade of semantic correlation between the words because it is more common to have related words close each other than having them in the opposite sides of the text. Some authors have used sliding windows for such problem: they count all the occurrences within a sliding windows running over the whole text. In this paper we generalise such technique, coming up to a Weighted-Distance Sliding Window, where each occurrence of two named items within the window is accounted with a weight depending on the distance between items: a closer distance implies a stronger evidence of a relationship. We develop an experiment in order to support this intuition, by applying this technique to a data set consisting in the text of the Bible, split into verses.

Keywords: cooccurrence graph, entity relation graph, unstructured text, weighted distance

Procedia PDF Downloads 154
7717 Effect of Incentives on Knowledge Sharing and Learning: Evidence from the Indian IT Sector

Authors: Asish O. Mathew, Lewlyn L. R. Rodrigues

Abstract:

The organizations in the knowledge economy era have recognized the importance of building knowledge assets for sustainable growth and development. In comparison to other industries, Information Technology (IT) enterprises, holds an edge in developing an effective Knowledge Management (KM) program, thanks to their in-house technological abilities. This paper tries to study the various knowledge-based incentive programs and its effect on Knowledge Sharing and Learning in the context of the Indian IT sector. A conceptual model is developed linking KM incentives, knowledge sharing, and learning. A questionnaire study is conducted to collect primary data from the knowledge workers of the IT organizations located in India. The data was analysed using Structural Equation Modeling using Partial Least Square method. The results show a strong influence of knowledge management incentives on knowledge sharing and an indirect influence on learning.

Keywords: knowledge management, knowledge management incentives, knowledge sharing, learning

Procedia PDF Downloads 478
7716 Intrusion Detection Based on Graph Oriented Big Data Analytics

Authors: Ahlem Abid, Farah Jemili

Abstract:

Intrusion detection has been the subject of numerous studies in industry and academia, but cyber security analysts always want greater precision and global threat analysis to secure their systems in cyberspace. To improve intrusion detection system, the visualisation of the security events in form of graphs and diagrams is important to improve the accuracy of alerts. In this paper, we propose an approach of an IDS based on cloud computing, big data technique and using a machine learning graph algorithm which can detect in real time different attacks as early as possible. We use the MAWILab intrusion detection dataset . We choose Microsoft Azure as a unified cloud environment to load our dataset on. We implement the k2 algorithm which is a graphical machine learning algorithm to classify attacks. Our system showed a good performance due to the graphical machine learning algorithm and spark structured streaming engine.

Keywords: Apache Spark Streaming, Graph, Intrusion detection, k2 algorithm, Machine Learning, MAWILab, Microsoft Azure Cloud

Procedia PDF Downloads 149
7715 Extremal Laplacian Energy of Threshold Graphs

Authors: Seyed Ahmad Mojallal

Abstract:

Let G be a connected threshold graph of order n with m edges and trace T. In this talk we give a lower bound on Laplacian energy in terms of n, m, and T of G. From this we determine the threshold graphs with the first four minimal Laplacian energies. We also list the first 20 minimal Laplacian energies among threshold graphs. Let σ=σ(G) be the number of Laplacian eigenvalues greater than or equal to average degree of graph G. Using this concept, we obtain the threshold graphs with the largest and the second largest Laplacian energies.

Keywords: Laplacian eigenvalues, Laplacian energy, threshold graphs, extremal graphs

Procedia PDF Downloads 388
7714 The Work System Method for Designing Knowledge Mobilization Projects

Authors: Chihab Benmoussa

Abstract:

Could the Work System Approach (WSA) function as a framework for designing high-impact knowledge mobilization systems? This paper put forward arguments in favor of the applicability of WSA for knowledge mobilization design based on evidences from a practical research. Normative approaches for practitioners are highly needed especially in the field of knowledge management (KM), given the abysmal rate of disappointment and failure of KM projects. The paper contrasts knowledge management and knowledge mobilization, presents the WSA and showed how the WSA’s concepts and ideas fit with the approach adopted by a multinational company in designing a successful knowledge mobilization initiative.

Keywords: knowledge management, knowledge mobilizations, work system method

Procedia PDF Downloads 524
7713 Management of Indigenous Knowledge: Expectations of Library and Information Professionals in Developing Countries

Authors: Desmond Chinedu Oparaku, Pearl C. Akanwa, Oyemike Victor Benson

Abstract:

This paper examines the challenges facing library and information centers (LICs) in managing indigenous knowledge in academic libraries in developing countries. The need for managing an indigenous knowledge in library and information centers in developing nations is becoming more critical. There is an ever increasing output of indigenous knowledge; effective management of indigenous knowledge becomes necessary to enable the next generation benefit from them. This paper thus explores the concept of indigenous knowledge (IK), nature of indigenous knowledge (IK), the various forms of indigenous knowledge (IK), sources of indigenous knowledge (IK), and relevance of indigenous knowledge (IK). The expectations of library and information professionals towards effective management of indigenous knowledge and the challenges to effective management of indigenous knowledge were highlighted. Recommendations were made based on the identified challenges.

Keywords: library, indigenous knowledge, information centres, information professionals

Procedia PDF Downloads 422
7712 Multiple Version of Roman Domination in Graphs

Authors: J. C. Valenzuela-Tripodoro, P. Álvarez-Ruíz, M. A. Mateos-Camacho, M. Cera

Abstract:

In 2004, it was introduced the concept of Roman domination in graphs. This concept was initially inspired and related to the defensive strategy of the Roman Empire. An undefended place is a city so that no legions are established on it, whereas a strong place is a city in which two legions are deployed. This situation may be modeled by labeling the vertices of a finite simple graph with labels {0, 1, 2}, satisfying the condition that any 0-vertex must be adjacent to, at least, a 2-vertex. Roman domination in graphs is a variant of classic domination. Clearly, the main aim is to obtain such labeling of the vertices of the graph with minimum cost, that is to say, having minimum weight (sum of all vertex labels). Formally, a function f: V (G) → {0, 1, 2} is a Roman dominating function (RDF) in the graph G = (V, E) if f(u) = 0 implies that f(v) = 2 for, at least, a vertex v which is adjacent to u. The weight of an RDF is the positive integer w(f)= ∑_(v∈V)▒〖f(v)〗. The Roman domination number, γ_R (G), is the minimum weight among all the Roman dominating functions? Obviously, the set of vertices with a positive label under an RDF f is a dominating set in the graph, and hence γ(G)≤γ_R (G). In this work, we start the study of a generalization of RDF in which we consider that any undefended place should be defended from a sudden attack by, at least, k legions. These legions can be deployed in the city or in any of its neighbours. A function f: V → {0, 1, . . . , k + 1} such that f(N[u]) ≥ k + |AN(u)| for all vertex u with f(u) < k, where AN(u) represents the set of active neighbours (i.e., with a positive label) of vertex u, is called a [k]-multiple Roman dominating functions and it is denoted by [k]-MRDF. The minimum weight of a [k]-MRDF in the graph G is the [k]-multiple Roman domination number ([k]-MRDN) of G, denoted by γ_[kR] (G). First, we prove that the [k]-multiple Roman domination decision problem is NP-complete even when restricted to bipartite and chordal graphs. A problem that had been resolved for other variants and wanted to be generalized. We know the difficulty of calculating the exact value of the [k]-MRD number, even for families of particular graphs. Here, we present several upper and lower bounds for the [k]-MRD number that permits us to estimate it with as much precision as possible. Finally, some graphs with the exact value of this parameter are characterized.

Keywords: multiple roman domination function, decision problem np-complete, bounds, exact values

Procedia PDF Downloads 109
7711 Building a Hierarchical, Granular Knowledge Cube

Authors: Alexander Denzler, Marcel Wehrle, Andreas Meier

Abstract:

A knowledge base stores facts and rules about the world that applications can use for the purpose of reasoning. By applying the concept of granular computing to a knowledge base, several advantages emerge. These can be harnessed by applications to improve their capabilities and performance. In this paper, the concept behind such a construct, called a granular knowledge cube, is defined, and its intended use as an instrument that manages to cope with different data types and detect knowledge domains is elaborated. Furthermore, the underlying architecture, consisting of the three layers of the storing, representing, and structuring of knowledge, is described. Finally, benefits as well as challenges of deploying it are listed alongside application types that could profit from having such an enhanced knowledge base.

Keywords: granular computing, granular knowledge, hierarchical structuring, knowledge bases

Procedia PDF Downloads 498
7710 Developing a Deep Understanding of the Immune Response in Hepatitis B Virus Infected Patients Using a Knowledge Driven Approach

Authors: Hanan Begali, Shahi Dost, Annett Ziegler, Markus Cornberg, Maria-Esther Vidal, Anke R. M. Kraft

Abstract:

Chronic hepatitis B virus (HBV) infection can be treated with nucleot(s)ide analog (NA), for example, which inhibits HBV replication. However, they have hardly any influence on the functional cure of HBV, which is defined by hepatitis B surface antigen (HBsAg) loss. NA needs to be taken life-long, which is not available for all patients worldwide. Additionally, NA-treated patients are still at risk of developing cirrhosis, liver failure, or hepatocellular carcinoma (HCC). Although each patient has the same components of the immune system, immune responses vary between patients. Therefore, a deeper understanding of the immune response against HBV in different patients is necessary to understand the parameters leading to HBV cure and to use this knowledge to optimize HBV therapies. This requires seamless integration of an enormous amount of diverse and fine-grained data from viral markers, e.g., hepatitis B core-related antigen (HBcrAg) and hepatitis B surface antigen (HBsAg). The data integration system relies on the assumption that profiling human immune systems requires the analysis of various variables (e.g., demographic data, treatments, pre-existing conditions, immune cell response, or HLA-typing) rather than only one. However, the values of these variables are collected independently. They are presented in a myriad of formats, e.g., excel files, textual descriptions, lab book notes, and images of flow cytometry dot plots. Additionally, patients can be identified differently in these analyses. This heterogeneity complicates the integration of variables, as data management techniques are needed to create a unified view in which individual formats and identifiers are transparent when profiling the human immune systems. The proposed study (HBsRE) aims at integrating heterogeneous data sets of 87 chronically HBV-infected patients, e.g., clinical data, immune cell response, and HLA-typing, with knowledge encoded in biomedical ontologies and open-source databases into a knowledge-driven framework. This new technique enables us to harmonize and standardize heterogeneous datasets in the defined modeling of the data integration system, which will be evaluated in the knowledge graph (KG). KGs are data structures that represent the knowledge and data as factual statements using a graph data model. Finally, the analytic data model will be applied on top of KG in order to develop a deeper understanding of the immune profiles among various patients and to evaluate factors playing a role in a holistic profile of patients with HBsAg level loss. Additionally, our objective is to utilize this unified approach to stratify patients for new effective treatments. This study is developed in the context of the project “Transforming big data into knowledge: for deep immune profiling in vaccination, infectious diseases, and transplantation (ImProVIT)”, which is a multidisciplinary team composed of computer scientists, infection biologists, and immunologists.

Keywords: chronic hepatitis B infection, immune response, knowledge graphs, ontology

Procedia PDF Downloads 108
7709 Presenting a Knowledge Mapping Model According to a Comparative Study on Applied Models and Approaches to Map Organizational Knowledge

Authors: Ahmad Aslizadeh, Farid Ghaderi

Abstract:

Mapping organizational knowledge is an innovative concept and useful instrument of representation, capturing and visualization of implicit and explicit knowledge. There are a diversity of methods, instruments and techniques presented by different researchers following mapping organizational knowledge to reach determined goals. Implicating of these methods, it is necessary to know their exigencies and conditions in which those can be used. Integrating identified methods of knowledge mapping and comparing them would help knowledge managers to select the appropriate methods. This research conducted to presenting a model and framework to map organizational knowledge. At first, knowledge maps, their applications and necessity are introduced because of extracting comparative framework and detection of their structure. At the next step techniques of researchers such as Eppler, Kim, Egbu, Tandukar and Ebner as knowledge mapping models are presented and surveyed. Finally, they compare and a superior model would be introduced.

Keywords: knowledge mapping, knowledge management, comparative study, business and management

Procedia PDF Downloads 403
7708 Topological Analyses of Unstructured Peer to Peer Systems: A Survey

Authors: Hend Alrasheed

Abstract:

Due to their different properties that have led to avoid several limitations of classic client/server systems, there has been a great interest in the development and the improvement of different peer to peer systems. Understanding the properties of complex peer to peer networks is essential for their future improvements. It was shown that the performances of peer to peer protocols are directly related to their underlying topologies. Therefore, multiple efforts have analyzed the topologies of different peer to peer systems. This study presents an overview of major findings of close experimental analyses to different topologies of three unstructured peer to peer systems: BitTorrent, Gnutella, and FreeNet.

Keywords: peer to peer networks, network topology, graph diameter, clustering coefficient, small-world property, random graph, degree distribution

Procedia PDF Downloads 383
7707 Contestation of Local and Non-Local Knowledge in Developing Bali Cattle at Barru Regency, Province of South Sulawesi, Indonesia

Authors: A. Amidah Amrawaty, M. Saleh S. Ali, Darmawan Salman

Abstract:

The aim of this study was to identify local and non local knowledge in Bali cattle development, to analyze the contestation between local and non-local knowledge. The paradigm used was constructivism paradigm with a qualitative approach. descriptive type of research using case study method. The study was conducted in four villages subjected to Agropolitan Program, i.e. Palakka, Tompo, Galung and Anabanua in Barru District, province of South Sulawesi. The results indicated that the local knowledge of the farmers were: a) knowledge of animal housing, b) knowledge of the prevention and control disease, c) knowledge of the feed, d) knowledge of breed selection, e) knowledge of sharing arrangement, f) knowledge of marketing, Generally, there are three patterns of knowledge contestation namely coexistence, ‘zero sum game’ and hybridization but in this research only coexistence and zero sum game patterns took place, while the pattern of hybridization did not occur.

Keywords: contestation, local knowledge, non-local knowledge, developing of Bali cattle

Procedia PDF Downloads 405
7706 Progressive Multimedia Collection Structuring via Scene Linking

Authors: Aman Berhe, Camille Guinaudeau, Claude Barras

Abstract:

In order to facilitate information seeking in large collections of multimedia documents with long and progressive content (such as broadcast news or TV series), one can extract the semantic links that exist between semantically coherent parts of documents, i.e., scenes. The links can then create a coherent collection of scenes from which it is easier to perform content analysis, topic extraction, or information retrieval. In this paper, we focus on TV series structuring and propose two approaches for scene linking at different levels of granularity (episode and season): a fuzzy online clustering technique and a graph-based community detection algorithm. When evaluated on the two first seasons of the TV series Game of Thrones, we found that the fuzzy online clustering approach performed better compared to graph-based community detection at the episode level, while graph-based approaches show better performance at the season level.

Keywords: multimedia collection structuring, progressive content, scene linking, fuzzy clustering, community detection

Procedia PDF Downloads 101
7705 Graph Based Traffic Analysis and Delay Prediction Using a Custom Built Dataset

Authors: Gabriele Borg, Alexei Debono, Charlie Abela

Abstract:

There on a constant rise in the availability of high volumes of data gathered from multiple sources, resulting in an abundance of unprocessed information that can be used to monitor patterns and trends in user behaviour. Similarly, year after year, Malta is also constantly experiencing ongoing population growth and an increase in mobilization demand. This research takes advantage of data which is continuously being sourced and converting it into useful information related to the traffic problem on the Maltese roads. The scope of this paper is to provide a methodology to create a custom dataset (MalTra - Malta Traffic) compiled from multiple participants from various locations across the island to identify the most common routes taken to expose the main areas of activity. This use of big data is seen being used in various technologies and is referred to as ITSs (Intelligent Transportation Systems), which has been concluded that there is significant potential in utilising such sources of data on a nationwide scale. Furthermore, a series of traffic prediction graph neural network models are conducted to compare MalTra to large-scale traffic datasets.

Keywords: graph neural networks, traffic management, big data, mobile data patterns

Procedia PDF Downloads 133
7704 Creation and Management of Knowledge for Organization Sustainability and Learning

Authors: Deepa Kapoor, Rajshree Singh

Abstract:

This paper appreciates the emergence and growing importance as a new production factor makes the development of technologies, methodologies and strategies for measurement, creation, and diffusion into one of the main priorities of the organizations in the knowledge society. There are many models for creation and management of knowledge and diverse and varied perspectives for study, analysis, and understanding. In this article, we will conduct a theoretical approach to the type of models for the creation and management of knowledge; we will discuss some of them and see some of the difficulties and the key factors that determine the success of the processes for the creation and management of knowledge.

Keywords: knowledge creation, knowledge management, organizational development, organization learning

Procedia PDF Downloads 346
7703 Malware Beaconing Detection by Mining Large-scale DNS Logs for Targeted Attack Identification

Authors: Andrii Shalaginov, Katrin Franke, Xiongwei Huang

Abstract:

One of the leading problems in Cyber Security today is the emergence of targeted attacks conducted by adversaries with access to sophisticated tools. These attacks usually steal senior level employee system privileges, in order to gain unauthorized access to confidential knowledge and valuable intellectual property. Malware used for initial compromise of the systems are sophisticated and may target zero-day vulnerabilities. In this work we utilize common behaviour of malware called ”beacon”, which implies that infected hosts communicate to Command and Control servers at regular intervals that have relatively small time variations. By analysing such beacon activity through passive network monitoring, it is possible to detect potential malware infections. So, we focus on time gaps as indicators of possible C2 activity in targeted enterprise networks. We represent DNS log files as a graph, whose vertices are destination domains and edges are timestamps. Then by using four periodicity detection algorithms for each pair of internal-external communications, we check timestamp sequences to identify the beacon activities. Finally, based on the graph structure, we infer the existence of other infected hosts and malicious domains enrolled in the attack activities.

Keywords: malware detection, network security, targeted attack, computational intelligence

Procedia PDF Downloads 267