Search results for: glycogen storage disease
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5842

Search results for: glycogen storage disease

5722 The Proton Flow Battery for Storing Renewable Energy: Hydrogen Storage Capacity of Selected Activated Carbon Electrodes Made from Brown Coal

Authors: Amandeep Singh Oberoi, John Andrews, Alan L. Chaffee, Lachlan Ciddor

Abstract:

Electrochemical storage of hydrogen in activated carbon electrodes as part of a reversible fuel cell offers a potentially attractive option for storing surplus electrical energy from inherently variable solar and wind energy resources. Such a system – which we have called a proton flow battery – promises to have roundtrip energy efficiency comparable to lithium ion batteries, while having higher gravimetric and volumetric energy densities. Activated carbons with high internal surface area, high pore volume, light weight and easy availability have attracted considerable research interest as a solid-state hydrogen storage medium. This paper compares the physical characteristics and hydrogen storage capacities of four activated carbon electrodes made by different methods from brown coal. The fabrication methods for these samples are explained. Their proton conductivity was measured using electrochemical impedance spectroscopy, and their hydrogen storage capacity by galvanostatic charging and discharging in a three-electrode electrolytic cell with 1 mol sulphuric acid as electrolyte. The highest hydrogen storage capacity obtained was 1.29 wt%, which compares favourably with metal hydrides used in commercially available solid-state hydrogen storages. The hydrogen storage capacity of the samples increased monotonically with increasing BET surface area (calculated from CO2 adsorption method). The results point the way towards selecting high-performing electrodes for proton flow batteries that the competitiveness of this energy storage technology.

Keywords: activated carbon, electrochemical hydrogen storage, proton flow battery, proton conductivity

Procedia PDF Downloads 577
5721 Photocapacitor Integrating Solar Energy Conversion and Energy Storage

Authors: Jihuai Wu, Zeyu Song, Zhang Lan, Liuxue Sun

Abstract:

Solar energy is clean, open, and infinite, but solar radiation on the earth is fluctuating, intermittent, and unstable. So, the sustainable utilization of solar energy requires a combination of high-efficient energy conversion and low-loss energy storage technologies. Hence, a photo capacitor integrated with photo-electrical conversion and electric-chemical storage functions in single device is a cost-effective, volume-effective and functional-effective optimal choice. However, owing to the multiple components, multi-dimensional structure and multiple functions in one device, especially the mismatch of the functional modules, the overall conversion and storage efficiency of the photocapacitors is less than 13%, which seriously limits the development of the integrated system of solar conversion and energy storage. To this end, two typical photocapacitors were studied. A three-terminal photocapacitor was integrated by using perovskite solar cell as solar conversion module and symmetrical supercapacitor as energy storage module. A function portfolio management concept was proposed the relationship among various efficiencies during photovoltaic conversion and energy storage process were clarified. By harmonizing the energy matching between conversion and storage modules and seeking the maximum power points coincide and the maximum efficiency points synchronize, the overall efficiency of the photocapacitor surpassed 18 %, and Joule efficiency was closed to 90%. A voltage adjustable hybrid supercapacitor (VAHSC) was designed as energy storage module, and two Si wafers in series as solar conversion module, a three-terminal photocapacitor was fabricated. The VAHSC effectively harmonizes the energy harvest and storage modules, resulting in the current, voltage, power, and energy match between both modules. The optimal photocapacitor achieved an overall efficiency of 15.49% and Joule efficiency of 86.01%, along with excellent charge/discharge cycle stability. In addition, the Joule efficiency (ηJoule) was defined as the energy ratio of discharge/charge of the devices for the first time.

Keywords: joule efficiency, perovskite solar cell, photocapacitor, silicon solar cell, supercapacitor

Procedia PDF Downloads 86
5720 Redirecting Photosynthetic Electron Flux in the Engineered Cyanobacterium synechocystis Sp. Pcc 6803 by the Deletion of Flavodiiron Protein Flv3

Authors: K. Thiel, P. Patrikainen, C. Nagy, D. Fitzpatrick, E.-M. Aro, P. Kallio

Abstract:

Photosynthetic cyanobacteria have been recognized as potential future biotechnological hosts for the direct conversion of CO₂ into chemicals of interest using sunlight as the solar energy source. However, in order to develop commercially viable systems, the flux of electrons from the photosynthetic light reactions towards specified target chemicals must be significantly improved. The objective of the study was to investigate whether the autotrophic production efficiency of specified end-metabolites can be improved in engineered cyanobacterial cells by rescuing excited electrons that are normally lost to molecular oxygen due to the cyanobacterial flavodiiron protein Flv1/3. Natively Flv1/3 dissipates excess electrons in the photosynthetic electron transfer chain by directing them to molecular oxygen in Mehler-like reaction to protect photosystem I. To evaluate the effect of flavodiiron inactivation on autotrophic production efficiency in the cyanobacterial host Synechocystis sp. PCC 6803 (Synechocystis), sucrose was selected as the quantitative reporter and a representative of a potential end-product of interest. The concept is based on the native property of Synechocystis to produce sucrose as an intracellular osmoprotectant when exposed to high external ion concentrations, in combination with the introduction of a heterologous sucrose permease (CscB from Escherichia coli), which transports the sucrose out from the cell. In addition, cell growth, photosynthetic gas fluxes using membrane inlet mass spectrometry and endogenous storage compounds were analysed to illustrate the consequent effects of flv deletion on pathway flux distributions. The results indicate that a significant proportion of the electrons can be lost to molecular oxygen via Flv1/3 even when the cells are grown under high CO₂ and that the inactivation of flavodiiron activity can enhance the photosynthetic electron flux towards optionally available sinks. The flux distribution is dependent on the light conditions and the genetic context of the Δflv mutants, and favors the production of either sucrose or one of the two storage compounds, glycogen or polyhydroxybutyrate. As a conclusion, elimination of the native Flv1/3 reaction and concomitant introduction of an engineered product pathway as an alternative sink for excited electrons could enhance the photosynthetic electron flux towards the target endproduct without compromising the fitness of the host.

Keywords: cyanobacterial engineering, flavodiiron proteins, redirecting electron flux, sucrose

Procedia PDF Downloads 125
5719 The Impact of Web Based Education on Cancer Patients’ Clinical Outcomes

Authors: F. Arıkan, Z. Karakus

Abstract:

Cancer is a widespread disease in the world and is the third reason of deaths among the chronic diseases. Educating patients and caregivers has a vital role for empowering them in managing disease and treatment's symptoms. Informing of the patients about their disease and treatment process decreases patient's distress and decisional conflicts, improves wellbeing of them, increase success of the treatment and survival. In this era, technological education methods are used for patients that have different chronic disease. Many studies indicated that especially web based patient education such as chronic obstructive lung disease; heart failure is more effective than printed materials. Web based education provide easiness to patients while they are reaching health services. It also has more advantages because of it decreases health cost and requirement of staff. It is thought that web based education may be beneficial method for cancer patient's empowerment in coping with the disease's symptoms. The aim of the study is evaluate the effectiveness of web based education for cancer patients' clinical outcomes.

Keywords: cancer patients, e-learning, nursing, web based education

Procedia PDF Downloads 430
5718 Properties of Ettringite According to Hydration, Dehydration and Carbonation Process

Authors: Bao Chen, Frederic Kuznik, Matthieu Horgnies, Kevyn Johannes, Vincent Morin, Edouard Gengembre

Abstract:

The contradiction between energy consumption, environment protection, and social development is increasingly intensified during recent decade years. At the same time, as avoiding fossil-fuels-thirsty, people turn their view on the renewable green energy, such as solar energy, wind power, hydropower, etc. However, due to the unavoidable mismatch on geography and time for production and consumption, energy storage seems to be one of the most reasonable solutions to enlarge the use of renewable energies. Thermal energy storage (TES), a branch of energy storage solution, mainly concerns the capture, storage and consumption of thermal energy for later use in different scales (individual house, apartment, district, and city). In TES research field, sensible heat and latent heat storage have been widely studied and presented at an advanced stage of development. Compared with them, thermochemical energy storage is still at initial phase but provides a relatively higher theoretical energy density and a long shelf life without heat dissipation during storage. Among thermochemical energy storage materials, inorganic pure or composite compounds like micro-porous silica gel, SrBr₂ hydrate and MgSO₄-Zeolithe have been reported as promising to be integrated into thermal energy storage systems. However, the cost of these materials, one of main obstacles, may hinder the wide use of energy storage systems in real application scales (individual house, apartment, district and even city). New studies on ettringite show promising application for thermal energy storage since its high energy density and large resource from cementitious materials. Ettringite, or calcium trisulfoaluminate hydrate, of which chemical formula is 3CaO∙Al₂O₃∙3CaSO₄∙32H₂O, or C₆AS̅₃H₃₂ as known in cement chemistry notation, is one of the most important members of AFt group. As a common compound in hydrated cements, ettringite has been widely studied for its performances in construction but barely known as a thermochemical material. For this study, we summarize available data about the structure and properties of ettringite and its metastable phase (meta-ettringite), including the processes of hydration, thermal conversion and carbonation durability for thermal energy storage.

Keywords: building materials, ettringite, meta-ettringite, thermal energy storage

Procedia PDF Downloads 214
5717 Enhancement of Seed Longevity in Japonica Rice Cultivars Using Weed Rice

Authors: Jun-Hyeon Cho, Ji-Yoon Lee, Young-Bo Sohn, Dong-Jin Shin, You-Chun Song, Dong-Soo Park, Min-Hee Nam, Young-Up Kwon

Abstract:

Seed germination is a main factor in japonica rice cultivation. For japonica strains unlike indica lines, fast loss of germination ability during storage leads to risk of seeding and deterioration in the quality. To resolve these problems, germplasms screening for longevity was conducted using six days of compulsory aging stress of high temperature (50℃) and humidity (~95% RH). ‘Dharial’, a weedy rice collected in Bangladesh, was chosen as a source of seed longevity for long term storage. The strong germination trait originated from ‘Dharial’ was incorporated into Korean elite japonica cultivars, ‘Ilmi’ and ‘Gopum’, through backcross method. The germination ratio was evaluated after two years of room temperature storage conditions. A high germination ratio of 80.5% in donor plant of ‘Dharial’ and 77.3% in an introgression line were observed based on the two years of storage while the recurrent japonica cultivars, ‘Ilmi’ and ‘Gopum’, were failed in germination. As a result, we investigated the changes of quality affected by germination ability during storage. A gentle slope of palatability which is one of the measurement items for indirect selection indicator of high eating quality in japonica varieties was studied in a high germination ratio introgression line during storage. The introgression line could be useful to increase longevity and quality of japonica rice seed if molecular breeding strategy such as QTLs analysis is combined.

Keywords: rice, longevity, germination, storage

Procedia PDF Downloads 426
5716 Distributed Energy Storage as a Potential Solution to Electrical Network Variance

Authors: V. Rao, A. Bedford

Abstract:

As the efficient performance of national grid becomes increasingly important to maintain the electrical network stability, the balance between the generation and the demand must be effectively maintained. To do this, any losses that occur in the power network must be reduced by compensating for it. In this paper, one of the main cause for the losses in the network is identified as the variance, which hinders the grid’s power carrying capacity. The reason for the variance in the grid is investigated and identified as the rise in the integration of renewable energy sources (RES) such as wind and solar power. The intermittent nature of these RES along with fluctuating demands gives rise to variance in the electrical network. The losses that occur during this process is estimated by analyzing the network’s power profiles. Whilst researchers have identified different ways to tackle this problem, little consideration is given to energy storage. This paper seeks to redress this by considering the role of energy storage systems as potential solutions to reduce variance in the network. The implementation of suitable energy storage systems based on different applications is presented in this paper as part of variance reduction method and thus contribute towards maintaining a stable and efficient grid operation.

Keywords: energy storage, electrical losses, national grid, renewable energy, variance

Procedia PDF Downloads 317
5715 Emerging Policy Landscape of Rare Disease Registries in India: An Analysis in Evolutionary Policy Perspective

Authors: Yadav Shyamjeet Maniram

Abstract:

Despite reports of more than seventy million population of India affected by rare diseases, it rarely figured on the agenda of the Indian scientist and policymakers. Hitherto ignored, a fresh initiative is being attempted to establish the first national registry for rare diseases. Though there are registries for rare diseases, established by the clinicians and patient advocacy groups, they are isolated, scattered and lacks information sharing mechanism. It is the first time that there is an effort from the government of India to make an initiative on the rare disease registries, which would be more formal and systemic in nature. Since there is lack of epidemiological evidence for the rare disease in India, it is interesting to note how rare disease policy is being attempted in the vacuum of evidence required for the policy process. The objective of this study is to analyse rare disease registry creation and implementation from the parameters of evolutionary policy perspective in the absence of evidence for the policy process. This study will be exploratory and qualitative in nature, primarily based on the interviews of stakeholders involved in the rare disease registry creation and implementation. Some secondary data will include various documents related to rare disease registry. The expected outcome of this study would be on the role of stakeholders in the generation of evidence for the rare disease registry creation and implementation. This study will also try to capture negotiations and deliberations on the ethical issues in terms of data collection, preservation, and protection.

Keywords: evolutionary policy perspective, evidence for policy, rare disease policy, rare disease in India

Procedia PDF Downloads 206
5714 Storage Influence on Physico-Chemical Composition and Antioxidant Activity of Jamun Drink Prepared From Two Types of Pulp

Authors: Muhammad Atif Randhawa, Mahreen Akhtar, Sidrah

Abstract:

In this paper, Jamun (Syzygium cumini; Myrtaceae) drink enriched with jamun pulp and seed was assessed for different physicochemical parameters (titratable acidity, pH, TSS, ascorbic acid, and total sugars and reducing sugars) and phytochemical aspects at every 15 days interval till 60 days storage period. Jamun pulp both with seed and without seed were used at levels of 7, 10 and 13 percent to prepare jamun drink in six combinations; T1 (7% pulp without seed), T2 (10% pulp without seed), T3 (13% pulp without seed), T4 (7% pulp with seed), T5 (10% pulp with seed), T6 (13% pulp with seed). Storage period resulted decrease in pH (4.18 to 4.08) and ascorbic acid (21.92%) significantly along with phenolic contents (6.13 to 4.85g of GAE/kg) and antioxidant activity (70.68 to 48.62 percent) within treatments. All treatments showed significant increases in total sugars (11.59 to 11.80%), reducing sugars (2.30 to 2.50%), TSS (12.2 to 13.32 °B) and acidity (0.23% to 0.31%) during storage. Treatments T3, T5 and T6 showed best results in terms of all physicochemical parameters during storage. Statistically significant differences were obtained among sensory parameters as a function of pulp type and concentration, while treatment T5 (10% pulp with seed) obtained highest score (7.16) in terms of all sensory parameters. It can be concluded that nutrient rich jamun drink can be prepared as an attempt to add value to the underutilized jamun fruit of Pakistan.

Keywords: antioxidant activity, Jamun beverage, physicochemical, storage

Procedia PDF Downloads 310
5713 Modeling of the Energy Storage Device: LTC3588

Authors: Mojtaba Ghodsi, Morteza Mohammadzaheri, Payam Soltani

Abstract:

This research aims to the characterisation of LTC3588 as a low-power energy storage model. A simple architecture of its internal circuit was presented. The effect of the storage capacitor (Cᵢₙ) and output capacitor (Cₒᵤₜ) on the output voltage (Vₒᵤₜ) when the vibration frequency was fixed at 3.2 Hz was investigated. The dependency of the rise time of the output voltage on the LTC3588's input and output capacitors was highlighted. It was found that by increasing the input capacitance from 1μF to 220μF, lower oscillation in the output voltage combined with a lower rate in the input voltage can be detected. Additionally, the smaller Cₒᵤₜ causes fewer jumps to meet the final output value (i.e., 3.2 V).

Keywords: LTC3588, modeling, zener diode, LED

Procedia PDF Downloads 2
5712 2D Titanium, Vanadium Carbide Mxene, and Polyaniline Heterostructures for Electrochemical Energy Storage

Authors: Ayomide A. Sijuade, Nafiza Anjum

Abstract:

The rising demand to meet the need for clean and sustainable energy solutions has led the market to create effective energy storage technologies. In this study, we look at the possibility of using a heterostructure made of polyaniline (PANI), titanium carbide (Ti₃C₂), and vanadium carbide (V₂C) for energy storage devices. V₂C is a two-dimensional transition metal carbide with remarkable mechanical and electrical conductivity. Ti₃C2 has solid thermal conductivity and mechanical strength. PANI, on the other hand, is a conducting polymer with customizable electrical characteristics and environmental stability. Layer-by-layer assembly creates the heterostructure of V₂C, Ti₃C₂, and PANI, allowing for precise film thickness and interface quality control. Structural and morphological characterization is carried out using X-ray diffraction, scanning electron microscopy, and atomic force microscopy. For energy storage applications, the heterostructure’s electrochemical performance is assessed. Electrochemical experiments, such as cyclic voltammetry and galvanostatic charge-discharge tests, examine the heterostructure’s charge storage capacity, cycle stability, and rate performance. Comparing the heterostructure to the individual components reveals better energy storage capabilities. V₂C, Ti₃C₂, and PANI synergize to increase specific capacitance, boost charge storage, and prolong cycling stability. The heterostructure’s unique arrangement of 2D materials and conducting polymers promotes effective ion diffusion and charge transfer processes, improving the effectiveness of energy storage. The heterostructure also exhibits remarkable electrochemical stability, which minimizes capacity loss after repeated cycling. The longevity and long-term dependability of energy storage systems depend on this quality. By examining the potential of V₂C, Ti₃C₂, and PANI heterostructures, the results of this study expand energy storage technology. These materials’ specialized integration and design show potential for use in hybrid energy storage systems, lithium-ion batteries, and supercapacitors. Overall, the development of high-performance energy storage devices utilizing V₂C, Ti₃C₂, and PANI heterostructures is clarified by this research, opening the door to the realization of effective, long-lasting, and eco-friendly energy storage solutions to satisfy the demands of the modern world.

Keywords: MXenes, energy storage materials, conductive polymers, composites

Procedia PDF Downloads 56
5711 A Modular Reactor for Thermochemical Energy Storage Examination of Ettringite-Based Materials

Authors: B. Chen, F. Kuznik, M. Horgnies, K. Johannes, V. Morin, E. Gengembre

Abstract:

More attention on renewable energy has been done after the achievement of Paris Agreement against climate change. Solar-based technology is supposed to be one of the most promising green energy technologies for residential buildings since its widely thermal usage for hot water and heating. However, the seasonal mismatch between its production and consumption makes buildings need an energy storage system to improve the efficiency of renewable energy use. Indeed, there exist already different kinds of energy storage systems using sensible or latent heat. With the consideration of energy dissipation during storage and low energy density for above two methods, thermochemical energy storage is then recommended. Recently, ettringite (3CaO∙Al₂O₃∙3CaSO₄∙32H₂O) based materials have been reported as potential thermochemical storage materials because of high energy density (~500 kWh/m³), low material cost (700 €/m³) and low storage temperature (~60-70°C), compared to reported salt hydrates like SrBr₂·6H₂O (42 k€/m³, ~80°C), LaCl₃·7H₂O (38 k€/m³, ~100°C) and MgSO₄·7H₂O (5 k€/m³, ~150°C). Therefore, they have the possibility to be largely used in building sector with being coupled to normal solar panel systems. On the other side, the lack in terms of extensive examination leads to poor knowledge on their thermal properties and limit maturity of this technology. The aim of this work is to develop a modular reactor adapting to thermal characterizations of ettringite-based material particles of different sizes. The filled materials in the reactor can be self-compacted vertically to ensure hot air or humid air goes through homogenously. Additionally, quick assembly and modification of reactor, like LEGO™ plastic blocks, make it suitable to distinct thermochemical energy storage material samples with different weights (from some grams to several kilograms). In our case, quantity of stored and released energy, best work conditions and even chemical durability of ettringite-based materials have been investigated.

Keywords: dehydration, ettringite, hydration, modular reactor, thermochemical energy storage

Procedia PDF Downloads 138
5710 Influence of Surfactant on Supercooling Degree of Aqueous Titania Nanofluids in Energy Storage Systems

Authors: Hoda Aslani, Mohammad Moghiman, Mohammad Aslani

Abstract:

Considering the demand to reduce global warming potential and importance of solidification in various applications, there is an increasing interest in energy storage systems to find the efficient phase change materials. Therefore, this paper presents an experimental study and comparison on the potential of titania nanofluids with and without surfactant for cooling energy storage systems. A designed cooling generation device based on compression refrigeration cycle is used to explore nanofluids solidification characteristics. In this work, titania nanoparticles of 0.01, 0.02 and 0.04 wt.% are dispersed in deionized water as base fluid. Measurement of phase change parameters of nanofluids illustrates that the addition of polyvinylpyrrolidone (PVP) as surfactant to titania nanofluids advances the onset nucleation time and leads to lower solidification time. Also, the experimental results show that only adding 0.02 wt.% titania nanoparticles, especially in the case of nanofluids with a surfactant, can evidently reduce the supercooling degree by nearly 70%. Hence, it is concluded that there is a great energy saving potential in the energy storage systems using titania nanofluid with PVP.

Keywords: cooling energy storage, nanofluid, PVP, solidification, titania

Procedia PDF Downloads 192
5709 Application of ATP7B Gene Mutation Analysis in Prenatal Diagnosis of Wilson’s Disease

Authors: Huong M. T. Nguyen, Hoa A. P. Nguyen, Chi V. Phan, Mai P. T. Nguyen, Ngoc D. Ngo, Van T. Ta, Hai T. Le

Abstract:

Wilson’s disease is an autosomal recessive disorder of copper metabolism, which is caused by mutation in copper- transporting P-type ATPase (ATP7B). The mechanism of this disease is a failure of hepatic excretion of copper to the bile, and it leads to copper deposits in the liver and other organs. Most clinical symptoms of Wilson’s disease can present as liver disease and/or neurologic disease. Objective: The goal of the study is prenatal diagnosis for pregnant women at high risk of Wilson’s disease in Northern Vietnam. Material and method: Three probands with clinically diagnosed liver disease were detected in the mutations of 21 exons and exon-intron boundaries of the ATP7B gene by direct Sanger-sequencing. Prenatal diagnoses were performed by amniotic fluid sampling from pregnant women in the 16th-18th weeks of pregnancy after the genotypes of parents with the probands were identified. Result: A total of three different mutations of the probands, including of S105*, P1052L, P1273G, were detected. Among three fetuses which underwent prenatal genetic testing, one fetus was homozygote; two fetuses were carriers. Conclusion: Genetic testing provided a useful method for prenatal diagnosis, and is a basis for genetic counseling.

Keywords: ATP7B gene, genetic testing, prenatal diagnosis, pedigree, Wilson disease

Procedia PDF Downloads 455
5708 Protection of Floating Roof Petroleum Storage Tanks against Lightning Strokes

Authors: F. M. Mohamed, A. Y. Abdelaziz

Abstract:

The subject of petroleum storage tank fires has gained a great deal of attention due to the high cost of petroleum, and the consequent disruption of petroleum production; therefore, much of the current research has focused on petroleum storage tank fires. Also, the number of petroleum tank fires is oscillating between 15 and 20 fires per year. About 33% of all tank fires are attributed to lightning. Floating roof tanks (FRT’s) are especially vulnerable to lightning. To minimize the likelihood of a fire, the API RP 545 recommends three major modifications to floating roof tanks. This paper was inspired by a stroke of lightning that ignited a fire in a crude oil storage tank belonging to an Egyptian oil company, and is aimed at providing an efficient lightning protection system to the tank under study, in order to avoid the occurrence of such phenomena in the future and also, to give valuable recommendations to be applied to floating roof tank projects.

Keywords: crude oil, fire, floating roof tank, lightning protection system

Procedia PDF Downloads 282
5707 Analysis of Big Data

Authors: Sandeep Sharma, Sarabjit Singh

Abstract:

As per the user demand and growth trends of large free data the storage solutions are now becoming more challenge-able to protect, store and to retrieve data. The days are not so far when the storage companies and organizations are start saying 'no' to store our valuable data or they will start charging a huge amount for its storage and protection. On the other hand as per the environmental conditions it becomes challenge-able to maintain and establish new data warehouses and data centers to protect global warming threats. A challenge of small data is over now, the challenges are big that how to manage the exponential growth of data. In this paper we have analyzed the growth trend of big data and its future implications. We have also focused on the impact of the unstructured data on various concerns and we have also suggested some possible remedies to streamline big data.

Keywords: big data, unstructured data, volume, variety, velocity

Procedia PDF Downloads 548
5706 Sizing of Hybrid Source Battery/Supercapacitor for Automotive Applications

Authors: Laid Degaa, Bachir Bendjedia, Nassim Rizoug, Abdelkader Saidane

Abstract:

Energy storage system is a key aspect for the development of clean cars. The work proposed here deals with the modeling of hybrid storage sources composed of a combination of lithium-ion battery and supercapacitors. Simulation results show the performance of the active model for a hybrid source and confirm the feasibility of our approach. In this context, sizing of the electrical energy supply is carried out. The aim of this sizing is to propose an 'optimal' solution that improves the performance of electric vehicles in term of weight, cost and aging.

Keywords: battery, electric vehicles, energy, hybrid storage, supercapacitor

Procedia PDF Downloads 792
5705 Electrochemical Study of Ni and/or Fe Based Mono- And Bi- Hydroxides

Authors: H. Benaldjia, N. Habib, F. Djefaflia, A. Nait-Merzoug, A. Harat, J. El-Haskouri, O. Guellati

Abstract:

Currently, the technology has attracted knowledge of energy storage sources similar to batteries, capacitors and super-capacitors because of its very different applications in many fields with major social and economic challenges. Moreover, hydroxides have attracted much attention as a promising and active material choice in large-scale applications such as molecular adsorption/storage and separation for the environment, ion exchange, nanotechnology, supercapacitor for energy storage and conversion, electro-biosensing, and catalysts, due to their unique properties which are strongly influenced by their composition, microstructure, and synthesis method. In this context, we report in this study the synthesis of hydroxide-based nanomaterials precisely based on Ni and Fe using a simple hydrothermal method with mono and bi precursors at optimized growth conditions (6h-120°C). The obtained products were characterized using different techniques, such as XRD, FTIR, FESEM and BET, as well as electrochemical measurements.

Keywords: energy storage, Supercapacitors, nanocomposites, nanohybride, electro-active materials.

Procedia PDF Downloads 84
5704 Distributed Control Strategy for Dispersed Energy Storage Units in the DC Microgrid Based on Discrete Consensus

Authors: Hanqing Yang, Xiang Meng, Qi Li, Weirong Chen

Abstract:

The SOC (state of charge) based droop control has limitations on the load power sharing among different energy storage units, due to the line impedance. In this paper, a distributed control strategy for dispersed energy storage units in the DC microgrid based on discrete consensus is proposed. Firstly, a sparse information communication network is built. Thus, local controllers can communicate with its neighbors using voltage, current and SOC information. An average voltage of grid can be evaluated to compensate voltage offset by droop control, and an objective virtual resistance fulfilling above requirement can be dynamically calculated to distribute load power according to the SOC of the energy storage units. Then, the stability of the whole system and influence of communication delay are analyzed. It can be concluded that this control strategy can improve the robustness and flexibility, because of having no center controller. Finally, a model of DC microgrid with dispersed energy storage units and loads is built, the discrete distributed algorithm is established and communication protocol is developed. The co-simulation between Matlab/Simulink and JADE (Java agent development framework) has verified the effectiveness of proposed control strategy.

Keywords: dispersed energy storage units, discrete consensus algorithm, state of charge, communication delay

Procedia PDF Downloads 280
5703 A High Reliable Space-Borne File System with Applications of Device Partition and Intra-Channel Pipeline in Nand Flash

Authors: Xin Li, Ji-Yang Yu, Yue-Hua Niu, Lu-Yuan Wang

Abstract:

As an inevitable chain of the space data acquirement system, space-borne storage system based on Nand Flash has gradually been implemented in spacecraft. In face of massive, parallel and varied data on board, efficient data management become an important issue of storage research. Face to the requirements of high-performance and reliability in Nand Flash storage system, a combination of hardware and file system design can drastically increase system dependability, even for missions with a very long duration. More sophisticated flash storage concepts with advanced operating systems have been researched to improve the reliability of Nand Flash storage system on satellites. In this paper, architecture of file system with multi-channel data acquisition and storage on board is proposed, which obtains large-capacity and high-performance with the combine of intra-channel pipeline and device partition in Nand Flash. Multi-channel data in different rate are stored as independent files with parallel-storage system in device partition, which assures the high-effective and reliable throughput of file treatments. For massive and high-speed data storage, an efficiency assessment model is established to calculate the bandwidth formula of intra-channel pipeline. Information tables designed in Magnetoresistive RAM (MRAM) hold the management of bad block in Nand Flash and the arrangement of file system address for the high-reliability of data storage. During the full-load test, the throughput of 3D PLUS Module 160Gb Nand Flash can reach 120Mbps for store and reach 120Mbps for playback, which efficiently satisfies the requirement of multi-channel data acquisition in Satellite. Compared with previous literature, the results of experiments verify the advantages of the proposed system.

Keywords: device partition architecture, intra-channel pipelining, nand flash, parallel storage

Procedia PDF Downloads 289
5702 Matlab/Simulink Simulation of Solar Energy Storage System

Authors: Mustafa A. Al-Refai

Abstract:

This paper investigates the energy storage technologies that can potentially enhance the use of solar energy. Water electrolysis systems are seen as the principal means of producing a large amount of hydrogen in the future. Starting from the analysis of the models of the system components, a complete simulation model was realized in the Matlab-Simulink environment. Results of the numerical simulations are provided. The operation of electrolysis and photovoltaic array combination is verified at various insulation levels. It is pointed out that solar cell arrays and electrolysers are producing the expected results with solar energy inputs that are continuously varying.

Keywords: electrolyzer, simulink, solar energy, storage system

Procedia PDF Downloads 434
5701 Hydrogen Storage in Salt Caverns: Rock Mechanical Design

Authors: Dirk Zapf, Bastian Leuger

Abstract:

For several years, natural gas and crude oil have been stored in salt caverns in Germany and also worldwide. The dimensioning concepts have been continuously developed from a rock mechanics point of view. In addition to the possibilities of realizing large numerical calculation models based on real survey data nowadays, especially the consideration of mechanical processes such as damage and healing played a role in the development of adequate material laws. In addition, thermodynamic aspects have had to be considered for some years in the operation of a gas storage cavern since temperature changes have a significant influence on the stress states in the vicinity of a storage cavern. The possibility of thermally induced fracturing processes is also investigated in the context of rock mechanics dimensioning. In recent years, the energy crisis and the finite nature of fossil fuel use have led to increased discussion of the use of salt caverns for hydrogen storage. In this paper, state of the art is presented, the current research work is described, and an outlook is given as to which questions still need to be answered from a rock mechanics point of view in connection with large-scale storage of hydrogen in salt caverns.

Keywords: cavern design, hydrogen, rock salt, thermomechanical coupled calculations

Procedia PDF Downloads 120
5700 Comparison of Storage Facilities on Different Varieties of Orange Fleshed Sweet Potato Grown in Rwanda

Authors: Jean Paul Hategekimana, Dukuzumuremyi Yvonne, Mukeshimana Marthe, Alexandre Niyonshima

Abstract:

Sweet potato (Ipomoea batatas) is a very important staple food crop in Rwanda due to its high growth and consumption in all parts of the country. The effect of seven different storage conditions on the quality and nutritional composition of the three most grown and consumed varieties of orange-fleshed sweet potato (OFSP), namely Kabode, Terimbere, and Vita, were studied over a period of six weeks at Postharvest Service and Training Center of University Rwanda, Busogo Campus. The potato stored under the following conditions (zero energy cooling chamber, ground washed sweet potato, ground unwashed sweet potato, perforated washed sweet potato, perforated unwashed sweet potato, non-perforated washed sweet potato, and non-perforated unwashed sweet potato) were assessed in this study. These storage conditions are the modifications of existing methods currently used in Rwanda for suitable local climatic conditions. Hence, 30kgs of freshly harvested OFSP for each variety were bought from farmers of Gakenke and Rulindo districts and then transported to the postharvest training and service center UR-CAVM, Busogo Campus. 2.5kg of each potato sample was selected and stored under the above-mentioned storage conditions after pretreatment. Data were collected for six weeks on percent weight loss, shrinkability and the general appearance at interval of three days. The stored samples were also analyzed for moisture, crude ash, crude fiber, and reduced sugar levels during the entire storage period. Results showed the difference among the various storage conditions. It was shown that ZECC and non-perforated sacs (in the open air) storage techniques had good potential for storage of orange flesh sweet potato for up to six weeks without considerable change in physical and nutritional parameters compared to other considered conditions and, therefore, can be recommended as more useful for OSFP at farm level and during transport and market storage.

Keywords: ZECC, orange fleshed sweet potato, perforated sacs, storage conditions

Procedia PDF Downloads 68
5699 Comparative Efficacy of Benomyl and Three Plant Extracts in the Control of Cowpea Anthracnose Caused by Colletotrichum lindemuthianum Sensu Lato

Authors: M. J. Falade

Abstract:

Field experiment was conducted to compare the efficacy of hot water extracts of three plants (Ricinus communis, Jatropha gossypifolia and Datura stramonium) with benomyl in the control of cowpea anthracnose disease. Three concentrations of the extracts (65, 50 and 30%) were used in the study. Result from the experiment shows that all the extracts at the tested concentration reduced the incidence and severity of the disease. D. stramonium at 65% concentration compares favourably with that of benomyl fungicide in reducing incidence and severity of infection. At 65% concentration of D. stramonium, incidence of the disease was 22% on pooled mean basis, and this was not significantly different from that of benomyl (21%). Similarly, the percentage of normal seeds recorded at this same concentration of the extract was 85% and was not significantly different from that of benomyl (86%). In terms of disease severity trace infections were observed on the cowpea plants at this concentration of the extract and that of benomyl. However, at lower concentrations of all the extracts, significant variations were observed on incidence of disease and percentage of normal seeds such that values obtained from use of benomyl were higher than those obtained from the use of the extracts. The study, therefore, shows that extracts of these indigenous plants can be used as a substitute for the benomyl fungicide in the management of anthracnose disease.

Keywords: benomyl, C. lindemuthianum, disease incidence, disease severity

Procedia PDF Downloads 283
5698 Designing ZIF67 Derivatives Using Ammonia-Based Fluorine Complex as Structure-Directing Agent for Energy Storage Applications

Authors: Lu-Yin Lin

Abstract:

The morphology of electroactive material is highly related to energy storage ability. Structure-directing agent (SDA) can design electroactive materials with favorable surface properties. Zeolitic imidazolate framework 67 (ZIF67) is one of the potential electroactive materials for energy storage devices. The SDA concept is less applied to designing ZIF67 derivatives in previous studies. An in-situ technique with ammonium fluoride (NH₄F) as SDA is proposed to produce a ZIF67 derivative with highly improved energy storage ability. Attracted by the effective in-situ technique, the NH₄F, ammonium bifluoride (NH₄HF₂), and ammonium tetrafluoroborate (NH₄BF₄) are first used as SDA to synthesize ZIF67 derivatives in one-step solution process as electroactive material of energy storage devices. The mechanisms of forming ZIF67 derivatives synthesized with different SDAs are discussed to explain the SDA effects on physical and electrochemical properties. The largest specific capacitance (CF) of 1527.0 Fg-¹ and the capacity of 296.9 mAhg-¹ are obtained for the ZIF67 derivative prepared using NH₄BF₄ as SDA. The energy storage device composed of the optimal ZIF67 derivative and carbon electrodes presents a maximum energy density of 15.1 Whkg-¹ at the power density of 857 Wkg-¹. The CF retention of 90% and Coulombic efficiency larger than 98% are also obtained after 5000 cycles.

Keywords: ammonium bifluoride, ammonium tetrafluoroborate, energy storage device, one-step solution process, structure-directing agent, zeolitic imidazolate framework 67

Procedia PDF Downloads 79
5697 NiAl-Layered Double Hydroxide: Preparation, Characterization and Applications in Photo-Catalysis and Hydrogen Storage

Authors: Ahmed Farghali, Heba Amar, Mohamed Khedr

Abstract:

NiAl-Layered Double Hydroxide (NiAl-LDH), one of anionic functional layered materials, has been prepared by a simple co-precipitation process. X-ray diffraction patterns confirm the formation of the desired compounds of NiAl hydroxide single phase and the crystallite size was found to be about 4.6 nm. The morphology of the prepared samples was investigated using scanning electron microscopy and the layered structure was appeared under the transmission electron microscope. The thermal stability and the function groups of NiAl-LDH were investigated using thermal gravimetric analysis (TGA) and Fourier transform infrared (FTIR) respectively. NiAl-LDH was investigated as a photo-catalyst for the degradation of some toxic dyes such as toluidine blue and bromopyrogallol red. It shows good catalytic efficiency in visible light and even in dark. For the first time NiAl-LDH was used for hydrogen storage application. NiAl-LDH samples were exposed to 20 bar applied hydrogen pressure at room temperature, 100 and -193 oC. NiAl-LDH samples appear to have feasible hydrogen storage capacity. It was capable to adsorb 0.1wt% at room temperature, 0.15 wt% at 100oC and storage capacity reached 0.3 wt% at -193 oC.

Keywords: NiAl-LDH, preparation, characterization, photo-catalysis, hydrogen storage

Procedia PDF Downloads 312
5696 Alcohols as a Phase Change Material with Excellent Thermal Storage Properties in Buildings

Authors: Dehong Li, Yuchen Chen, Alireza Kaboorani, Denis Rodrigue, Xiaodong (Alice) Wang

Abstract:

Utilizing solar energy for thermal energy storage has emerged as an appealing option for lowering the amount of energy that is consumed by buildings. Due to their high heat storage density, and non-corrosive and non-polluting properties, alcohols can be a good alternative to petroleum-derived paraffin phase change materials (PCMs). In this paper, ternary eutectic PCMs with suitable phase change temperatures were designed and prepared using lauryl alcohol (LA), cetyl alcohol (CA), stearyl alcohol (SA), and xylitol (X). The differential scanning calorimetry (DSC) results revealed that the phase change temperatures of LA-CA-SA, LA-CA-X, and LA-SA-X were 20.52°C, 20.37°C, and 22.18°C, respectively. The latent heat of phase change of the ternary eutectic PCMs was all stronger than that of the paraffinic PCMs at roughly the same temperature. The highest latent heat was 195 J/g. It had good thermal energy storage capacity. The preparation mechanism was investigated using Fourier-transform Infrared Spectroscopy (FTIR), and it was found that the ternary eutectic PCMs were only physically mixed among the components. Ternary eutectic PCMs had a simple preparation process, suitable phase change temperature, and high energy storage density. They are suitable for low-temperature architectural packaging applications.

Keywords: thermal energy storage, buildings, phase change materials, alcohols

Procedia PDF Downloads 97
5695 Data Mining Approach for Commercial Data Classification and Migration in Hybrid Storage Systems

Authors: Mais Haj Qasem, Maen M. Al Assaf, Ali Rodan

Abstract:

Parallel hybrid storage systems consist of a hierarchy of different storage devices that vary in terms of data reading speed performance. As we ascend in the hierarchy, data reading speed becomes faster. Thus, migrating the application’ important data that will be accessed in the near future to the uppermost level will reduce the application I/O waiting time; hence, reducing its execution elapsed time. In this research, we implement trace-driven two-levels parallel hybrid storage system prototype that consists of HDDs and SSDs. The prototype uses data mining techniques to classify application’ data in order to determine its near future data accesses in parallel with the its on-demand request. The important data (i.e. the data that the application will access in the near future) are continuously migrated to the uppermost level of the hierarchy. Our simulation results show that our data migration approach integrated with data mining techniques reduces the application execution elapsed time when using variety of traces in at least to 22%.

Keywords: hybrid storage system, data mining, recurrent neural network, support vector machine

Procedia PDF Downloads 308
5694 Identifying Factors Contributing to the Spread of Lyme Disease: A Regression Analysis of Virginia’s Data

Authors: Fatemeh Valizadeh Gamchi, Edward L. Boone

Abstract:

This research focuses on Lyme disease, a widespread infectious condition in the United States caused by the bacterium Borrelia burgdorferi sensu stricto. It is critical to identify environmental and economic elements that are contributing to the spread of the disease. This study examined data from Virginia to identify a subset of explanatory variables significant for Lyme disease case numbers. To identify relevant variables and avoid overfitting, linear poisson, and regularization regression methods such as a ridge, lasso, and elastic net penalty were employed. Cross-validation was performed to acquire tuning parameters. The methods proposed can automatically identify relevant disease count covariates. The efficacy of the techniques was assessed using four criteria on three simulated datasets. Finally, using the Virginia Department of Health’s Lyme disease data set, the study successfully identified key factors, and the results were consistent with previous studies.

Keywords: lyme disease, Poisson generalized linear model, ridge regression, lasso regression, elastic net regression

Procedia PDF Downloads 137
5693 Preparations of Fruit Nectars from Fresh Fruit Juices-Analyses before and after Storage

Authors: Youcef Amir

Abstract:

The consumption of beverages continues to grow worldwide due to increasing demography, but pure fruit juices and high-quality nectars can induce protective effects on human health because of their natural bioactive components. In contrast, sodas and gaseous drinks containing synthetic food additives are considered as responsible for consumers of several pathologies such as obesity, diabetes, and non-alcoholic fatty liver disease. The nutritional and therapeutic virtues of fruit juices are generally a remarkable antioxidant power, anti-cancer activity linked to their richness of indigestible and indigestible sugars, vitamins, mineral salts, carotenoids and phenolic compounds. The main reasons, which led us to produce these fruit derivatives, are the non-availability of the fresh fruits mentioned above all along the year and also the existence of variations in the chemical composition of these different fruits as well as for the major or minor components. We tested, therefore, the physicochemical characteristics of each fruit juice and pulp apart and afterward those of the cocktails formulated. The fresh juices used during our experiments were obtained from the following fruits from north-central Algeria: prickly pear, pomegranate, melon, red oranges. The formulations of these fruit juices were tested after several trials comprising sensorial analysis, physicochemical factors (pH, titratable acidity, Brix degree, formal index, water content, total ash, total and reducing sugars, vitamin C, carotenoids, phenolic compounds) and microbial analysis after a storage period. To the pure juices proportions, citric acid E330, sucrose, and water were added followed by pasteurisation. These products were analysed from the physicochemical, microbial and sensorial viewpoints after a storage period of one month according to national legislation to evaluate their stability. The results of the physicochemical parameters of the prepared beverages had shown good physicochemical results, acceptable sensorial characteristics and microbial stability and safety before and after a storage period. We measured appreciable amounts of minor compounds with health properties.

Keywords: fruit juices, microbial analyses, nectars, physico chemical characteristics, sensorial analysis, storage period

Procedia PDF Downloads 229