Search results for: geospatial data
25233 The Right to Data Portability and Its Influence on the Development of Digital Services
Authors: Roman Bieda
Abstract:
The General Data Protection Regulation (GDPR) will come into force on 25 May 2018 which will create a new legal framework for the protection of personal data in the European Union. Article 20 of GDPR introduces a right to data portability. This right allows for data subjects to receive the personal data which they have provided to a data controller, in a structured, commonly used and machine-readable format, and to transmit this data to another data controller. The right to data portability, by facilitating transferring personal data between IT environments (e.g.: applications), will also facilitate changing the provider of services (e.g. changing a bank or a cloud computing service provider). Therefore, it will contribute to the development of competition and the digital market. The aim of this paper is to discuss the right to data portability and its influence on the development of new digital services.Keywords: data portability, digital market, GDPR, personal data
Procedia PDF Downloads 47825232 Recent Advances in Data Warehouse
Authors: Fahad Hanash Alzahrani
Abstract:
This paper describes some recent advances in a quickly developing area of data storing and processing based on Data Warehouses and Data Mining techniques, which are associated with software, hardware, data mining algorithms and visualisation techniques having common features for any specific problems and tasks of their implementation.Keywords: data warehouse, data mining, knowledge discovery in databases, on-line analytical processing
Procedia PDF Downloads 40625231 How to Use Big Data in Logistics Issues
Authors: Mehmet Akif Aslan, Mehmet Simsek, Eyup Sensoy
Abstract:
Big Data stands for today’s cutting-edge technology. As the technology becomes widespread, so does Data. Utilizing massive data sets enable companies to get competitive advantages over their adversaries. Out of many area of Big Data usage, logistics has significance role in both commercial sector and military. This paper lays out what big data is and how it is used in both military and commercial logistics.Keywords: big data, logistics, operational efficiency, risk management
Procedia PDF Downloads 64425230 Overview of Standard Unit System of Shenzhen Land Spatial Planning and Case Analysis
Authors: Ziwei Huang
Abstract:
The standard unit of Shenzhen land spatial planning has the characteristics of vertical conduction, horizontal evaluation, internal balance and supervision of implementation. It mainly assumes the role of geospatial unit, assists in promoting the complex development of the business in Shenzhen and undertakes the management and transmission of upper and lower levels of planning as well as the Urban management functions such as gap analysis of public facilities, planning evaluation and dynamic monitoring of planning information. Combining with the application examples of the analysis of gaps in public facilities in Longgang District, it can be found that the standard unit of land spatial planning in Shenzhen as a small-scale geographic basic unit, has a stronger urban spatial coupling effect. However, the universality of the application of the system is still lacking and it is necessary to propose more scientific and powerful standard unit delineation standards and planning function evaluation indicators to guide the implementation of the system's popularization and application.Keywords: Shenzhen city, land spatial planning, standard unit system, urban delicacy management
Procedia PDF Downloads 13225229 Finding Out the Best Place for Resettling of Victims after the Earthquake: A Case Study for Tehran, Iran
Authors: Reyhaneh Saeedi, Nima Ghasemloo
Abstract:
Iran is a capable zone for earthquake that follows loss of lives and financial damages. To have sheltering for earthquake victims is one of the basic requirements although it is hard to select suitable places for temporary resettling after an earthquake happens. Before these kinds of disasters happen, the best places for resettling the victims must be designated. This matter is an important issue in disaster management and planning. Geospatial Information System (GIS) has a determining role in disaster management; it can determine the best places for temporary resettling after such a disaster. In this paper the best criteria have been determined associated with their weights and buffers by use of research and questionnaire for locating the best places. In this paper, AHP method is used as decision model and to locate the best places for temporary resettling is done based on the selected criteria. Also in this research are made the buffer layers of criteria and change them to the raster layers. Later on, the raster layers are multiplied on desired weights then, the results are added together. Finally there are suitable places for resettling of victims by desired criteria by different colors with their optimum rate in QGIS software.Keywords: disaster management, temporary resettlement, earthquake, criteria
Procedia PDF Downloads 46525228 Finding out the Best Criteria for Locating the Best Place Resettling of Victims after the Earthquake: A Case Study for Tehran, Iran
Authors: Reyhaneh Saeedi
Abstract:
Iran is a capable zone for the earthquake that follows the loss of lives and financial damages. To have sheltering for earthquake victims is one of the basic requirements although it is hard to select suitable places for temporary resettling after an earthquake happens. Before these kinds of disasters happen, the best places for resettling the victims must be designated. This matter is an important issue in disaster management and planning. Geospatial Information System(GIS) has a determining role in disaster management, it can determine the best places for temporary resettling after such a disaster. In this paper, the best criteria have been determined associated with their weights and buffers by use of research and questionnaire for locating the best places. In this paper, AHP method is used as decision model and to locate the best places for temporary resettling is done based on the selected criteria. Also, in this research are made the buffer layers of criteria and change them to the raster layers. Later on, the raster layers are multiplied on desired weights then, the results are added together. Finally, there are suitable places for resettling of victims by desired criteria by different colors with their optimum rate in ArcGIS software.Keywords: disaster management, temporary resettlement, earthquake, criteria
Procedia PDF Downloads 29425227 Nature of Forest Fragmentation Owing to Human Population along Elevation Gradient in Different Countries in Hindu Kush Himalaya Mountains
Authors: Pulakesh Das, Mukunda Dev Behera, Manchiraju Sri Ramachandra Murthy
Abstract:
Large numbers of people living in and around the Hindu Kush Himalaya (HKH) region, depends on this diverse mountainous region for ecosystem services. Following the global trend, this region also experiencing rapid population growth, and demand for timber and agriculture land. The eight countries sharing the HKH region have different forest resources utilization and conservation policies that exert varying forces in the forest ecosystem. This created a variable spatial as well altitudinal gradient in rate of deforestation and corresponding forest patch fragmentation. The quantitative relationship between fragmentation and demography has not been established before for HKH vis-à-vis along elevation gradient. This current study was carried out to attribute the overall and different nature in landscape fragmentations along the altitudinal gradient with the demography of each sharing countries. We have used the tree canopy cover data derived from Landsat data to analyze the deforestation and afforestation rate, and corresponding landscape fragmentation observed during 2000 – 2010. Area-weighted mean radius of gyration (AMN radius of gyration) was computed owing to its advantage as spatial indicator of fragmentation over non-spatial fragmentation indices. Using the subtraction method, the change in fragmentation was computed during 2000 – 2010. Using the tree canopy cover data as a surrogate of forest cover, highest forest loss was observed in Myanmar followed by China, India, Bangladesh, Nepal, Pakistan, Bhutan, and Afghanistan. However, the sequence of fragmentation was different after the maximum fragmentation observed in Myanmar followed by India, China, Bangladesh, and Bhutan; whereas increase in fragmentation was seen following the sequence of as Nepal, Pakistan, and Afghanistan. Using SRTM-derived DEM, we observed higher rate of fragmentation up to 2400m that corroborated with high human population for the year 2000 and 2010. To derive the nature of fragmentation along the altitudinal gradients, the Statistica software was used, where the user defined function was utilized for regression applying the Gauss-Newton estimation method with 50 iterations. We observed overall logarithmic decrease in fragmentation change (area-weighted mean radius of gyration), forest cover loss and population growth during 2000-2010 along the elevation gradient with very high R2 values (i.e., 0.889, 0.895, 0.944 respectively). The observed negative logarithmic function with the major contribution in the initial elevation gradients suggest to gap filling afforestation in the lower altitudes to enhance the forest patch connectivity. Our finding on the pattern of forest fragmentation and human population across the elevation gradient in HKH region will have policy level implication for different nations and would help in characterizing hotspots of change. Availability of free satellite derived data products on forest cover and DEM, grid-data on demography, and utility of geospatial tools helped in quick evaluation of the forest fragmentation vis-a-vis human impact pattern along the elevation gradient in HKH.Keywords: area-weighted mean radius of gyration, fragmentation, human impact, tree canopy cover
Procedia PDF Downloads 21625226 Implementation of an IoT Sensor Data Collection and Analysis Library
Authors: Jihyun Song, Kyeongjoo Kim, Minsoo Lee
Abstract:
Due to the development of information technology and wireless Internet technology, various data are being generated in various fields. These data are advantageous in that they provide real-time information to the users themselves. However, when the data are accumulated and analyzed, more various information can be extracted. In addition, development and dissemination of boards such as Arduino and Raspberry Pie have made it possible to easily test various sensors, and it is possible to collect sensor data directly by using database application tools such as MySQL. These directly collected data can be used for various research and can be useful as data for data mining. However, there are many difficulties in using the board to collect data, and there are many difficulties in using it when the user is not a computer programmer, or when using it for the first time. Even if data are collected, lack of expert knowledge or experience may cause difficulties in data analysis and visualization. In this paper, we aim to construct a library for sensor data collection and analysis to overcome these problems.Keywords: clustering, data mining, DBSCAN, k-means, k-medoids, sensor data
Procedia PDF Downloads 38425225 Government (Big) Data Ecosystem: Definition, Classification of Actors, and Their Roles
Authors: Syed Iftikhar Hussain Shah, Vasilis Peristeras, Ioannis Magnisalis
Abstract:
Organizations, including governments, generate (big) data that are high in volume, velocity, veracity, and come from a variety of sources. Public Administrations are using (big) data, implementing base registries, and enforcing data sharing within the entire government to deliver (big) data related integrated services, provision of insights to users, and for good governance. Government (Big) data ecosystem actors represent distinct entities that provide data, consume data, manipulate data to offer paid services, and extend data services like data storage, hosting services to other actors. In this research work, we perform a systematic literature review. The key objectives of this paper are to propose a robust definition of government (big) data ecosystem and a classification of government (big) data ecosystem actors and their roles. We showcase a graphical view of actors, roles, and their relationship in the government (big) data ecosystem. We also discuss our research findings. We did not find too much published research articles about the government (big) data ecosystem, including its definition and classification of actors and their roles. Therefore, we lent ideas for the government (big) data ecosystem from numerous areas that include scientific research data, humanitarian data, open government data, industry data, in the literature.Keywords: big data, big data ecosystem, classification of big data actors, big data actors roles, definition of government (big) data ecosystem, data-driven government, eGovernment, gaps in data ecosystems, government (big) data, public administration, systematic literature review
Procedia PDF Downloads 16525224 Measuring the Embodied Energy of Construction Materials and Their Associated Cost Through Building Information Modelling
Authors: Ahmad Odeh, Ahmad Jrade
Abstract:
Energy assessment is an evidently significant factor when evaluating the sustainability of structures especially at the early design stage. Today design practices revolve around the selection of material that reduces the operational energy and yet meets their displinary need. Operational energy represents a substantial part of the building lifecycle energy usage but the fact remains that embodied energy is an important aspect unaccounted for in the carbon footprint. At the moment, little or no consideration is given to embodied energy mainly due to the complexity of calculation and the various factors involved. The equipment used, the fuel needed, and electricity required for each material vary with location and thus the embodied energy will differ for each project. Moreover, the method and the technique used in manufacturing, transporting and putting in place will have a significant influence on the materials’ embodied energy. This anomaly has made it difficult to calculate or even bench mark the usage of such energies. This paper presents a model aimed at helping designers select the construction materials based on their embodied energy. Moreover, this paper presents a systematic approach that uses an efficient method of calculation and ultimately provides new insight into construction material selection. The model is developed in a BIM environment targeting the quantification of embodied energy for construction materials through the three main stages of their life: manufacturing, transportation and placement. The model contains three major databases each of which contains a set of the most commonly used construction materials. The first dataset holds information about the energy required to manufacture any type of materials, the second includes information about the energy required for transporting the materials while the third stores information about the energy required by tools and cranes needed to place an item in its intended location. The model provides designers with sets of all available construction materials and their associated embodied energies to use for the selection during the design process. Through geospatial data and dimensional material analysis, the model will also be able to automatically calculate the distance between the factories and the construction site. To remain within the sustainability criteria set by LEED, a final database is created and used to calculate the overall construction cost based on R.M.S. means cost data and then automatically recalculate the costs for any modifications. Design criteria including both operational and embodied energies will cause designers to revaluate the current material selection for cost, energy, and most importantly sustainability.Keywords: building information modelling, energy, life cycle analysis, sustainablity
Procedia PDF Downloads 27225223 Government Big Data Ecosystem: A Systematic Literature Review
Authors: Syed Iftikhar Hussain Shah, Vasilis Peristeras, Ioannis Magnisalis
Abstract:
Data that is high in volume, velocity, veracity and comes from a variety of sources is usually generated in all sectors including the government sector. Globally public administrations are pursuing (big) data as new technology and trying to adopt a data-centric architecture for hosting and sharing data. Properly executed, big data and data analytics in the government (big) data ecosystem can be led to data-driven government and have a direct impact on the way policymakers work and citizens interact with governments. In this research paper, we conduct a systematic literature review. The main aims of this paper are to highlight essential aspects of the government (big) data ecosystem and to explore the most critical socio-technical factors that contribute to the successful implementation of government (big) data ecosystem. The essential aspects of government (big) data ecosystem include definition, data types, data lifecycle models, and actors and their roles. We also discuss the potential impact of (big) data in public administration and gaps in the government data ecosystems literature. As this is a new topic, we did not find specific articles on government (big) data ecosystem and therefore focused our research on various relevant areas like humanitarian data, open government data, scientific research data, industry data, etc.Keywords: applications of big data, big data, big data types. big data ecosystem, critical success factors, data-driven government, egovernment, gaps in data ecosystems, government (big) data, literature review, public administration, systematic review
Procedia PDF Downloads 23525222 A Machine Learning Decision Support Framework for Industrial Engineering Purposes
Authors: Anli Du Preez, James Bekker
Abstract:
Data is currently one of the most critical and influential emerging technologies. However, the true potential of data is yet to be exploited since, currently, about 1% of generated data are ever actually analyzed for value creation. There is a data gap where data is not explored due to the lack of data analytics infrastructure and the required data analytics skills. This study developed a decision support framework for data analytics by following Jabareen’s framework development methodology. The study focused on machine learning algorithms, which is a subset of data analytics. The developed framework is designed to assist data analysts with little experience, in choosing the appropriate machine learning algorithm given the purpose of their application.Keywords: Data analytics, Industrial engineering, Machine learning, Value creation
Procedia PDF Downloads 17225221 Providing Security to Private Cloud Using Advanced Encryption Standard Algorithm
Authors: Annapureddy Srikant Reddy, Atthanti Mahendra, Samala Chinni Krishna, N. Neelima
Abstract:
In our present world, we are generating a lot of data and we, need a specific device to store all these data. Generally, we store data in pen drives, hard drives, etc. Sometimes we may loss the data due to the corruption of devices. To overcome all these issues, we implemented a cloud space for storing the data, and it provides more security to the data. We can access the data with just using the internet from anywhere in the world. We implemented all these with the java using Net beans IDE. Once user uploads the data, he does not have any rights to change the data. Users uploaded files are stored in the cloud with the file name as system time and the directory will be created with some random words. Cloud accepts the data only if the size of the file is less than 2MB.Keywords: cloud space, AES, FTP, NetBeans IDE
Procedia PDF Downloads 21025220 Geothermal Resources to Ensure Energy Security During Climate Change
Authors: Debasmita Misra, Arthur Nash
Abstract:
Energy security and sufficiency enables the economic development and welfare of a nation or a society. Currently, the global energy system is dominated by fossil fuels, which is a non-renewable energy resource, which renders vulnerability to energy security. Hence, many nations have begun augmenting their energy system with renewable energy resources, such as solar, wind, biomass and hydro. However, with climate change, how sustainable are some of the renewable energy resources in the future is a matter of concern. Geothermal energy resources have been underexplored or underexploited in global renewable energy production and security, although it is gaining attractiveness as a renewable energy resource. The question is, whether geothermal energy resources are more sustainable than other renewable energy resources. High-temperature reservoirs (> 220 °F) can produce electricity from flash/dry steam plants as well as binary cycle production facilities. Most of the world’s high enthalpy geothermal resources are within the seismo-tectonic belt. However, exploration for geothermal energy is of great importance in conventional geothermal systems in order to improve its economic viability. In recent years, there has been an increase in the use and development of several exploration methods for geo-thermal resources, such as seismic or electromagnetic methods. The thermal infrared band of the Landsat can reflect land surface temperature difference, so the ETM+ data with specific grey stretch enhancement has been used to explore underground heat water. Another way of exploring for potential power is utilizing fairway play analysis for sites without surface expression and in rift zones. Utilizing this type of analysis can improve the success rate of project development by reducing exploration costs. Identifying the basin distribution of geologic factors that control the geothermal environment would help in identifying the control of resource concentration aside from the heat flow, thus improving the probability of success. The first step is compiling existing geophysical data. This leads to constructing conceptual models of potential geothermal concentrations which can then be utilized in creating a geodatabase to analyze risk maps. Geospatial analysis and other GIS tools can be used in such efforts to produce spatial distribution maps. The goal of this paper is to discuss how climate change may impact renewable energy resources and how could a synthesized analysis be developed for geothermal resources to ensure sustainable and cost effective exploitation of the resource.Keywords: exploration, geothermal, renewable energy, sustainable
Procedia PDF Downloads 15525219 Strategies for Community Openness and Social Integration in Urban Villages in Chinese County Cities - Based on a Multi-Case Study in Chongqing
Authors: Ren Guangchun
Abstract:
The village in the city is surrounded by formal cities but retains distinct social and morphological characteristics of the countryside, and has the ability of self-growth. County is the basic unit of urban-rural integration development, and urban village is the key focus of integration. At present, the flow of urban and rural factors in Chongqing does not match the development needs of urban villages. Based on the multi-case study of Chongqing 's districts and counties, this paper studies the characteristics of its geospatial advantages, composite functions, open spatial structure, pluralistic social structure, and reciprocity. From the aspects of community governance, social relations and space construction, this paper analyzes the dilemma of lack of subjectivity and social atomization faced by the interaction between urban villages and cities, and explores the strategies of community opening and social integration in urban villages, so as to present diversified landscapes and value spaces.Keywords: gated community, open community, city update, Urban village
Procedia PDF Downloads 6025218 Business Intelligence for Profiling of Telecommunication Customer
Authors: Rokhmatul Insani, Hira Laksmiwati Soemitro
Abstract:
Business Intelligence is a methodology that exploits the data to produce information and knowledge systematically, business intelligence can support the decision-making process. Some methods in business intelligence are data warehouse and data mining. A data warehouse can store historical data from transactional data. For data modelling in data warehouse, we apply dimensional modelling by Kimball. While data mining is used to extracting patterns from the data and get insight from the data. Data mining has many techniques, one of which is segmentation. For profiling of telecommunication customer, we use customer segmentation according to customer’s usage of services, customer invoice and customer payment. Customers can be grouped according to their characteristics and can be identified the profitable customers. We apply K-Means Clustering Algorithm for segmentation. The input variable for that algorithm we use RFM (Recency, Frequency and Monetary) model. All process in data mining, we use tools IBM SPSS modeller.Keywords: business intelligence, customer segmentation, data warehouse, data mining
Procedia PDF Downloads 48825217 Glacier Dynamics and Mass Fluctuations in Western Himalayas: A Comparative Analysis of Pir-Panjal and Greater Himalayan Ranges in Jhelum Basin, India
Authors: Syed Towseef Ahmad, Fatima Amin, Pritha Acharya, Anil K. Gupta, Pervez Ahmad
Abstract:
Glaciers being the sentinels of climate change, are the most visible evidence of global warming. Given the unavailability of observed field-based data, this study has focussed on the use of geospatial techniques to obtain information about the glaciers of Pir-Panjal (PPJ) and the Great Himalayan Regions of Jhelum Basin (GHR). These glaciers need to be monitored in line with the variations in climatic conditions because they significantly contribute to various sectors in the region. The main aim of this study is to map the glaciers in the two adjacent regions (PPJ and GHR) in the north-western Himalayas with different topographies and compare the changes in various glacial attributes during two different time periods (1990-2020). During the last three decades, both PPJ as well as GHR regions have observed deglaciation of around 36 and 26 percent, respectively. The mean elevation of GHR glaciers has increased from 4312 to 4390 masl, while the same for PPJ glaciers has increased from 4085 to 4124 masl during the observation period. Using accumulation area ratio (AAR) method, mean mass balance of -34.52 and -37.6 cm.w.e was recorded for the glaciers of GHR and PPJ, respectively. The difference in areal and mass loss of glaciers in these regions may be due to (i) the smaller size of PPJ glaciers which are all smaller than 1 km² and are thus more responsive to climate change (ii) Higher mean elevation of GHR glaciers (iii) local variations in climatic variables in these glaciated regions. Time series analysis of climate variables indicates that both the mean maximum and minimum temperatures of Qazigund station (Tmax= 19.2, Tmin= 6.4) are comparatively higher than the Pahalgam station (Tmax= 18.8, Tmin= 3.2). Except for precipitation in Qazigund (Slope= - 0.3 mm a⁻¹), each climatic parameter has shown an increasing trend during these three decades, and with the slope of 0.04 and 0.03°c a⁻¹, the positive trend in Tmin (pahalgam) and Tmax (qazigund) are observed to be statistically significant (p≤0.05).Keywords: glaciers, climate change, Pir-Panjal, greater Himalayas, mass balance
Procedia PDF Downloads 9325216 Imputation Technique for Feature Selection in Microarray Data Set
Authors: Younies Saeed Hassan Mahmoud, Mai Mabrouk, Elsayed Sallam
Abstract:
Analysing DNA microarray data sets is a great challenge, which faces the bioinformaticians due to the complication of using statistical and machine learning techniques. The challenge will be doubled if the microarray data sets contain missing data, which happens regularly because these techniques cannot deal with missing data. One of the most important data analysis process on the microarray data set is feature selection. This process finds the most important genes that affect certain disease. In this paper, we introduce a technique for imputing the missing data in microarray data sets while performing feature selection.Keywords: DNA microarray, feature selection, missing data, bioinformatics
Procedia PDF Downloads 57525215 PDDA: Priority-Based, Dynamic Data Aggregation Approach for Sensor-Based Big Data Framework
Authors: Lutful Karim, Mohammed S. Al-kahtani
Abstract:
Sensors are being used in various applications such as agriculture, health monitoring, air and water pollution monitoring, traffic monitoring and control and hence, play the vital role in the growth of big data. However, sensors collect redundant data. Thus, aggregating and filtering sensors data are significantly important to design an efficient big data framework. Current researches do not focus on aggregating and filtering data at multiple layers of sensor-based big data framework. Thus, this paper introduces (i) three layers data aggregation and framework for big data and (ii) a priority-based, dynamic data aggregation scheme (PDDA) for the lowest layer at sensors. Simulation results show that the PDDA outperforms existing tree and cluster-based data aggregation scheme in terms of overall network energy consumptions and end-to-end data transmission delay.Keywords: big data, clustering, tree topology, data aggregation, sensor networks
Procedia PDF Downloads 34825214 Regional Treatment Trends in Canada Derived from Pharmacy Records
Abstract:
Cardiometabolic conditions (hypertension, diabetes, and hyperlipidemia) are major public health concerns. Analysis of all prescription records from about 10 million patients at the largest network of pharmacies in Canada reveals small year-over-year increases in the treatment prevalence of cardiometabolic diseases prior to the COVID-19 pandemic. Cardiometabolic treatment rates increase with age and are higher in males than females. Hypertension treatment rates were 24% in males and 19% in females in 2021. Diabetes treatment rates were 10% in males and 7% in females in 2021. Geospatial analysis using patient addresses reveals interesting differences among provinces and neighborhoods in Canada. Using digital surveys distributed among 8,504 Canadian adults, an increase in hypertension awareness with age and female gender was observed. However, 7% of seniors and 6% of middle-aged Canadians reported uncontrolled blood pressure (>140/90 mmHg). In addition, elevated blood pressure (130-139/80-89 mmHg) was reported by 20% of seniors and 14% of middle-aged Canadians.Keywords: cardiometabolic conditions, diabetes, hypertension, precision public health
Procedia PDF Downloads 11925213 Control the Flow of Big Data
Authors: Shizra Waris, Saleem Akhtar
Abstract:
Big data is a research area receiving attention from academia and IT communities. In the digital world, the amounts of data produced and stored have within a short period of time. Consequently this fast increasing rate of data has created many challenges. In this paper, we use functionalism and structuralism paradigms to analyze the genesis of big data applications and its current trends. This paper presents a complete discussion on state-of-the-art big data technologies based on group and stream data processing. Moreover, strengths and weaknesses of these technologies are analyzed. This study also covers big data analytics techniques, processing methods, some reported case studies from different vendor, several open research challenges and the chances brought about by big data. The similarities and differences of these techniques and technologies based on important limitations are also investigated. Emerging technologies are suggested as a solution for big data problems.Keywords: computer, it community, industry, big data
Procedia PDF Downloads 19725212 Mapping and Database on Mass Movements along the Eastern Edge of the East African Rift in Burundi
Authors: L. Nahimana
Abstract:
The eastern edge of the East African Rift in Burundi shows many mass movement phenomena corresponding to landslides, mudflow, debris flow, spectacular erosion (mega-gully), flash floods and alluvial deposits. These phenomena usually occur during the rainy season. Their extent and consecutive damages vary widely. To manage these phenomena, it is necessary to adopt a methodological approach of their mapping with a structured database. The elements for this database are: three-dimensional extent of the phenomenon, natural causes and conditions (geological lithology, slope, weathering depth and products, rainfall patterns, natural environment) and the anthropogenic factors corresponding to the various human activities. The extent of the area provides information about the possibilities and opportunities for mitigation technique. The lithological nature allows understanding the influence of the nature of the rock and its structure on the intensity of the weathering of rocks, as well as the geotechnical properties of the weathering products. The slope influences the land stability. The intensity of annual, monthly and daily rainfall helps to understand the conditions of water saturation of the terrains. Certain natural circumstances such as the presence of streams and rivers promote foot slope erosion and thus the occurrence and activity of mass movements. The construction of some infrastructures such as new roads and agglomerations deeply modify the flow of surface and underground water followed by mass movements. Using geospatial data selected on the East African Rift in Burundi, it is presented case of mass movements illustrating the nature, importance, various factors and the extent of the damages. An analysis of these elements for each hazard can guide the options for mitigation of the phenomenon and its consequences.Keywords: mass movement, landslide, mudflow, debris flow, spectacular erosion, mega-gully, flash flood, alluvial deposit, East African rift, Burundi
Procedia PDF Downloads 30925211 High Performance Computing and Big Data Analytics
Authors: Branci Sarra, Branci Saadia
Abstract:
Because of the multiplied data growth, many computer science tools have been developed to process and analyze these Big Data. High-performance computing architectures have been designed to meet the treatment needs of Big Data (view transaction processing standpoint, strategic, and tactical analytics). The purpose of this article is to provide a historical and global perspective on the recent trend of high-performance computing architectures especially what has a relation with Analytics and Data Mining.Keywords: high performance computing, HPC, big data, data analysis
Procedia PDF Downloads 52425210 Geospatial Assessments on Impacts of Land Use Changes and Climate Change in Nigeria Forest Ecosystems
Authors: Samuel O. Akande
Abstract:
The human-induced climate change is likely to have severe consequences on forest ecosystems in Nigeria. Recent discussions and emphasis on issues concerning the environment justify the need for this research which examined deforestation monitoring in Oban Forest, Nigeria using Remote Sensing techniques. The Landsat images from TM (1986), ETM+ (2001) and OLI (2015) sensors were obtained from Landsat online archive and processed using Erdas Imagine 2014 and ArcGIS 10.3 to obtain the land use/land cover and Normalized Differential Vegetative Index (NDVI) values. Ground control points of deforested areas were collected for validation. It was observed that the forest cover decreased in area by about 689.14 km² between 1986 and 2015. The NDVI was used to determine the vegetation health of the forest and its implications on agricultural sustainability. The result showed that the total percentage of the healthy forest cover has reduced to about 45.9% from 1986 to 2015. The results obtained from analysed questionnaires shown that there was a positive correlation between the causes and effects of deforestation in the study area. The coefficient of determination value was calculated as R² ≥ 0.7, to ascertain the level of anthropogenic activities, such as fuelwood harvesting, intensive farming, and logging, urbanization, and engineering construction activities, responsible for deforestation in the study area. Similarly, temperature and rainfall data were obtained from Nigerian Meteorological Agency (NIMET) for the period of 1986 to 2015 in the study area. It was observed that there was a significant increase in temperature while rainfall decreased over the study area. Responses from the administered questionnaires also showed that futile destruction of forest ecosystem in Oban forest could be reduced to its barest minimum if fuelwood harvesting is disallowed. Thus, the projected impacts of climate change on Nigeria’s forest ecosystems and environmental stability is better imagined than experienced.Keywords: deforestation, ecosystems, normalized differential vegetative index, sustainability
Procedia PDF Downloads 19525209 A Landscape of Research Data Repositories in Re3data.org Registry: A Case Study of Indian Repositories
Authors: Prashant Shrivastava
Abstract:
The purpose of this study is to explore re3dat.org registry to identify research data repositories registration workflow process. Further objective is to depict a graph for present development of research data repositories in India. Preliminarily with an approach to understand re3data.org registry framework and schema design then further proceed to explore the status of research data repositories of India in re3data.org registry. Research data repositories are getting wider relevance due to e-research concepts. Now available registry re3data.org is a good tool for users and researchers to identify appropriate research data repositories as per their research requirements. In Indian environment, a compatible National Research Data Policy is the need of the time to boost the management of research data. Registry for Research Data Repositories is a crucial tool to discover specific information in specific domain. Also, Research Data Repositories in India have not been studied. Re3data.org registry and status of Indian research data repositories both discussed in this study.Keywords: research data, research data repositories, research data registry, re3data.org
Procedia PDF Downloads 32825208 A Study of Cloud Computing Solution for Transportation Big Data Processing
Authors: Ilgin Gökaşar, Saman Ghaffarian
Abstract:
The need for fast processed big data of transportation ridership (eg., smartcard data) and traffic operation (e.g., traffic detectors data) which requires a lot of computational power is incontrovertible in Intelligent Transportation Systems. Nowadays cloud computing is one of the important subjects and popular information technology solution for data processing. It enables users to process enormous measure of data without having their own particular computing power. Thus, it can also be a good selection for transportation big data processing as well. This paper intends to examine how the cloud computing can enhance transportation big data process with contrasting its advantages and disadvantages, and discussing cloud computing features.Keywords: big data, cloud computing, Intelligent Transportation Systems, ITS, traffic data processing
Procedia PDF Downloads 47125207 Harmonic Data Preparation for Clustering and Classification
Authors: Ali Asheibi
Abstract:
The rapid increase in the size of databases required to store power quality monitoring data has demanded new techniques for analysing and understanding the data. One suggested technique to assist in analysis is data mining. Preparing raw data to be ready for data mining exploration take up most of the effort and time spent in the whole data mining process. Clustering is an important technique in data mining and machine learning in which underlying and meaningful groups of data are discovered. Large amounts of harmonic data have been collected from an actual harmonic monitoring system in a distribution system in Australia for three years. This amount of acquired data makes it difficult to identify operational events that significantly impact the harmonics generated on the system. In this paper, harmonic data preparation processes to better understanding of the data have been presented. Underlying classes in this data has then been identified using clustering technique based on the Minimum Message Length (MML) method. The underlying operational information contained within the clusters can be rapidly visualised by the engineers. The C5.0 algorithm was used for classification and interpretation of the generated clusters.Keywords: data mining, harmonic data, clustering, classification
Procedia PDF Downloads 25125206 Linguistic Summarization of Structured Patent Data
Authors: E. Y. Igde, S. Aydogan, F. E. Boran, D. Akay
Abstract:
Patent data have an increasingly important role in economic growth, innovation, technical advantages and business strategies and even in countries competitions. Analyzing of patent data is crucial since patents cover large part of all technological information of the world. In this paper, we have used the linguistic summarization technique to prove the validity of the hypotheses related to patent data stated in the literature.Keywords: data mining, fuzzy sets, linguistic summarization, patent data
Procedia PDF Downloads 27425205 Proposal of Data Collection from Probes
Authors: M. Kebisek, L. Spendla, M. Kopcek, T. Skulavik
Abstract:
In our paper we describe the security capabilities of data collection. Data are collected with probes located in the near and distant surroundings of the company. Considering the numerous obstacles e.g. forests, hills, urban areas, the data collection is realized in several ways. The collection of data uses connection via wireless communication, LAN network, GSM network and in certain areas data are collected by using vehicles. In order to ensure the connection to the server most of the probes have ability to communicate in several ways. Collected data are archived and subsequently used in supervisory applications. To ensure the collection of the required data, it is necessary to propose algorithms that will allow the probes to select suitable communication channel.Keywords: communication, computer network, data collection, probe
Procedia PDF Downloads 36425204 Geovisualisation for Defense Based on a Deep Learning Monocular Depth Reconstruction Approach
Authors: Daniel R. dos Santos, Mateus S. Maldonado, Estevão J. R. Batista
Abstract:
The military commanders increasingly dependent on spatial awareness, as knowing where enemy are, understanding how war battle scenarios change over time, and visualizing these trends in ways that offer insights for decision-making. Thanks to advancements in geospatial technologies and artificial intelligence algorithms, the commanders are now able to modernize military operations on a universal scale. Thus, geovisualisation has become an essential asset in the defense sector. It has become indispensable for better decisionmaking in dynamic/temporal scenarios, operation planning and management for the war field, situational awareness, effective planning, monitoring, and others. For example, a 3D visualization of war field data contributes to intelligence analysis, evaluation of postmission outcomes, and creation of predictive models to enhance decision-making and strategic planning capabilities. However, old-school visualization methods are slow, expensive, and unscalable. Despite modern technologies in generating 3D point clouds, such as LIDAR and stereo sensors, monocular depth values based on deep learning can offer a faster and more detailed view of the environment, transforming single images into visual information for valuable insights. We propose a dedicated monocular depth reconstruction approach via deep learning techniques for 3D geovisualisation of satellite images. It introduces scalability in terrain reconstruction and data visualization. First, a dataset with more than 7,000 satellite images and associated digital elevation model (DEM) is created. It is based on high resolution optical and radar imageries collected from Planet and Copernicus, on which we fuse highresolution topographic data obtained using technologies such as LiDAR and the associated geographic coordinates. Second, we developed an imagery-DEM fusion strategy that combine feature maps from two encoder-decoder networks. One network is trained with radar and optical bands, while the other is trained with DEM features to compute dense 3D depth. Finally, we constructed a benchmark with sparse depth annotations to facilitate future research. To demonstrate the proposed method's versatility, we evaluated its performance on no annotated satellite images and implemented an enclosed environment useful for Geovisualisation applications. The algorithms were developed in Python 3.0, employing open-source computing libraries, i.e., Open3D, TensorFlow, and Pythorch3D. The proposed method provides fast and accurate decision-making with GIS for localization of troops, position of the enemy, terrain and climate conditions. This analysis enhances situational consciousness, enabling commanders to fine-tune the strategies and distribute the resources proficiently.Keywords: depth, deep learning, geovisualisation, satellite images
Procedia PDF Downloads 16