Search results for: exterior envelope
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 348

Search results for: exterior envelope

228 The Idea of Reputation in a Post-Truth Era

Authors: Karen Armstrong

Abstract:

This paper considers the importance of acquiring, cultivating, and protecting one’s personal online reputation in a post-truth era. Although the idea of the individual is essential psychological construct, the concept necessarily now includes our online reputation. The idea of this online reputation has expanded to become almost more important than any other factor in terms of our professional, social and psychological development. The discussion will first consider philosophical ideas of the self, followed by an examination of underlying concepts of perception and interpretation in a post-truth world. Then, the idea of the recent shift to a consideration of posted images, through words and photos, in the construction of self, will be discussed. Next, the relation between private personal life and exterior social life, including our reputation in a variety of realms will be addressed. This will include the adoption of specific strategies and behaviors, which facilitate accuracy, currency and necessary modifications with regard to our online reputation. Finally, specific ways in which we can negotiate the fluid dynamic between reputation, and inner and outer selves to optimum effect will conclude the discussion.

Keywords: image, post-truth, privacy, reputation, surveillance

Procedia PDF Downloads 235
227 Determining the Thermal Performance and Comfort Indices of a Naturally Ventilated Room with Reduced Density Reinforced Concrete Wall Construction over Conventional M-25 Grade Concrete

Authors: P. Crosby, Shiva Krishna Pavuluri, S. Rajkumar

Abstract:

Purpose: Occupied built-up space can be broadly classified as air-conditioned and naturally ventilated. Regardless of the building type, the objective of all occupied built-up space is to provide a thermally acceptable environment for human occupancy. Considering this aspect, air-conditioned spaces allow a greater degree of flexibility to control and modulate the comfort parameters during the operation phase. However, in the case of naturally ventilated space, a number of design features favoring indoor thermal comfort should be mandatorily conceptualized starting from the design phase. One such primary design feature that requires to be prioritized is, selection of building envelope material, as it decides the flow of energy from outside environment to occupied spaces. Research Methodology: In India and many countries across globe, the standardized material used for building envelope is re-enforced concrete (i.e. M-25 grade concrete). The comfort inside the RC built environment for warm & humid climate (i.e. mid-day temp of 30-35˚C, diurnal variation of 5-8˚C & RH of 70-90%) is unsatisfying to say the least. This study is mainly focused on reviewing the impact of mix design of conventional M25 grade concrete on inside thermal comfort. In this mix design, air entrainment in the range of 2000 to 2100 kg/m3 is introduced to reduce the density of M-25 grade concrete. Thermal performance parameters & indoor comfort indices are analyzed for the proposed mix and compared in relation to the conventional M-25 grade. There are diverse methodologies which govern indoor comfort calculation. In this study, three varied approaches specifically a) Indian Adaptive Thermal comfort model, b) Tropical Summer Index (TSI) c) Air temperature less than 33˚C & RH less than 70% to calculate comfort is adopted. The data required for the thermal comfort study is acquired by field measurement approach (i.e. for the new mix design) and simulation approach by using design builder (i.e. for the conventional concrete grade). Findings: The analysis points that the Tropical Summer Index has a higher degree of stringency in determining the occupant comfort band whereas also providing a leverage in thermally tolerable band over & above other methodologies in the context of the study. Another important finding is the new mix design ensures a 10% reduction in indoor air temperature (IAT) over the outdoor dry bulb temperature (ODBT) during the day. This translates to a significant temperature difference of 6 ˚C IAT and ODBT.

Keywords: Indian adaptive thermal comfort, indoor air temperature, thermal comfort, tropical summer index

Procedia PDF Downloads 300
226 Capture Zone of a Well Field in an Aquifer Bounded by Two Parallel Streams

Authors: S. Nagheli, N. Samani, D. A. Barry

Abstract:

In this paper, the velocity potential and stream function of capture zone for a well field in an aquifer bounded by two parallel streams with or without a uniform regional flow of any directions are presented. The well field includes any number of extraction or injection wells or a combination of both types with any pumping rates. To delineate the capture envelope, the potential and streamlines equations are derived by conformal mapping method. This method can help us to release constrains of other methods. The equations can be applied as useful tools to design in-situ groundwater remediation systems, to evaluate the surface–subsurface water interaction and to manage the water resources.

Keywords: complex potential, conformal mapping, image well theory, Laplace’s equation, superposition principle

Procedia PDF Downloads 406
225 Climate Physical Processes Mathematical Modeling for Dome-Like Traditional Residential Building

Authors: Artem Sedov, Aigerim Uyzbayeva, Valeriya Tyo

Abstract:

The presented article is showing results of dynamic modeling with Mathlab software of optimal automatic room climate control system for two experimental houses in Astana, one of which has circle plan and the other one has square plan. These results are showing that building geometry doesn't influence on climate system PID-controls configuring. This confirms theoretical implication that optimal automatic climate control system parameters configuring should depend on building's internal space volume, envelope heat transfer, number of people inside, supply ventilation air flow and outdoor temperature.

Keywords: climate control system, climate physics, dome-like building, mathematical modeling

Procedia PDF Downloads 335
224 Smart Airport: Application of Internet of Things for Confronting Airport Challenges

Authors: Ali Safaeianpour, Nima Shamandi

Abstract:

As air traffic expands, many airports have evolved into transit centers for people, information, and commerce, and technology implementation is an absolute part of airport development. Several challenges are in the way of implementing technology in an airport. Airport 4.0 proposes the "Smart Airport" concept, which focuses on using modern technologies such as Big Data, the Internet of Things (IoT), advanced biometric systems, blockchain, and cloud computing to alter and enhance passengers' journeys. Several common IoT concrete topics as partial keys to smart airports are discussed and introduced, ranging from automated check-in systems to exterior tracking processes, with the goal of enlightening more and more insightful ideas and proposals about smart airport solutions. IoT will dramatically alter people's lives by infusing intelligence, boosting the quality of life, and assembling it smarter. This paper reviews the approaches to transforming an airport into a smart airport and describes several enabling components of IoT and challenges that can hinder the implementation of a smart airport's function, which require to be addressed.

Keywords: airport 4.0, digital airport, smart airport, IoT

Procedia PDF Downloads 88
223 Simulation of Wave Propagation in Multiphase Medium

Authors: Edip Kemal, Sheshov Vlatko, Bojadjieva Julijana, Bogdanovic ALeksandra, Gjorgjeska Irena

Abstract:

The wave propagation phenomenon in porous domains is of great importance in the field of geotechnical earthquake engineering. In these kinds of problems, the elastic waves propagate from the interior to the exterior domain and require special treatment at the computational level since apart from displacement in the solid-state there is a p-wave that takes place in the pore water phase. In this paper, a study on the implementation of multiphase finite elements is presented. The proposed algorithm is implemented in the ANSYS finite element software and tested on one-dimensional wave propagation considering both pore pressure wave propagation and displacement fields. In the simulation of porous media such as soils, the behavior is governed largely by the interaction of the solid skeleton with water and/or air in the pores. Therefore, coupled problems of fluid flow and deformation of the solid skeleton are considered in a detailed way.

Keywords: wave propagation, multiphase model, numerical methods, finite element method

Procedia PDF Downloads 139
222 Influence of Confinement on Phase Behavior in Unconventional Gas Condensate Reservoirs

Authors: Szymon Kuczynski

Abstract:

Poland is characterized by the presence of numerous sedimentary basins and hydrocarbon provinces. Since 2006 exploration for hydrocarbons in Poland become gradually more focus on new unconventional targets, particularly on the shale gas potential of the Upper Ordovician and Lower Silurian in the Baltic-Podlasie-Lublin Basin. The first forecast prepared by US Energy Information Administration in 2011 indicated to 5.3 Tcm of natural gas. In 2012, Polish Geological Institute presented its own forecast which estimated maximum reserves on 1.92 Tcm. The difference in the estimates was caused by problems with calculations of the initial amount of adsorbed, as well as free, gas trapped in shale rocks (GIIP - Gas Initially in Place). This value is dependent from sorption capacity, gas saturation and mutual interactions between gas, water, and rock. Determination of the reservoir type in the initial exploration phase brings essential knowledge, which has an impact on decisions related to the production. The study of porosity impact for phase envelope shift eliminates errors and improves production profitability. Confinement phenomenon affects flow characteristics, fluid properties, and phase equilibrium. The thermodynamic behavior of confined fluids in porous media is subject to the basic considerations for industrial applications such as hydrocarbons production. In particular the knowledge of the phase equilibrium and the critical properties of the contained fluid is essential for the design and optimization of such process. In pores with a small diameter (nanopores), the effect of the wall interaction with the fluid particles becomes significant and occurs in shale formations. Nano pore size is similar to the fluid particles’ diameter and the area of particles which flow without interaction with pore wall is almost equal to the area where this phenomenon occurs. The molecular simulation studies have shown an effect of confinement to the pseudo critical properties. Therefore, the critical parameters pressure and temperature and the flow characteristics of hydrocarbons in terms of nano-scale are under the strong influence of fluid particles with the pore wall. It can be concluded that the impact of a single pore size is crucial when it comes to the nanoscale because there is possible the above-described effect. Nano- porosity makes it difficult to predict the flow of reservoir fluid. Research are conducted to explain the mechanisms of fluid flow in the nanopores and gas extraction from porous media by desorption.

Keywords: adsorption, capillary condensation, phase envelope, nanopores, unconventional natural gas

Procedia PDF Downloads 315
221 The General Evolution of Today's Mosque Architecture in Turkey: The Case of Mekke Mosque

Authors: Hatice Derya Arslan

Abstract:

Religious buildings in terms of architectural features are known as the most repeated building types. Mosques representing Islam religion shows big differences in terms of architecture. In Turkey, every year many mosques are built all over the country and a majority of the mosques being built are inspired by the Ottoman and Seljuk architecture. Unfortunately, inspired by the architecture of the mosque made from traditional mosque architecture is often inadequate. In this study, first of all, the evolution of the mosque architecture in Turkey has been examined chronologically and shortly. After that, in the other part of the paper, Mekke Mosque which was built in Kutahya City Center of Turkey is discussed in terms of architectural properties. In this mosque, quasi-postmodern design was preferred. Generally preferred classical Ottoman architecture has been abandoned in this mosque. However, there exists a lot of issue in the interior and exterior design of the mosque was criticized in the conclusion part of the paper in a comparative manner.

Keywords: architectural criticism, mosque, ottoman and seljuk architecture, religious building

Procedia PDF Downloads 450
220 Wind Fragility of Window Glass in 10-Story Apartment with Two Different Window Models

Authors: Viriyavudh Sim, WooYoung Jung

Abstract:

Damage due to high wind is not limited to load resistance components such as beam and column. The majority of damage is due to breach in the building envelope such as broken roof, window, and door. In this paper, wind fragility of window glass in residential apartment was determined to compare the difference between two window configuration models. Monte Carlo Simulation method had been used to derive damage data and analytical fragilities were constructed. Fragility of window system showed that window located in leeward wall had higher probability of failure, especially those close to the edge of structure. Between the two window models, Model 2 had higher probability of failure, this was due to the number of panel in this configuration.

Keywords: wind fragility, glass window, high rise building, wind disaster

Procedia PDF Downloads 238
219 Characterization of the Airtightness Level in School Classrooms in Mediterranean Climate

Authors: Miguel A. Campano, Jesica Fernández-Agüera, Samuel Domínguez-Amarillo, Juan J. Sendra

Abstract:

An analysis of the air tightness level is performed on a representative sample of school classrooms in Southern Spain, which allows knowing the infiltration level of these classrooms, mainly through its envelope, which can affect both energy demand and occupant's thermal comfort. By using a pressurization/depressurization equipment (Blower-Door test), a characterization of 45 multipurpose classrooms have been performed in nine non-university educational institutions of the main climate zones of Southern Spain. In spite of having two doors and a high ratio between glass surface and outer surface, it is possible to see in these classrooms that there is an adequate level of airtightness, since all the n50 values obtained are lower than 9.0 ACH, with an average value around 7.0 ACH.

Keywords: air infiltration, energy efficiency, school buildings, thermal comfort, indoor air quality, ventilation

Procedia PDF Downloads 449
218 Numerical Investigation of the Flow Characteristics inside the Scrubber Unit

Authors: Kumaresh Selvakumar, Man Young Kim

Abstract:

Wet scrubbers have found widespread use in cleaning contaminated gas streams because of their ability to remove particulates and based on the applications of scrubbing of marine engine exhaust gases by spraying sea-water. In order to examine the flow characteristics inside the scrubber, the model is designated with flow properties of hot air and water sprayer. The flow dynamics of evaporation of hot air by the injection of water droplets is the key factor considered in this paper. The flow behavior inside the scrubber was investigated from the previous works and to sum up the evaporation rate with respect to the concentration of water droplets are predicted to bring out the competent modelling. The numerical analysis using CFD facilitates in understanding the problem better and empathies the behavior of the model over its entire operating envelope.

Keywords: concentration of water droplets, evaporation rate, scrubber, water sprayer

Procedia PDF Downloads 192
217 SHARK FINS Rising: Awesome Power Beneath the Surface

Authors: David Parrish

Abstract:

A critical challenge for a new school is creating an inclusive, meaningful culture. While a new school offers a “shiny’ exterior, its culture has yet to be created. In 2016, Charles J. Colgan, Sr. High School in Prince William County, opened its door. In its inaugural year, the FIN Friends club was created to start the process of building connections between general education and special education students. In eight years, the club has become a relentless contributor to the most inclusive, welcoming school culture possible. Through a commitment to consistent, year-round activities, the FINS accepts students from all schools and all grades. All schools strive for inclusion and a positive culture. Our model takes explicit action toward these elements. What we have created works; it is replicable and supports any school to build a more inclusive culture. Connections and belonging are directly related to every educational goal, including academic progress, equity, social-emotional health, etc. We want to share our story and collaborate with schools to create their own inclusion movement.

Keywords: inclusion, culture, connections, belonging

Procedia PDF Downloads 42
216 Time Delay Estimation Using Signal Envelopes for Synchronisation of Recordings

Authors: Sergei Aleinik, Mikhail Stolbov

Abstract:

In this work, a method of time delay estimation for dual-channel acoustic signals (speech, music, etc.) recorded under reverberant conditions is investigated. Standard methods based on cross-correlation of the signals show poor results in cases involving strong reverberation, large distances between microphones and asynchronous recordings. Under similar conditions, a method based on cross-correlation of temporal envelopes of the signals delivers a delay estimation of acceptable quality. This method and its properties are described and investigated in detail, including its limits of applicability. The method’s optimal parameter estimation and a comparison with other known methods of time delay estimation are also provided.

Keywords: cross-correlation, delay estimation, signal envelope, signal processing

Procedia PDF Downloads 459
215 Structural Analysis on the Composition of Video Game Virtual Spaces

Authors: Qin Luofeng, Shen Siqi

Abstract:

For the 58 years since the first video game came into being, the video game industry is getting through an explosive evolution from then on. Video games exert great influence on society and become a reflection of public life to some extent. Video game virtual spaces are where activities are taking place like real spaces. And that’s the reason why some architects pay attention to video games. However, compared to the researches on the appearance of games, we observe a lack of theoretical comprehensive on the construction of video game virtual spaces. The research method of this paper is to collect literature and conduct theoretical research about the virtual space in video games firstly. And then analogizing the opinions on the space phenomena from the theory of literature and films. Finally, this paper proposes a three-layer framework for the construction of video game virtual spaces: “algorithmic space-narrative space players space”, which correspond to the exterior, expressive, affective parts of the game space. Also, we illustrate each sub-space according to numerous instances of published video games. Hoping this writing could promote the interactive development of video games and architecture.

Keywords: video game, virtual space, narrativity, social space, emotional connection

Procedia PDF Downloads 231
214 Embodied Carbon Footprint of Existing Malaysian Green Homes

Authors: Fahanim Abdul Rashid, Muhammad Azzam Ismail

Abstract:

Part and parcel of building green homes (GHs) with favorable thermal comfort (TC) is to design and build with reduced carbon footprint (CF) from embodied energy in the building envelope and reduced operational CF overall. Together, the environmental impact of GHs can be reduced significantly. Nevertheless, there is still a need to identify the base CF value for Malaysian GHs and this can be done by assessing existing ones which can then be compared to conventional and vernacular houses which are built differently with different building materials. This paper underlines the research design and introduces the case studies. For now, the operational CF of the case studies is beyond the scope of this study. Findings from this research could identify the best building material and construction technique combination to build GHs depending on the available skills, financial constraints and the condition of the immediate environment.

Keywords: embodied carbon footprint, Malaysian green homes

Procedia PDF Downloads 314
213 Field Study for Evaluating Winter Thermal Performance of Auckland School Buildings

Authors: Bin Su

Abstract:

Auckland has a temperate climate with comfortable warm, dry summers and mild, wet winters. An Auckland school normally does not need air conditioning for cooling during the summer and only needs heating during the winter. The Auckland school building thermal design should more focus on winter thermal performance and indoor thermal comfort for energy efficiency. This field study of testing indoor and outdoor air temperatures, relative humidity and indoor surface temperatures of three classrooms with different envelopes were carried out in the Avondale College during the winter months in 2013. According to the field study data, this study is to compare and evaluate winter thermal performance and indoor thermal conditions of school buildings with different envelopes.

Keywords: building envelope, building mass effect, building thermal comfort, building thermal performance, school building

Procedia PDF Downloads 394
212 Numerical Experiments for the Purpose of Studying Space-Time Evolution of Various Forms of Pulse Signals in the Collisional Cold Plasma

Authors: N. Kh. Gomidze, I. N. Jabnidze, K. A. Makharadze

Abstract:

The influence of inhomogeneities of plasma and statistical characteristics on the propagation of signal is very actual in wireless communication systems. While propagating in the media, the deformation and evaluation of the signal in time and space take place and on the receiver we get a deformed signal. The present article is dedicated to studying the space-time evolution of rectangular, sinusoidal, exponential and bi-exponential impulses via numerical experiment in the collisional, cold plasma. The presented method is not based on the Fourier-presentation of the signal. Analytically, we have received the general image depicting the space-time evolution of the radio impulse amplitude that gives an opportunity to analyze the concrete results in the case of primary impulse.

Keywords: collisional, cold plasma, rectangular pulse signal, impulse envelope

Procedia PDF Downloads 353
211 Shear Strength Envelope Characteristics of LimeTreated Clays

Authors: Mohammad Moridzadeh, Gholamreza Mesri

Abstract:

The effectiveness of lime treatment of soils has been commonly evaluated in terms of improved workability and increased undrained unconfined compressive strength in connection to road and airfield construction. The most common method of strength measurement has been the unconfined compression test. However, if the objective of lime treatment is to improve long-term stability of first-time or reactivated landslides in stiff clays and shales, permanent changes in the size and shape of clay particles must be realized to increase drained frictional resistance. Lime-soil interactions that may produce less platy and larger soil particles begin and continue with time under the highly alkaline pH environment. In this research, pH measurements are used to monitor chemical environment and progress of reactions. Atterberg limits are measured to identify changes in particle size and shape indirectly. Also, fully softened and residual strength measurements are used to examine an improvement in frictional resistance due to lime-soil interactions. The main variables are soil plasticity and mineralogy, lime content, water content, and curing period. Lime effect on frictional resistance is examined using samples of clays with different mineralogy and characteristics which may react with lime to various extents. Drained direct shear tests on reconstituted lime-treated clay specimens with various properties have been performed to measure fully softened shear strength. To measure residual shear strength, drained multiple reversal direct shear tests on precut specimens were conducted. This way, soil particles are oriented along the direction of shearing to the maximum possible extent and provide minimum frictional resistance. This is applicable to reactivated and part of first-time landslides. The Brenna clay, which is the highly plastic lacustrine clay of Lake Agassiz causing slope instability along the banks of the Red River, is one of the soil samples used in this study. The Brenna Formation characterized as a uniform, soft to firm, dark grey, glaciolacustrine clay with little or no visible stratification, is full of slickensided surfaces. The major source of sediment for the Brenna Formation was the highly plastic montmorillonitic Pierre Shale bedrock. The other soil used in this study is one of the main sources of slope instability in Harris County Flood Control District (HCFCD), i.e. the Beaumont clay. The shear strengths of untreated and treated clays were obtained under various normal pressures to evaluate the shear envelope nonlinearity.

Keywords: Brenna clay, friction resistance, lime treatment, residual

Procedia PDF Downloads 137
210 Rigorous Photogrammetric Push-Broom Sensor Modeling for Lunar and Planetary Image Processing

Authors: Ahmed Elaksher, Islam Omar

Abstract:

Accurate geometric relation algorithms are imperative in Earth and planetary satellite and aerial image processing, particularly for high-resolution images that are used for topographic mapping. Most of these satellites carry push-broom sensors. These sensors are optical scanners equipped with linear arrays of CCDs. These sensors have been deployed on most EOSs. In addition, the LROC is equipped with two push NACs that provide 0.5 meter-scale panchromatic images over a 5 km swath of the Moon. The HiRISE carried by the MRO and the HRSC carried by MEX are examples of push-broom sensor that produces images of the surface of Mars. Sensor models developed in photogrammetry relate image space coordinates in two or more images with the 3D coordinates of ground features. Rigorous sensor models use the actual interior orientation parameters and exterior orientation parameters of the camera, unlike approximate models. In this research, we generate a generic push-broom sensor model to process imageries acquired through linear array cameras and investigate its performance, advantages, and disadvantages in generating topographic models for the Earth, Mars, and the Moon. We also compare and contrast the utilization, effectiveness, and applicability of available photogrammetric techniques and softcopies with the developed model. We start by defining an image reference coordinate system to unify image coordinates from all three arrays. The transformation from an image coordinate system to a reference coordinate system involves a translation and three rotations. For any image point within the linear array, its image reference coordinates, the coordinates of the exposure center of the array in the ground coordinate system at the imaging epoch (t), and the corresponding ground point coordinates are related through the collinearity condition that states that all these three points must be on the same line. The rotation angles for each CCD array at the epoch t are defined and included in the transformation model. The exterior orientation parameters of an image line, i.e., coordinates of exposure station and rotation angles, are computed by a polynomial interpolation function in time (t). The parameter (t) is the time at a certain epoch from a certain orbit position. Depending on the types of observations, coordinates, and parameters may be treated as knowns or unknowns differently in various situations. The unknown coefficients are determined in a bundle adjustment. The orientation process starts by extracting the sensor position and, orientation and raw images from the PDS. The parameters of each image line are then estimated and imported into the push-broom sensor model. We also define tie points between image pairs to aid the bundle adjustment model, determine the refined camera parameters, and generate highly accurate topographic maps. The model was tested on different satellite images such as IKONOS, QuickBird, and WorldView-2, HiRISE. It was found that the accuracy of our model is comparable to those of commercial and open-source software, the computational efficiency of the developed model is high, the model could be used in different environments with various sensors, and the implementation process is much more cost-and effort-consuming.

Keywords: photogrammetry, push-broom sensors, IKONOS, HiRISE, collinearity condition

Procedia PDF Downloads 42
209 Drying of Agro-Industrial Wastes Using a Cabinet Type Solar Dryer

Authors: N. Metidji, O. Badaoui, A. Djebli, H. Bendjebbas, R. Sellami

Abstract:

The agro-industry is considered as one of the most waste producing industrial fields as a result of food processing. Upgrading and reuse of these wastes as animal or poultry food seems to be a promising alternative. Combined with the use of clean energy resources, the recovery process would contribute more to the environment protection. It is in this framework that a new solar dryer has been designed in the Unit of Solar Equipment Development. Direct solar drying has, also, many advantages compared to natural sun drying. In fact, the first does not cause product degradation as it is protected by the drying chamber from direct sun, insects and exterior environment. The aim of this work is to study the drying kinetics of waste, generated during the processing of pepper, by using a direct natural convection solar dryer at 35◦C and 55◦C. The rate of moisture removal from the product to be dried has been found to be directly related to temperature, humidity and flow rate. The characterization of these parameters has allowed the determination of the appropriate drying time for this product namely peppers waste.

Keywords: solar energy, solar dryer, energy conversion, pepper drying, forced convection solar dryer

Procedia PDF Downloads 395
208 Evaluating Energy Transition of a complex of buildings in a historic site of Rome toward Zero-Emissions for a Sustainable Future

Authors: Silvia Di Turi, Nicolandrea Calabrese, Francesca Caffari, Giulia Centi, Francesca Margiotta, Giovanni Murano, Laura Ronchetti, Paolo Signoretti, Lisa Volpe, Domenico Palladino

Abstract:

Recent European policies have been set ambitious targets aimed at significantly reducing CO2 emissions by 2030, with a long-term vision of transforming existing buildings into Zero-Emissions Buildings (ZEmB) by 2050. This vision represents a key point for the energy transition as the whole building stock currently accounts for 36% of total energy consumption across the Europe, mainly due to their poor energy performance. The challenge towards Zero-Emissions Buildings is particularly felt in Italy, where a significant number of buildings with historical significance or situated within protected/constrained areas can be found. Furthermore, an estimated 70% of the national building stock are built before 1976, indicating a widespread issue of poor energy performance. Addressing the energy ineƯiciency of these buildings is crucial to refining a comprehensive energy renovation approach aimed at facilitating their energy transition. In this framework the current study focuses on analysing a challenging complex of buildings to be totally restored through significant energy renovation interventions. The goal is to recover these disused buildings situated in a significant archaeological zone of Rome, contributing to the restoration and reintegration of this historically valuable site, while also oƯering insights useful for achieving zeroemission requirements for buildings within such contexts. In pursuit of meeting the stringent zero-emission requirements, a comprehensive study was carried out to assess the complex of buildings, envisioning substantial renovation measures on building envelope and plant systems and incorporating renewable energy system solutions, always respecting and preserving the historic site. An energy audit of the complex of buildings was performed to define the actual energy consumption for each energy service by adopting the hourly calculation methods. Subsequently, significant energy renovation interventions on both building envelope and mechanical systems have been examined respecting the historical value and preservation of site. These retrofit strategies have been investigated with threefold aims: 1) to recover the existing buildings ensuring the energy eƯiciency of the whole complex of buildings, 2) to explore which solutions have allowed achieving and facilitating the ZEmB status, 3) to balance the energy transition requirements with the sustainable aspect in order to preserve the historic value of the buildings and site. This study has pointed out the potentiality and the technical challenges associated with implementing renovation solutions for such buildings, representing one of the first attempt towards realizing this ambitious target for this type of building.

Keywords: energy conservation and transition, complex of buildings in historic site, zero-emission buildings, energy efficiency recovery

Procedia PDF Downloads 35
207 Hydraulic Headloss in Plastic Drainage Pipes at Full and Partially Full Flow

Authors: Velitchko G. Tzatchkov, Petronilo E. Cortes-Mejia, J. Manuel Rodriguez-Varela, Jesus Figueroa-Vazquez

Abstract:

Hydraulic headloss, expressed by the values of friction factor f and Manning’s coefficient n, is an important parameter in designing drainage pipes. Their values normally are taken from manufacturer recommendations, many times without sufficient experimental support. To our knowledge, currently there is no standard procedure for hydraulically testing such pipes. As a result of research carried out at the Mexican Institute of Water Technology, a laboratory testing procedure was proposed and applied on 6 and 12 inches diameter polyvinyl chloride (PVC) and high-density dual wall polyethylene pipe (HDPE) drainage pipes. While the PVC pipe is characterized by naturally smooth interior and exterior walls, the dual wall HDPE pipe has corrugated exterior wall and, although considered smooth, a slightly wavy interior wall. The pipes were tested at full and partially full pipe flow conditions. The tests for full pipe flow were carried out on a 31.47 m long pipe at flow velocities between 0.11 and 4.61 m/s. Water was supplied by gravity from a 10 m-high tank in some of the tests, and from a 3.20 m-high tank in the rest of the tests. Pressure was measured independently with piezometer readings and pressure transducers. The flow rate was measured by an ultrasonic meter. For the partially full pipe flow the pipe was placed inside an existing 49.63 m long zero slope (horizontal) channel. The flow depth was measured by piezometers located along the pipe, for flow rates between 2.84 and 35.65 L/s, measured by a rectangular weir. The observed flow profiles were then compared to computer generated theoretical gradually varied flow profiles for different Manning’s n values. It was found that Manning’s n, that normally is assumed constant for a given pipe material, is in fact dependent on flow velocity and pipe diameter for full pipe flow, and on flow depth for partially full pipe flow. Contrary to the expected higher values of n and f for the HDPE pipe, virtually the same values were obtained for the smooth interior wall PVC pipe and the slightly wavy interior wall HDPE pipe. The explanation of this fact was found in Henry Morris’ theory for smooth turbulent conduit flow over isolated roughness elements. Following Morris, three categories of the flow regimes are possible in a rough conduit: isolated roughness (or semi smooth turbulent) flow, wake interference (or hyper turbulent) flow, and skimming (or quasi-smooth) flow. Isolated roughness flow is characterized by friction drag turbulence over the wall between the roughness elements, independent vortex generation, and dissipation around each roughness element. In this regime, the wake and vortex generation zones at each element develop and dissipate before attaining the next element. The longitudinal spacing of the roughness elements and their height are important influencing agents. Given the slightly wavy form of the HDPE pipe interior wall, the flow for this type of pipe belongs to this category. Based on that theory, an equation for the hydraulic friction factor was obtained. The obtained coefficient values are going to be used in the Mexican design standards.

Keywords: drainage plastic pipes, hydraulic headloss, hydraulic friction factor, Manning’s n

Procedia PDF Downloads 254
206 Thickness Measurement and Void Detection in Concrete Elements through Ultrasonic Pulse

Authors: Leonel Lipa Cusi, Enrique Nestor Pasquel Carbajal, Laura Marina Navarro Alvarado, José Del Álamo Carazas

Abstract:

This research analyses the accuracy of the ultrasound and the pulse echo ultrasound technic to find voids and to measure thickness of concrete elements. These mentioned air voids are simulated by polystyrene expanded and hollow containers of thin thickness made of plastic or cardboard of different sizes and shapes. These targets are distributed strategically inside concrete at different depths. For this research, a shear wave pulse echo ultrasonic device of 50 KHz is used to scan the concrete elements. Despite the small measurements of the concrete elements and because of voids’ size are near the half of the wavelength, pre and post processing steps like voltage, gain, SAFT, envelope and time compensation were made in order to improve imaging results.

Keywords: ultrasonic, concrete, thickness, pulse echo, void

Procedia PDF Downloads 306
205 Dynamic Exergy Analysis for the Built Environment: Fixed or Variable Reference State

Authors: Valentina Bonetti

Abstract:

Exergy analysis successfully helps optimizing processes in various sectors. In the built environment, a second-law approach can enhance potential interactions between constructions and their surrounding environment and minimise fossil fuel requirements. Despite the research done in this field in the last decades, practical applications are hard to encounter, and few integrated exergy simulators are available for building designers. Undoubtedly, an obstacle for the diffusion of exergy methods is the strong dependency of results on the definition of its 'reference state', a highly controversial issue. Since exergy is the combination of energy and entropy by means of a reference state (also called "reference environment", or "dead state"), the reference choice is crucial. Compared to other classical applications, buildings present two challenging elements: They operate very near to the reference state, which means that small variations have relevant impacts, and their behaviour is dynamical in nature. Not surprisingly then, the reference state definition for the built environment is still debated, especially in the case of dynamic assessments. Among the several characteristics that need to be defined, a crucial decision for a dynamic analysis is between a fixed reference environment (constant in time) and a variable state, which fluctuations follow the local climate. Even if the latter selection is prevailing in research, and recommended by recent and widely-diffused guidelines, the fixed reference has been analytically demonstrated as the only choice which defines exergy as a proper function of the state in a fluctuating environment. This study investigates the impact of that crucial choice: Fixed or variable reference. The basic element of the building energy chain, the envelope, is chosen as the object of investigation as common to any building analysis. Exergy fluctuations in the building envelope of a case study (a typical house located in a Mediterranean climate) are confronted for each time-step of a significant summer day, when the building behaviour is highly dynamical. Exergy efficiencies and fluxes are not familiar numbers, and thus, the more easy-to-imagine concept of exergy storage is used to summarize the results. Trends obtained with a fixed and a variable reference (outside air) are compared, and their meaning is discussed under the light of the underpinning dynamical energy analysis. As a conclusion, a fixed reference state is considered the best choice for dynamic exergy analysis. Even if the fixed reference is generally only contemplated as a simpler selection, and the variable state is often stated as more accurate without explicit justifications, the analytical considerations supporting the adoption of a fixed reference are confirmed by the usefulness and clarity of interpretation of its results. Further discussion is needed to address the conflict between the evidence supporting a fixed reference state and the wide adoption of a fluctuating one. A more robust theoretical framework, including selection criteria of the reference state for dynamical simulations, could push the development of integrated dynamic tools and thus spread exergy analysis for the built environment across the common practice.

Keywords: exergy, reference state, dynamic, building

Procedia PDF Downloads 203
204 Investigation on the stability of rock slopes subjected to tension cracks via limit analysis

Authors: Weigao. Wu, Stefano. Utili

Abstract:

Based on the kinematic approach of limit analysis, a full set of upper bound solutions for the stability of homogeneous rock slopes subjected to tension cracks are obtained. The generalized Hoek-Brown failure criterion is employed to describe the non-linear strength envelope of rocks. In this paper, critical failure mechanisms are determined for cracks of known depth but unspecified location, cracks of known location but unknown depth, and cracks of unspecified location and depth. It is shown that there is a nearly up to 50% drop in terms of the stability factors for the rock slopes intersected by a tension crack compared with intact ones. Tables and charts of solutions in dimensionless forms are presented for ease of use by practitioners.

Keywords: Hoek-Brown failure criterion, limit analysis, rock slope, tension cracks

Procedia PDF Downloads 318
203 Drying of Agro-Industrial Wastes Using an Indirect Solar Dryer

Authors: N. Metidji, N. Kasbadji Merzouk, O. Badaoui, R. Sellami, A. Djebli

Abstract:

The Agro-industry is considered as one of the most waste producing industrial fields as a result of food processing. Upgrading and reuse of these wastes as animal or poultry food seems to be a promising alternative. Combined with the use of clean energy resources, the recovery process would contribute more to the environment protection. It is in this framework that a new solar dryer has been designed in the Unit of Solar Equipments Development. Indirect solar drying has, also, many advantages compared to natural sun drying. In fact, the first does not cause product degradation as it is protected by the drying chamber from direct sun, insects and exterior environment. The aim of this work is to study the drying kinetics of waste, generated during the processing of orange to make fruit juice, by using an indirect forced convection solar dryer at 50 °C and 60 °C, the rate of moisture removal from the product to be dried has been found to be directly related to temperature, humidity and flow rate. The characterization of these parameters has allowed the determination of the appropriate drying time for this product namely orange waste.

Keywords: solar energy, solar dryer, energy conversion, orange drying, forced convection solar dryer

Procedia PDF Downloads 335
202 Urban Ecological Interaction: Air, Water, Light and New Transit at the Human Scale of Barcelona’s Superilles

Authors: Philip Speranza

Abstract:

As everyday transit options are shifting from autocentric to pedestrian and bicycle oriented modes for healthy living, downtown streets are becoming more attractive places to live. However, tools and methods to measure the natural environment at the small scale of streets do not exist. Fortunately, a combination of mobile data collection technology and parametric urban design software now allows an interface to relate urban ecological conditions. This paper describes creation of an interactive tool to measure urban phenomena of air, water, and heat/light at the scale of new three-by-three block pedestrianized areas in Barcelona called Superilles. Each Superilla limits transit to the exterior of the blocks and to create more walkable and bikeable interior streets for healthy living. The research will describe the integration of data collection, analysis, and design output via a live interface using parametric software Rhino Grasshopper and the Human User Interface (UI) plugin.

Keywords: transit, urban design, GIS, parametric design, Superilles, Barcelona, urban ecology

Procedia PDF Downloads 225
201 Numerical Investigation for External Strengthening of Dapped-End Beams

Authors: A. Abdel-Moniem, H. Madkour, K. Farah, A. Abdullah

Abstract:

The reduction in dapped end beams depth nearby the supports tends to produce stress concentration and hence results in shear cracks, if it does not have an adequate reinforcement detailing. This study investigates numerically the efficiency of applying different external strengthening techniques to the dapped end of such beams. A two-dimensional finite element model was built to predict the structural behavior of dapped ends strengthened with different techniques. The techniques included external bonding of the steel angle at the re-entrant corner, un-bounded bolt anchoring, external steel plate jacketing, exterior carbon fiber wrapping and/or stripping and external inclined steel plates. The FE analysis results are then presented in terms of the ultimate load capacities, load-deflection and crack pattern at failure. The results showed that the FE model, at various stages, was found to be comparable to the available test data. Moreover, it enabled the capture of the failure progress, with acceptable accuracy, which is very difficult in a laboratory test.

Keywords: dapped-end beams, finite element, shear failure, strengthening techniques, reinforced concrete, numerical investigation

Procedia PDF Downloads 97
200 Influence of Orientation in Complex Building Architecture in Various Climatic Regions in Winter

Authors: M. Alwetaishi, Giulia Sonetti

Abstract:

It is architecturally accepted that building form and design is considered as one of the most important aspects in affecting indoor temperature. The total area of building plan might be identical, but the design will have a major influence on the total area of external walls. This will have a clear impact on the amount of heat exchange with outdoor. Moreover, it will affect the position and area of glazing system. This has not received enough consideration in research by the specialists, since most of the publications are highlighting the impact of building envelope in terms of physical heat transfer in buildings. This research will investigate the impact of orientation of various building forms in various climatic regions. It will be concluded that orientation and glazing to wall ratio were recognized to be the most effective variables despite the shape of the building. However, linear ad radial forms were found more appropriate shapes almost across the continent.

Keywords: architectural building design, building form, building design in different climate, indoor air temperature

Procedia PDF Downloads 381
199 Applying Renowned Energy Simulation Engines to Neural Control System of Double Skin Façade

Authors: Zdravko Eškinja, Lovre Miljanić, Ognjen Kuljača

Abstract:

This paper is an overview of simulation tools used to model specific thermal dynamics that occurs while controlling double skin façade. Research has been conducted on simplified construction with single zone where one side is glazed. Heat flow and temperature responses are simulated in three different simulation tools: IDA-ICE, EnergyPlus and HAMBASE. The excitation of observed system, used in all simulations, was a temperature step of exterior environment. Air infiltration, insulation and other disturbances are excluded from this research. Although such isolated behaviour is not possible in reality, experiments are carried out to gain novel information about heat flow transients which are not observable under regular conditions. Results revealed new possibilities for adapting the parameters of the neural network regulator. Along numerical simulations, the same set-up has been also tested in a real-time experiment with a 1:18 scaled model and thermal chamber. The comparison analysis brings out interesting conclusion about simulation accuracy in this particular case.

Keywords: double skin façade, experimental tests, heat control, heat flow, simulated tests, simulation tools

Procedia PDF Downloads 208