Search results for: carbon nanoparticle
3362 The Adsorption of Zinc Metal in Waste Water Using ZnCl2 Activated Pomegranate Peel
Authors: S. N. Turkmen, A. S. Kipcak, N. Tugrul, E. M. Derun, S. Piskin
Abstract:
Activated carbon is an amorphous carbon chain which has extremely extended surface area. High surface area of activated carbon is due to the porous structure. Activated carbon, using a variety of materials such as coal and cellulosic materials; can be obtained by both physical and chemical methods. The prepared activated carbon can be used for decolorize, deodorize and also can be used for removal of organic and non-organic pollution. In this study, pomegranate peel was subjected to 800W microwave power for 1 to 4 minutes. Also fresh pomegranate peel was used for the reference material. Then ZnCl2 was used for the chemical activation purpose. After the activation process, activated pomegranate peels were used for the adsorption of Zn metal (40 ppm) in the waste water. As a result of the adsorption experiments, removal of heavy metals ranged from 89% to 85%.Keywords: activated carbon, adsorption, chemical activation, microwave, pomegranate peel
Procedia PDF Downloads 5473361 Payment of Carbon Offsetting: A Case Study in Dharan, Nepal
Authors: Mana Shrestha, Dhruba Khatri, Pralhad Kunwor
Abstract:
The objective of the study was to explore the vehicle owners’ willingness to pay (WTP) for offsetting carbon that could eventually facilitate local governmental institutions to take further step in environmental conservation. Contingent valuation method was used to find out how much amount people were willing to pay for the carbon service they are getting from providers. Open ended questionnaire was carried out with 181 respondents randomly. The result shows different mean willingness to pay amount depending upon demographic variations like education, occupation, sex and residence but the occupation and the educational status significantly affected the WTP of respondent. Total WTP amount was calculated as 650 NRS.Keywords: community forest, carbon offset, Kyoto, REDD WTP
Procedia PDF Downloads 3043360 Silver Nanoparticle Application in Food Packaging and Impacts on Food Safety and Consumer’s Health
Authors: Worku Dejene Bekele, András Marczika Csilla Sörös
Abstract:
Silver nanoparticles are silver metal with a size of 1-100nm. The most common source of silver nanoparticles is inorganic salts. Nanoparticles can be ingested through our foods and constitute nanoparticles and silver ions, whether as an additive or by migrants and, in some cases, as a pollutant. Silver nanoparticles are the most widely applicable engineered nanomaterials, especially for antimicrobial function. Ag nanoparticles give different advantages in the case of food safety, quality, and overall acceptability; however, they affect the health of humans and animals, putting them at risk of health problems and environmental pollution. Silver nanoparticles have been used widely in food packaging technologies, especially in water treatments, meat and meat products, fruit, and many other food products. This is for bio-preservation from food products. The primary goal of this review is to determine the safety and health impact of Ag nanoparticles application in food packaging and analysis of the human organs more affected by this preservative technology, to assess the implications of a nanoparticle on food safety, to determine the effects of nanoparticles on consumers health and to determine the impact of nanotechnology on product acceptability. But currently, much research has demonstrated that there is cause to believe that silver nanoparticles may have toxicological effects on biological organs and systems. The silver nanoparticles affect DNA expression, gastrointestinal barriers, lungs, and other breathing organs illness. Silver particles and molecules are very toxic. During its application in food packaging, food industries used the thinnest particle. This particle can potentially affect the gastrointestinal tracts-it suffers from mucus production, DNA, lungs, and other breezing organs. This review is targeted to demonstrate the knowledge gap that industrials use in the application of silver nanoparticles in food packaging and preservation and its health effects on the consumer.Keywords: food preservatives, health impact, nanoparticle, silver nanoparticle
Procedia PDF Downloads 693359 Investigation the Effect of Nano-Alumina Particles on Physical Adsorption Property of Acrylic Fiber
Authors: Mehdi Ketabchi, Shamsollah Alijanlou
Abstract:
The flue gas from fossil fuels combustion contains harmful pollutants dangerous for human health and the environment. One of the air pollution control methods to restrict the emission of these pollutants is based on using the nanoparticle in the adsorption process. In the present research gamma, Nano-alumina particle is added to Polyacrylonitrile (PAN) polymer through simple loading method and the adsorption capacity of the wet spun fiber is investigated. The results of exposure the fiber to the acid gasses including SO2, CO, NO2, NO and CO2 show the noticeable increase of gas adsorption capacity on fiber contains nanoparticle. The research has been conducted in Acrylic II Plant of Polyacryl Iran Corporation.Keywords: acrylic fiber, adsorbent, wet spun, nano gamma alumina
Procedia PDF Downloads 3143358 A Dihydropyridine Derivative as a Highly Selective Fluorometric Probe for Quantification of Au3+ Residue in Gold Nanoparticle Solution
Authors: Waroton Paisuwan, Mongkol Sukwattanasinitt, Mamoru Tobisu, Anawat Ajavakom
Abstract:
Novel dihydroquinoline derivatives (DHP and DHP-OH) were synthesized in one pot via a tandem trimerization-cyclization of methylpropiolate. DHP and DHP-OH possess strong blue fluorescence with high quantum efficiencies over 0.70 in aqueous media. DHP-OH displays a remarkable fluorescence quenching selectively to the presence of Au3+ through the oxidation of dihydropyridine to pyridinium ion as confirmed by NMR and HRMS. DHP-OH was used to demonstrate the quantitative analysis of Au3+ in water samples with the limit of detection of 33 ppb and excellent recovery (>95%). This fluorescent probe was also applied for the determination of Au3+ residue in the gold nanoparticle solution and a paper-based sensing strip for the on-site detection of Au3+.Keywords: Gold(III) ion detection, Fluorescent sensor, Fluorescence quenching, Dihydropyridine, Gold nanoparticles (AuNPs)
Procedia PDF Downloads 853357 Carbon Nanofilms on Diamond for All-Carbon Chemical Sensors
Authors: Vivek Kumar, Alexander M. Zaitsev
Abstract:
A study on chemical sensing properties of carbon nanofilms on diamond for developing all-carbon chemical sensors is presented. The films were obtained by high temperature graphitization of diamond followed by successive plasma etchings. Characterization of the films was done by Raman spectroscopy, atomic force microscopy, and electrical measurements. Fast and selective response to common organic vapors as seen as sensitivity of electrical conductance was observed. The phenomenological description of the chemical sensitivity is proposed as a function of the surface and bulk material properties of the films.Keywords: chemical sensor, carbon nanofilm, graphitization of diamond, plasma etching, Raman spectroscopy, atomic force microscopy
Procedia PDF Downloads 4463356 Estimation of Carbon Uptake of Seoul City Street Trees in Seoul and Plans for Increase Carbon Uptake by Improving Species
Authors: Min Woo Park, Jin Do Chung, Kyu Yeol Kim, Byoung Uk Im, Jang Woo Kim, Hae Yeul Ryu
Abstract:
Nine representative species of trees among all the street trees were selected to estimate the absorption amount of carbon dioxide emitted from street trees in Seoul calculating the biomass, amount of carbon saved, and annual absorption amount of carbon dioxide in each of the species. Planting distance of street trees in Seoul was 1,851,180 m, the number of planting lines was 1,287, the number of planted trees was 284,498 and 46 species of trees were planted as of 2013. According to the result of plugging the quantity of species of street trees in Seoul on the absorption amount of each of the species, 120,097 ton of biomass, 60,049.8 ton of amount of carbon saved, and 11,294 t CO2/year of annual absorption amount of carbon dioxide were calculated. Street ratio mentioned on the road statistics in Seoul in 2022 is 23.13%. If the street trees are assumed to be increased in the same rate, the number of street trees in Seoul was calculated to be 294,823. The planting distance was estimated to be 1,918,360 m, and the annual absorption amount of carbon dioxide was measured to be 11,704 t CO2/year. Plans for improving the annual absorption amount of carbon dioxide from street trees were established based on the expected amount of absorption. First of all, it is to improve the annual absorption amount of carbon dioxide by increasing the number of planted street trees after adjusting the planting distance of street trees. If adjusting the current planting distance to 6 m, it was turned out that 12,692.7 t CO2/year was absorbed on an annual basis. Secondly, it is to change the species of trees to tulip trees that represent high absorption rate. If increasing the proportion of tulip trees to 30% up to 2022, the annual absorption rate of carbon dioxide was calculated to be 17804.4 t CO2/year.Keywords: absorption of carbon dioxide, source of absorbing carbon dioxide, trees in city, improving species
Procedia PDF Downloads 3613355 Impact of Nanoparticles in Enhancement of Thermal Conductivity of Phase Change Materials in Thermal Energy Storage and Cooling of Concentrated Photovoltaics
Authors: Ismaila H. Zarma, Mahmoud Ahmed, Shinichi Ookawara, Hamdi Abo-Ali
Abstract:
Phase change materials (PCM) are an ideal thermal storage medium. They are characterized by a high latent heat, which allows them to store large amounts of energy when the material transitions into different physical states. Concentrated photovoltaic (CPV) systems are widely recognized as the most efficient form of Photovoltaic (PV) for thermal energy which can be stored in Phase Change Materials (PCM). However, PCMs often have a low thermal conductivity which leads to a slow transient response. This makes it difficult to quickly store and access the energy stored within the PCM based systems, so there is need to improve transient responses and increase the thermal conductivity. The present study aims to investigate and analyze the melting and solidification process of phase change materials (PCMs) enhanced by nanoparticle contained in a container. Heat flux from concentrated photovoltaic is applied in an attempt to analyze the thermal performance and the impact of nanoparticles. The work will be realized by using a two dimensional model which take into account the phase change phenomena based on the principle of enthalpy method. Numerical simulations have been performed to investigate heat and flow characteristics by using governing equations, to ascertain the impacts of the nanoparticle loading. The Rayleigh number, sub-cooling as well as the unsteady evolution of the melting front and the velocity and temperature fields were also observed. The predicted results exhibited a good agreement, showing thermal enhancement due to present of nanoparticle which leads to decreasing the melting time.Keywords: thermal energy storage, phase-change material, nanoparticle, concentrated photovoltaic
Procedia PDF Downloads 2033354 Synthesis of Polyvinyl Alcohol Encapsulated Ag Nanoparticle Film by Microwave Irradiation for Reduction of P-Nitrophenol
Authors: Supriya, J. K. Basu, S. Sengupta
Abstract:
Silver nanoparticles have caught a lot of attention because of its unique physical and chemical properties. Silver nanoparticles embedded in polyvinyl alcohol (PVA/Ag) free-standing film have been prepared by microwave irradiation in few minutes. PVA performed as a reducing agent, stabilizing agents as well as support for silver nanoparticles. UV-Vis spectrometry, scanning transmission electron (SEM) and transmission electron microscopy (TEM) techniques affirmed the reduction of silver ion to silver nanoparticles in the polymer matrix. Effect of irradiation time, the concentration of PVA and concentration of silver precursor on the synthesis of silver nanoparticle has been studied. Particles size of silver nanoparticles decreases with increase in irradiation time. Concentration of silver nanoparticles increases with increase in concentration of silver precursor. Good dispersion of silver nanoparticles in the film has been confirmed by TEM analysis. Particle size of silver nanoparticle has been found to be in the range of 2-10nm. Catalytic property of prepared silver nanoparticles as a heterogeneous catalyst has been studied in the reduction of p-Nitrophenol (a water pollutant) with >98% conversion. From the experimental results, it can be concluded that PVA encapsulated Ag nanoparticles film as a catalyst shows better efficiency and reusability in the reduction of p-Nitrophenol.Keywords: biopolymer, microwave irradiation, silver nanoparticles, water pollutant
Procedia PDF Downloads 2893353 Carbon Accounting for Sustainable Design and Manufacturing in the Signage Industry
Authors: Prudvi Paresi, Fatemeh Javidan
Abstract:
In recent years, greenhouse gas, or in particular, carbon emissions, have received special attention from environmentalists and designers due to the fact that they significantly contribute to the temperature rise. The building industry is one of the top seven major industries contributing to embodied carbon emission. Signage systems are an integral part of the building industry and bring completeness to the space-building by providing the required information and guidance. A significant amount of building materials, such as steel, aluminium, acrylic, LED, etc., are utilized in these systems, but very limited information is available on their sustainability and carbon footprint. Therefore, there is an urgent need to assess the emissions associated with the signage industry and for controlling these by adopting different mitigation techniques without sacrificing the efficiency of the project. The present paper investigates the embodied carbon of two case studies in the Australian signage industry within the cradle – gate (A1-A3) and gate–site (A4-A5) stages. A material source-based database is considered to achieve more accuracy. The study identified that aluminium is the major contributor to embodied carbon in the signage industry compared to other constituents. Finally, an attempt is made to suggest strategies for mitigating embodied carbon in this industry.Keywords: carbon accounting, small-scale construction, signage industry, construction materials
Procedia PDF Downloads 1173352 Dynamics of Soil Carbon and Nitrogen Contents and Stocks along a Salinity Gradient
Authors: Qingqing Zhao, Junhong Bai
Abstract:
To investigate the effects of salinity on dynamics of soil carbon and nitrogen contents and stocks, soil samples were collected at a depth of 30 cm at four sampling sites (Sites B, T, S and P) along a salinity gradient in a drained coastal wetland, the Yellow River Delta, China. The salinity of these four sites ranked in the order: B (8.68±4.25 ms/cm) > T (5.89±3.17 ms/cm) > S (3.19±1.01 ms/cm) > P (2.26±0.39 ms/cm). Soil total carbon (TC), soil organic carbon (SOC), soil microbial biomass carbon (MBC), soil total nitrogen (TC) and soil microbial biomass carbon (MBC) were measured. Based on these data, soil organic carbon density (SOCD), soil microbial biomass carbon density (MBCD), soil nitrogen density (TCD) and soil microbial biomass nitrogen density (MBND) were calculated at four sites. The results showed that the mean concentrations of TC, SOC, MBC, TN and MBN showed a general deceasing tendency with increasing salinities in the top 30 cm of soils. The values of SOCD, MBCD, TND and MBND exhibited similar tendency along the salinity gradient. As for profile distribution pattern, The C/N ratios ranged from 8.28 to 56. 51. Higher C/N ratios were found in samples with high salinity. Correlation analysis showed that the concentrations of TC, SOC and MBC at four sampling sites were significantly negatively correlated with salinity (P < 0.01 or P < 0.05), indicating that salinity could inhibit soil carbon accumulation. However, no significant relationship was observed between TN, MBN and salinity (P > 0.05).Keywords: carbon content and stock, nitrogen content and stock, salinity, coastal wetland
Procedia PDF Downloads 3163351 Study of Methods to Reduce Carbon Emissions in Structural Engineering
Authors: Richard Krijnen, Alan Wang
Abstract:
As the world is aiming to reach net zero around 2050, structural engineers must begin finding solutions to contribute to this global initiative. Approximately 40% of global energy-related emissions are due to buildings and construction, and a building’s structure accounts for 50% of its embodied carbon, which indicates that structural engineers are key contributors to finding solutions to reach carbon neutrality. However, this task presents a multifaceted challenge as structural engineers must navigate technical, safety and economic considerations while striving to reduce emissions. This study reviews several options and considerations to reduce carbon emissions that structural engineers can use in their future designs without compromising the structural integrity of their proposed design. Low-carbon structures should adhere to several guiding principles. Firstly, prioritize the selection of materials with low carbon footprints, such as recyclable or alternative materials. Optimization of design and engineering methods is crucial to minimize material usage. Encouraging the use of recyclable and renewable materials reduces dependency on natural resources. Energy efficiency is another key consideration involving the design of structures to minimize energy consumption across various systems. Choosing local materials and minimizing transportation distances help in reducing carbon emissions during transport. Innovation, such as pre-fabrication and modular design or low-carbon concrete, can further cut down carbon emissions during manufacturing and construction. Collaboration among stakeholders and sharing experiences and resources are essential for advancing the development and application of low-carbon structures. This paper identifies current available tools and solutions to reduce embodied carbon in structures, which can be used as part of daily structural engineering practice.Keywords: efficient structural design, embodied carbon, low-carbon material, sustainable structural design
Procedia PDF Downloads 413350 Investigation of the Effect of Nano-Alumina Particles on Adsorption Property of Acrylic Fiber
Authors: Mehdi Ketabchi, Shallah Alijanlo
Abstract:
The flue gas from fossil fuels combustion contains harmful pollutants dangerous for human health and environment. One of the air pollution control methods to restrict the emission of these pollutants is based on using the nanoparticle in adsorption process. In the present research, gamma nano-alumina particle is added to polyacrylonitrile (PAN) polymer through simple loading method, and the adsorption capacity of the wet spun fiber is investigated. The results of exposure the fiber to the acid gases including SO2, CO, NO2, NO, and CO2 show the noticeable increase of gas adsorption capacity on fiber contains nanoparticle. The research has been conducted in Acrylic II Plant of Polyacryl Iran Corporation.Keywords: acrylic fiber, adsorbent, wet spun, polyacryl company, nano gamma alumina
Procedia PDF Downloads 1773349 Integrating Carbon Footprint into Supply Chain Management of Manufacturing Companies: Sri Lanka
Authors: Shirekha Layangani, Suneth Dharmaparakrama
Abstract:
When the manufacturing industry is concerned the Environment Management System (EMS) is a common term. Currently most organizations have obtained the environmental standard certification, ISO 14001. In the Sri Lankan context even though the organizations adopt Environmental Management, a very limited number of companies tend to calculate their Carbon Footprints. This research discusses the demotivating factors of manufacturing organizations in Sri Lanka to integrate calculation of carbon footprint into their supply chains. Further it also identifies the benefits that manufacturing organizations can gain by implementing calculation of carbon footprint. The manufacturing companies listed under “ISO 14001” certification were considered in this study in order to investigate the problems mentioned above. 100% enumeration was used when the surveys were carried out. In order to gather essential data two surveys were designed to be done among manufacturing organizations that are currently engaged in calculating their carbon footprint and the organizations that have not. The survey among the first set of manufacturing organizations revealed the benefits the organizations were able to gain by implementing calculation of carbon footprint. The latter set organizations revealed the demotivating factors that have influenced not to integrate calculation of carbon footprint into their supply chains. This paper has summarized the results obtained by the surveys and segregated depending on the market share of the manufacturing organizations. Further it has indicated the benefits that can be obtained by implementing carbon footprint calculation, depending on the market share of the manufacturing entity. Finally the research gives suggestions to manufacturing organizations on applicability of adopting carbon footprint calculation depending on the benefits that can be obtained.Keywords: carbon footprint, environmental management systems (EMS), benefits of carbon footprint, ISO14001
Procedia PDF Downloads 3743348 Green Supply Chain Design: A Mathematical Modeling Approach
Authors: Nusrat T. Chowdhury
Abstract:
Green Supply Chain Management (GSCM) is becoming a key to success for profitable businesses. The various activities contributing to carbon emissions in a supply chain are transportation, ordering and holding of inventory. This research work develops a mixed-integer nonlinear programming (MINLP) model that considers the scenario of a supply chain with multiple periods, multiple products and multiple suppliers. The model assumes that the demand is deterministic, the buyer has a limited storage space in each period, the buyer is responsible for the transportation cost, a supplier-dependent ordering cost applies for each period in which an order is placed on a supplier and inventory shortage is permissible. The model provides an optimal decision regarding what products to order, in what quantities, with which suppliers, and in which periods in order to maximize the profit. For the purpose of evaluating the carbon emissions, three different carbon regulating policies i.e., carbon cap-and-trade, the strict cap on carbon emission and carbon tax on emissions, have been considered. The proposed MINLP has been validated using a randomly generated data set.Keywords: green supply chain, carbon emission, mixed integer non-linear program, inventory shortage, carbon cap-and-trade
Procedia PDF Downloads 2393347 Relaxation Dynamics of Quantum Emitters Resonantly Coupled to a Localized Surface Plasmon
Authors: Khachatur V. Nerkararyan, Sergey I. Bozhevolnyi
Abstract:
We investigate relaxation dynamics of a quantum dipole emitter (QDE), e.g., a molecule or quantum dot, located near a metal nanoparticle (MNP) exhibiting a dipolar localized surface plasmon (LSP) resonance at the frequency of the QDE radiative transition. It is shown that under the condition of the QDE-MNP characteristic relaxation time being much shorter than that of the QDE in free-space but much longer than the LSP lifetime. It is also shown that energy dissipation in the QDE-MNP system is relatively weak with the probability of the photon emission being about 0.75, a number which, rather surprisingly, does not explicitly depend on the metal absorption characteristics. The degree of entanglement measured by the concurrency takes the maximum value, while the distances between the QDEs and metal ball approximately are equal.Keywords: metal nanoparticle, localized surface plasmon, quantum dipole emitter, relaxation dynamics
Procedia PDF Downloads 4513346 Surface Segregation-Inspired Design for Bimetallic Nanoparticle Catalysts
Authors: Yaxin Tang, Mingao Hou, Qian He, Guangfu Luo
Abstract:
Bimetallic nanoparticles serve as a promising class of catalysts with tunable properties suitable for diverse catalytic reactions, yet a comprehensive understanding of their actual structures under operating conditions and the optimal design principles remains largely elusive. In this study, we unveil a prevalent surface segregation phenomenon in nearly 100 platinum-group-element-based bimetallic nanoparticles through first principles-based molecular dynamics simulations. Our findings highlight that two components in a nanoparticle with relatively lower surface energy tend to segregate to the surface. Motivated by this discovery, we propose a deliberate exploitation of surface segregation in designing bimetallic nanoparticle catalysts, aiming for heightened stability and reduced consumption of precious metals. To validate this strategy, we further investigate 36 platinum-based bimetallic nanoparticles for propane dehydrogenation catalysis. Through a systematic examination of catalytic sites on nanoparticles, we identify several systems as top candidates with Pt-enriched surfaces, remarkable thermal stability, and superior catalytic activity for propane dehydrogenation. The insights gained garnered from this study are anticipated to provide a valuable framework for the optimal design of other bimetallic nanoparticles.Keywords: bimetallic nanoparticles, platinum-group element, catalysis, surface segregation, first-principles calculations
Procedia PDF Downloads 503345 Driving Forces of Net Carbon Emissions in a Tropical Dry Forest, Oaxaca, México
Authors: Rogelio Omar Corona-Núñez, Alma Mendoza-Ponce
Abstract:
The Tropical Dry Forest not only is one of the most important tropical ecosystems in terms of area, but also it is one of the most degraded ecosystems. However, little is known about the degradation impacts on carbon stocks, therefore in carbon emissions. There are different studies which explain its deforestation dynamics, but there is still a lack of understanding of how they correlate to carbon losses. Recently different authors have built current biomass maps for the tropics and Mexico. However, it is not clear how well they predict at the local scale, and how they can be used to estimate carbon emissions. This study quantifies the forest net carbon losses by comparing the potential carbon stocks and the different current biomass maps in the Southern Pacific coast in Oaxaca, Mexico. The results show important differences in the current biomass estimates with not a clear agreement. However, by the aggregation of the information, it is possible to infer the general patterns of biomass distribution and it can identify the driving forces of the carbon emissions. This study estimated that currently ~44% of the potential carbon stock estimated for the region is still present. A total of 6,764 GgC has been emitted due to deforestation and degradation of the forest at a rate of above ground biomass loss of 66.4 Mg ha-1. Which, ~62% of the total carbon emissions can be regarded as being due to forest degradation. Most of carbon losses were identified in places suitable for agriculture, close to rural areas and to roads while the lowest losses were accounted in places with high water stress and within the boundaries of the National Protected Area. Moreover, places not suitable for agriculture, but close to the coast showed carbon losses as a result of urban settlements.Keywords: above ground biomass, deforestation, degradation, driving forces, tropical deciduous forest
Procedia PDF Downloads 1833344 Carbon Nanocomposites : Structure, Characterization and Environmental Application
Authors: Bensacia Nabila, Hadj-Ziane Amel, Sefah Karima
Abstract:
Carbon nanocomposites have received more attention in the last years in view of their special properties such as low density, high specific surface area, and thermal and mechanical stability. Taking into account the importance of these materials, many studies aimed at improving the synthesis process have been conducted. However, the presence of impurities could affect significantly the properties of these materials, and the characterization of these compounds is an important challenge to assure the quality of the new carbon nanocomposites. The present study aims to develop a new recyclable decontaminating material for dyes removal. This new material consists of an active element based on carbon nanotubes wrapped in a microcapsule of iron oxide. The adsorbent is characterized by Transmission electron microscopy, X-ray diffraction and the surface area was measured by the BET method.Keywords: carbon nanocomposite, chitozen, elimination, dyes
Procedia PDF Downloads 3213343 Carbon Skimming: Towards an Application to Summarise and Compare Embodied Carbon to Aid Early-Stage Decision Making
Authors: Rivindu Nethmin Bandara Menik Hitihamy Mudiyanselage, Matthias Hank Haeusler, Ben Doherty
Abstract:
Investors and clients in the Architectural, Engineering and Construction industry find it difficult to understand complex datasets and reports with little to no graphic representation. The stakeholders examined in this paper include designers, design clients and end-users. Communicating embodied carbon information graphically and concisely can aid with decision support early in a building's life cycle. It is essential to create a common visualisation approach as the level of knowledge about embodied carbon varies between stakeholders. The tool, designed in conjunction with Bates Smart, condenses Tally Life Cycle Assessment data to a carbon hot-spotting visualisation, highlighting the sections with the highest amounts of embodied carbon. This allows stakeholders at every stage of a given project to have a better understanding of the carbon implications with minimal effort. It further allows stakeholders to differentiate building elements by their carbon values, which enables the evaluation of the cost-effectiveness of the selected materials at an early stage. To examine and build a decision-support tool, an action-design research methodology of cycles of iterations was used along with precedents of embodied carbon visualising tools. Accordingly, the importance of visualisation and Building Information Modelling are also explored to understand the best format for relaying these results.Keywords: embodied carbon, visualisation, summarisation, data filtering, early-stage decision-making, materiality
Procedia PDF Downloads 823342 The Effect of Hydrogen on the Magnetic Properties of ZnO: A Density Functional Tight Binding Study
Authors: M. A. Lahmer, K. Guergouri
Abstract:
The ferromagnetic properties of carbon-doped ZnO (ZnO:CO) and hydrogenated carbon-doped ZnO (ZnO:CO+H) are investigated using the density functional tight binding (DFTB) method. Our results reveal that CO-doped ZnO is a ferromagnetic material with a magnetic moment of 1.3 μB per carbon atom. The presence of hydrogen in the material in the form of CO-H complex decreases the total magnetism of the material without suppressing ferromagnetism. However, the system in this case becomes quickly antiferromagnetic when the C-C separation distance was increased.Keywords: ZnO, carbon, hydrogen, ferromagnetism, density functional tight binding
Procedia PDF Downloads 2853341 Production of Natural Gas Hydrate by Using Air and Carbon Dioxide
Authors: Yun-Ho Ahn, Hyery Kang, Dong-Yeun Koh, Huen Lee
Abstract:
In this study, we demonstrate the production of natural gas hydrates from permeable marine sediments with simultaneous mechanisms for methane recovery and methane-air or methane-air/carbon dioxide replacement. The simultaneous melting happens until the chemical potentials become equal in both phases as natural gas hydrate depletion continues and self-regulated methane-air replacement occurs over an arbitrary point. We observed certain point between dissociation and replacement mechanisms in the natural gas hydrate reservoir, and we call this boundary as critical methane concentration. By the way, when carbon dioxide was added, the process of chemical exchange of methane by air/carbon dioxide was observed in the natural gas hydrate. The suggested process will operate well for most global natural gas hydrate reservoirs, regardless of the operating conditions or geometrical constraints.Keywords: air injection, carbon dioxide sequestration, hydrate production, natural gas hydrate
Procedia PDF Downloads 4583340 Quantum Conductance Based Mechanical Sensors Fabricated with Closely Spaced Metallic Nanoparticle Arrays
Authors: Min Han, Di Wu, Lin Yuan, Fei Liu
Abstract:
Mechanical sensors have undergone a continuous evolution and have become an important part of many industries, ranging from manufacturing to process, chemicals, machinery, health-care, environmental monitoring, automotive, avionics, and household appliances. Concurrently, the microelectronics and microfabrication technology have provided us with the means of producing mechanical microsensors characterized by high sensitivity, small size, integrated electronics, on board calibration, and low cost. Here we report a new kind of mechanical sensors based on the quantum transport process of electrons in the closely spaced nanoparticle films covering a flexible polymer sheet. The nanoparticle films were fabricated by gas phase depositing of preformed metal nanoparticles with a controlled coverage on the electrodes. To amplify the conductance of the nanoparticle array, we fabricated silver interdigital electrodes on polyethylene terephthalate(PET) by mask evaporation deposition. The gaps of the electrodes ranged from 3 to 30μm. Metal nanoparticles were generated from a magnetron plasma gas aggregation cluster source and deposited on the interdigital electrodes. Closely spaced nanoparticle arrays with different coverage could be gained through real-time monitoring the conductance. In the film coulomb blockade and quantum, tunneling/hopping dominate the electronic conduction mechanism. The basic principle of the mechanical sensors relies on the mechanical deformation of the fabricated devices which are translated into electrical signals. Several kinds of sensing devices have been explored. As a strain sensor, the device showed a high sensitivity as well as a very wide dynamic range. A gauge factor as large as 100 or more was demonstrated, which can be at least one order of magnitude higher than that of the conventional metal foil gauges or even better than that of the semiconductor-based gauges with a workable maximum applied strain beyond 3%. And the strain sensors have a workable maximum applied strain larger than 3%. They provide the potential to be a new generation of strain sensors with performance superior to that of the currently existing strain sensors including metallic strain gauges and semiconductor strain gauges. When integrated into a pressure gauge, the devices demonstrated the ability to measure tiny pressure change as small as 20Pa near the atmospheric pressure. Quantitative vibration measurements were realized on a free-standing cantilever structure fabricated with closely-spaced nanoparticle array sensing element. What is more, the mechanical sensor elements can be easily scaled down, which is feasible for MEMS and NEMS applications.Keywords: gas phase deposition, mechanical sensors, metallic nanoparticle arrays, quantum conductance
Procedia PDF Downloads 2743339 White Light Emitting Carbon Dots- Surface Modification of Carbon Dots Using Auxochromes
Authors: Manasa Perikala, Asha Bhardwaj
Abstract:
Fluorescent carbon dots (CDs), a young member of Carbon nanomaterial family, has gained a lot of research attention across the globe due to its highly luminescent emission properties, non-toxic behavior, stable emission properties, and zero re-absorption lose. These dots have the potential to replace the use of traditional semiconductor quantum dots in light-emitting devices (LED’s, fiber lasers) and other photonic devices (temperature sensor, UV detector). However, One major drawback of Carbon dots is that, till date, the actual mechanism of photoluminescence (PL) in carbon dots is still an open topic of discussion among various researchers across the globe. PL mechanism of CDs based on wide particle size distribution, the effect of surface groups, hybridization in carbon, and charge transfer mechanisms have been proposed. Although these mechanisms explain PL of CDs to an extent, no universally accepted mechanism to explain complete PL behavior of these dots is put forth. In our work, we report parameters affecting the size and surface of CDs, such as time of the reaction, synthesis temperature and concentration of precursors and their effects on the optical properties of the carbon dots. The effect of auxochromes on the emission properties and re-modification of carbon surface using an external surface functionalizing agent is discussed in detail. All the explanations have been supported by UV-Visible absorption, emission spectroscopies, Fourier transform infrared spectroscopy and Transmission electron microscopy and X-Ray diffraction techniques. Once the origin of PL in CDs is understood, parameters affecting PL centers can be modified to tailor the optical properties of these dots, which can enhance their applications in the fabrication of LED’s and other photonic devices out of these carbon dots.Keywords: carbon dots, photoluminescence, size effects on emission in CDs, surface modification of carbon dots
Procedia PDF Downloads 1353338 Study of Structure and Properties of Polyester/Carbon Blends for Technical Applications
Authors: Manisha A. Hira, Arup Rakshit
Abstract:
Textile substrates are endowed with flexibility and ease of making–up, but are non-conductors of electricity. Conductive materials like carbon can be incorporated into textile structures to make flexible conductive materials. Such conductive textiles find applications as electrostatic discharge materials, electromagnetic shielding materials and flexible materials to carry current or signals. This work focuses on use of carbon fiber as conductor of electricity. Carbon fibers in staple or tow form can be incorporated in textile yarn structure to conduct electricity. The paper highlights the process for development of these conductive yarns of polyester/carbon using Friction spinning (DREF) as well as ring spinning. The optimized process parameters for processing hybrid structure of polyester with carbon tow on DREF spinning and polyester with carbon staple fiber using ring spinning have been presented. The studies have been linked to highlight the electrical conductivity of the developed yarns. Further, the developed yarns have been incorporated as weft in fabric and their electrical conductivity has been evaluated. The paper demonstrates the structure and properties of fabrics developed from such polyester/carbon blend yarns and their suitability as electrically dissipative fabrics.Keywords: carbon fiber, conductive textiles, electrostatic dissipative materials, hybrid yarns
Procedia PDF Downloads 3033337 Nondestructive Natural Gas Hydrate Production by Using Air and Carbon Dioxide
Authors: Ahn Yun-Ho, Hyery Kang, Koh Dong-Yeun, Huen Lee
Abstract:
In this study, we demonstrate the production of natural gas hydrates from permeable marine sediments with simultaneous mechanisms for methane recovery and methane-air or methane-air/carbon dioxide replacement. The simultaneous melting happens until the chemical potentials become equal in both phases as natural gas hydrate depletion continues and self-regulated methane-air replacement occurs over an arbitrary point. We observed certain point between dissociation and replacement mechanisms in the natural gas hydrate reservoir, and we call this boundary as critical methane concentration. By the way, when carbon dioxide was added, the process of chemical exchange of methane by air/carbon dioxide was observed in the natural gas hydrate. The suggested process will operate well for most global natural gas hydrate reservoirs, regardless of the operating conditions or geometrical constraints.Keywords: air injection, carbon dioxide sequestration, hydrate production, natural gas hydrate
Procedia PDF Downloads 5733336 Carbon Sequestration under Hazelnut (Corylus avellana) Agroforestry and Adjacent Land Uses in the Vicinity of Black Sea, Trabzon, Turkey
Authors: Mohammed Abaoli Abafogi, Sinem Satiroglu, M. Misir
Abstract:
The current study has addressed the effect of Hazelnut (Corylus avellana) agroforestry on carbon sequestration. Eight sample plots were collected from Hazelnut (Corylus avellana) agroforestry using random sampling method. The diameter of all trees in each plot with ≥ 2cm at 1.3m DBH was measured by using a calliper. Average diameter, aboveground biomass, and carbon stock were calculated for each plot. Comparative data for natural forestland was used for C was taken from KTU, and the soil C was converted from the biomass conversion equation. Biomass carbon was significantly higher in the Natural forest (68.02Mgha⁻¹) than in the Hazelnut agroforestry (16.89Mgha⁻¹). SOC in Hazelnut agroforestry, Natural forest, and arable agricultural land were 7.70, 385.85, and 0.00 Mgha⁻¹ respectively. Biomass C, on average accounts for only 0.00% of the total C in arable agriculture, and 11.02% for the Hazelnut agroforestry while 88.05% for Natural forest. The result shows that the conversion of arable crop field to Hazelnut agroforestry can sequester a large amount of C in the soil as well as in the biomass than Arable agricultural lands.Keywords: arable agriculture, biomass carbon, carbon sequestration, hazelnut (Corylus avellana) agroforestry, soil organic carbon
Procedia PDF Downloads 3063335 Modeling of Carbon Monoxide Distribution under the Sky-Train Stations
Authors: Suranath Chomcheon, Nathnarong Khajohnsaksumeth, Benchawan Wiwatanapataphee
Abstract:
Carbon monoxide is one of the harmful gases which have colorless, odorless, and tasteless. Too much carbon monoxide taken into the human body causes the reduction of oxygen transportation within human body cells leading to many symptoms including headache, nausea, vomiting, loss of consciousness, and death. Carbon monoxide is considered as one of the air pollution indicators. It is mainly released as soot from the exhaust pipe of the incomplete combustion of the vehicle engine. Nowadays, the increase in vehicle usage and the slowly moving of the vehicle struck by the traffic jam has created a large amount of carbon monoxide, which accumulated in the street canyon area. In this research, we study the effect of parameters such as wind speed and aspect ratio of the height building affecting the ventilation. We consider the model of the pollutant under the Bangkok Transit System (BTS) stations in a two-dimensional geometrical domain. The convention-diffusion equation and Reynolds-averaged Navier-stokes equation is used to describe the concentration and the turbulent flow of carbon monoxide. The finite element method is applied to obtain the numerical result. The result shows that our model can describe the dispersion patterns of carbon monoxide for different wind speeds.Keywords: air pollution, carbon monoxide, finite element, street canyon
Procedia PDF Downloads 1263334 Impact of Different Tillage Practices on Soil Health Status: Carbon Storage and Pools, Soil Aggregation, and Nutrient Use
Authors: Denis Constantin Topa, Irina Gabriela Cara, Gerard Jitareanu
Abstract:
Tillage is a fundamental soil practice with different soil disturbance intensities and unique implications in soil organic carbon, soil structure, and nutrient dynamics. However, the implication of tillage practice on soil organic carbon and soil health is complex and specific to the context. it study evaluated soil health status based on soil carbon sequestration and pools, soil aggregation, and nutrient use under two different tillage practices: conventional and minimum tillage. The results of our study are consistent with the hypothesis that, over time, minimum tillage typically boosts soil health in the 0-10 cm soil layer. Compared to the conventional practice (19.36 t C ha-1) there was a significant accumulation of soil organic carbon (0-30 cm) in the minimum-tillage practice (23.21 t C ha-1). Below 10 cm depth, the soil organic carbon stocks are close to that of the conventional layer (0-30 cm). Soil aggregate stability was improved under conservative tillage, due to soil carbon improvement which facilitated a greater volume of mesopores and micropores. Total nitrogen (TN), available potassium (AK) and phosphorus (AP) content in 0-10 cm depth under minimum-tillage practice were 26%, 6% and 32%, greater respectively, compared to the conventional treatment. Overall, the TN, AP and AK values decreased with depth within the soil profiles as a consequence of soil practice and minimum disturbance. The data show that minimum tillage is a sustainable and effective management practice that maintain soil health with soil carbon increase and efficient nutrient use.Keywords: minimum tillage, conventional tillage, soil organic carbon, nutrients, soil aggregation, soil health
Procedia PDF Downloads 93333 An Investigation on the Effect of Railway Track Elevation Project in Taichung Based on the Carbon Emissions
Authors: Kuo-Wei Hsu, Jen-Chih, Chao, Pei-Chen, Wu
Abstract:
With the rapid development of global economy, the increasing population, the highly industrialization, greenhouse gas emission and the ozone layer damage, the Global Warming happens. Facing the impact of global warming, the issue of “green transportation” began to be valued and promoted in each city. Taichung has been elected as the model of low-carbon city in Taiwan. To comply with international trends and the government policy, we tried to promote the energy saving and carbon reduction to create a “low-carbon Taichung with green life and eco-friendly economy”. To cooperate with the “green transportation” project, Taichung has promoted a number of public transports constructions and traffic policy in recent years like BRT, MRT, etc. The elevated railway is one of those important constructions. Cooperating with the green transport policy, elevated railway could help to achieve the carbon reduction for this low-carbon city. The current studies of the carbon emissions associated with railways and roads are focusing on the assessment on paving material, institutional policy and economic benefit. Except for changing the mode of transportation, elevated railways/roads also create space under the bridge. However, there is no research about the carbon emissions of the space underneath the elevated section up until now. This study investigated the effect of railway track elevation project in Taichung based on the carbon emissions and the factors that affect carbon emissions by research related theory and literature analysis. This study concluded that : railway track elevation increased the public transit, the bike lanes, the green areas and walking spaces. In the other hand it reduced the traffic congestions, the use of motorcycles as well as automobiles for carbon emissions.Keywords: low-carbon city, green transportation, carbon emissions, Taichung, Taiwan
Procedia PDF Downloads 533