Search results for: Sugeno fuzzy classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2839

Search results for: Sugeno fuzzy classification

2719 Fuzzy Logic Driven PID Controller for PWM Based Buck Converter

Authors: Bandreddy Anand Babu, Mandadi Srinivasa Rao, Chintala Pradeep Reddy

Abstract:

The main theme of this paper is to design fuzzy logic Proportional Integral Derivative controller for controlling of Pulse Width Modulator (PWM) based DCDC buck converter in continuous conduction mode of operation and comparing the results of FPID and ANFIS. Simulation is done to fuzzy the given input variables and membership functions of input values, creating the interference rules linking the input and output variables and after then defuzzfies the output variables. Fuzzy logic is simple for nonlinear models like buck converter. Fuzzy logic based PID controller technique is to control, nonlinear plants like buck converters in switching variables of power electronics. The characteristics of FPID are in terms of rise time, settling time, rise time, steady state errors for different inputs and load disturbances.

Keywords: fuzzy logic, PID controller, DC-DC buck converter, pulse width modulation

Procedia PDF Downloads 1017
2718 Credit Risk Assessment Using Rule Based Classifiers: A Comparative Study

Authors: Salima Smiti, Ines Gasmi, Makram Soui

Abstract:

Credit risk is the most important issue for financial institutions. Its assessment becomes an important task used to predict defaulter customers and classify customers as good or bad payers. To this objective, numerous techniques have been applied for credit risk assessment. However, to our knowledge, several evaluation techniques are black-box models such as neural networks, SVM, etc. They generate applicants’ classes without any explanation. In this paper, we propose to assess credit risk using rules classification method. Our output is a set of rules which describe and explain the decision. To this end, we will compare seven classification algorithms (JRip, Decision Table, OneR, ZeroR, Fuzzy Rule, PART and Genetic programming (GP)) where the goal is to find the best rules satisfying many criteria: accuracy, sensitivity, and specificity. The obtained results confirm the efficiency of the GP algorithm for German and Australian datasets compared to other rule-based techniques to predict the credit risk.

Keywords: credit risk assessment, classification algorithms, data mining, rule extraction

Procedia PDF Downloads 184
2717 Probability Fuzzy Aggregation Operators in Vehicle Routing Problem

Authors: Anna Sikharulidze, Gia Sirbiladze

Abstract:

For the evaluation of unreliability levels of movement on the closed routes in the vehicle routing problem, the fuzzy operators family is constructed. The interactions between routing factors in extreme conditions on the roads are considered. A multi-criteria decision-making model (MCDM) is constructed. Constructed aggregations are based on the Choquet integral and the associated probability class of a fuzzy measure. Propositions on the correctness of the extension are proved. Connections between the operators and the compositions of dual triangular norms are described. The conjugate connections between the constructed operators are shown. Operators reflect interactions among all the combinations of the factors in the fuzzy MCDM process. Several variants of constructed operators are used in the decision-making problem regarding the assessment of unreliability and possibility levels of movement on closed routes.

Keywords: vehicle routing problem, associated probabilities of a fuzzy measure, choquet integral, fuzzy aggregation operator

Procedia PDF Downloads 328
2716 Optimal Tuning of a Fuzzy Immune PID Parameters to Control a Delayed System

Authors: S. Gherbi, F. Bouchareb

Abstract:

This paper deals with the novel intelligent bio-inspired control strategies, it presents a novel approach based on an optimal fuzzy immune PID parameters tuning, it is a combination of a PID controller, inspired by the human immune mechanism with fuzzy logic. Such controller offers more possibilities to deal with the delayed systems control difficulties due to the delay term. Indeed, we use an optimization approach to tune the four parameters of the controller in addition to the fuzzy function; the obtained controller is implemented in a modified Smith predictor structure, which is well known that it is the most efficient to the control of delayed systems. The application of the presented approach to control a three tank delay system shows good performances and proves the efficiency of the method.

Keywords: delayed systems, fuzzy immune PID, optimization, Smith predictor

Procedia PDF Downloads 438
2715 A New Concept for Deriving the Expected Value of Fuzzy Random Variables

Authors: Liang-Hsuan Chen, Chia-Jung Chang

Abstract:

Fuzzy random variables have been introduced as an imprecise concept of numeric values for characterizing the imprecise knowledge. The descriptive parameters can be used to describe the primary features of a set of fuzzy random observations. In fuzzy environments, the expected values are usually represented as fuzzy-valued, interval-valued or numeric-valued descriptive parameters using various metrics. Instead of the concept of area metric that is usually adopted in the relevant studies, the numeric expected value is proposed by the concept of distance metric in this study based on two characters (fuzziness and randomness) of FRVs. Comparing with the existing measures, although the results show that the proposed numeric expected value is same with those using the different metric, if only triangular membership functions are used. However, the proposed approach has the advantages of intuitiveness and computational efficiency, when the membership functions are not triangular types. An example with three datasets is provided for verifying the proposed approach.

Keywords: fuzzy random variables, distance measure, expected value, descriptive parameters

Procedia PDF Downloads 346
2714 A Sufficient Fuzzy Controller for Improving the Transient Response in Electric Motors

Authors: Aliasghar Baziar, Hassan Masoumi, Alireza Ale Saadi

Abstract:

The control of the response of electric motors plays a significant role in the damping of transient responses. In this regard, this paper presents a static VAR compensator (SVC) based on a fuzzy logic which is applied to an industrial power network consisting of three phase synchronous, asynchronous and DC motor loads. The speed and acceleration variations of a specific machine are the inputs of the proposed fuzzy logic controller (FLC). In order to verify the effectiveness and proficiency of the proposed Fuzzy Logic based SVC (FLSVC), several non-linear time-domain digital simulation tests are performed. The proposed fuzzy model can properly control the response of electric motors. The results show that the FLSVC is successful to improve the voltage profile significantly over a wide range of operating conditions and disturbances thus improving the overall dynamic performance of the network.

Keywords: fuzzy logic controller, VAR compensator, single cage asynchronous motor, DC motor

Procedia PDF Downloads 631
2713 A Prediction Model of Tornado and Its Impact on Architecture Design

Authors: Jialin Wu, Zhiwei Lian, Jieyu Tang, Jingyun Shen

Abstract:

Tornado is a serious and unpredictable natural disaster, which has an important impact on people's production and life. The probability of being hit by tornadoes in China was analyzed considering the principles of tornado formation. Then some suggestions on layout and shapes for newly-built buildings were provided combined with the characteristics of tornado wind fields. Fuzzy clustering and inverse closeness methods were used to evaluate the probability levels of tornado risks in various provinces based on classification and ranking. GIS was adopted to display the results. Finally, wind field single-vortex tornado was studied to discuss the optimized design of rural low-rise houses in Yancheng, Jiangsu as an example. This paper may provide enough data to support building and urban design in some specific regions.

Keywords: tornado probability, computational fluid dynamics, fuzzy mathematics, optimal design

Procedia PDF Downloads 140
2712 Finding Data Envelopment Analysis Target Using the Multiple Objective Linear Programming Structure in Full Fuzzy Case

Authors: Raziyeh Shamsi

Abstract:

In this paper, we present a multiple objective linear programming (MOLP) problem in full fuzzy case and find Data Envelopment Analysis(DEA) targets. In the presented model, we are seeking the least inputs and the most outputs in the production possibility set (PPS) with the variable return to scale (VRS) assumption, so that the efficiency projection is obtained for all decision making units (DMUs). Then, we provide an algorithm for finding DEA targets interactively in the full fuzzy case, which solves the full fuzzy problem without defuzzification. Owing to the use of interactive methods, the targets obtained by our algorithm are more applicable, more realistic, and they are according to the wish of the decision maker. Finally, an application of the algorithm in 21 educational institutions is provided.

Keywords: DEA, MOLP, full fuzzy, target

Procedia PDF Downloads 304
2711 Using Genetic Algorithms and Rough Set Based Fuzzy K-Modes to Improve Centroid Model Clustering Performance on Categorical Data

Authors: Rishabh Srivastav, Divyam Sharma

Abstract:

We propose an algorithm to cluster categorical data named as ‘Genetic algorithm initialized rough set based fuzzy K-Modes for categorical data’. We propose an amalgamation of the simple K-modes algorithm, the Rough and Fuzzy set based K-modes and the Genetic Algorithm to form a new algorithm,which we hypothesise, will provide better Centroid Model clustering results, than existing standard algorithms. In the proposed algorithm, the initialization and updation of modes is done by the use of genetic algorithms while the membership values are calculated using the rough set and fuzzy logic.

Keywords: categorical data, fuzzy logic, genetic algorithm, K modes clustering, rough sets

Procedia PDF Downloads 253
2710 Modelling and Control of Electrohydraulic System Using Fuzzy Logic Algorithm

Authors: Hajara Abdulkarim Aliyu, Abdulbasid Ismail Isa

Abstract:

This research paper studies electrohydraulic system for its role in position and motion control system and develops as mathematical model describing the behaviour of the system. The research further proposes Fuzzy logic and conventional PID controllers in order to achieve both accurate positioning of the payload and overall improvement of the system performance. The simulation result shows Fuzzy logic controller has a superior tracking performance and high disturbance rejection efficiency for its shorter settling time, less overshoot, smaller values of integral of absolute and deviation errors over the conventional PID controller at all the testing conditions.

Keywords: electrohydraulic, fuzzy logic, modelling, NZ-PID

Procedia PDF Downloads 474
2709 A Series Solution of Fuzzy Integro-Differential Equation

Authors: Maryam Mosleh, Mahmood Otadi

Abstract:

The hybrid differential equations have a wide range of applications in science and engineering. In this paper, the homotopy analysis method (HAM) is applied to obtain the series solution of the hybrid differential equations. Using the homotopy analysis method, it is possible to find the exact solution or an approximate solution of the problem. Comparisons are made between improved predictor-corrector method, homotopy analysis method and the exact solution. Finally, we illustrate our approach by some numerical example.

Keywords: Fuzzy number, parametric form of a fuzzy number, fuzzy integrodifferential equation, homotopy analysis method

Procedia PDF Downloads 562
2708 Research on Ultrafine Particles Classification Using Hydrocyclone with Annular Rinse Water

Authors: Tao Youjun, Zhao Younan

Abstract:

The separation effect of fine coal can be improved by the process of pre-desliming. It was significantly enhanced when the fine coal was processed using Falcon concentrator with the removal of -45um coal slime. Ultrafine classification tests using Krebs classification cyclone with annular rinse water showed that increasing feeding pressure can effectively avoid the phenomena of heavy particles passing into overflow and light particles slipping into underflow. The increase of rinse water pressure could reduce the content of fine-grained particles while increasing the classification size. The increase in feeding concentration had a negative effect on the efficiency of classification, meanwhile increased the classification size due to the enhanced hindered settling caused by high underflow concentration. As a result of optimization experiments with response indicator of classification efficiency which based on orthogonal design using Design-Expert software indicated that the optimal classification efficiency reached 91.32% with the feeding pressure of 0.03MPa, the rinse water pressure of 0.02MPa and the feeding concentration of 12.5%. Meanwhile, the classification size was 49.99 μm which had a good agreement with the predicted value.

Keywords: hydrocyclone, ultrafine classification, slime, classification efficiency, classification size

Procedia PDF Downloads 172
2707 A Fuzzy Decision Making Approach for Supplier Selection in Healthcare Industry

Authors: Zeynep Sener, Mehtap Dursun

Abstract:

Supplier evaluation and selection is one of the most important components of an effective supply chain management system. Due to the expanding competition in healthcare, selecting the right medical device suppliers offers great potential for increasing quality while decreasing costs. This paper proposes a fuzzy decision making approach for medical supplier selection. A real-world medical device supplier selection problem is presented to illustrate the application of the proposed decision methodology.

Keywords: fuzzy decision making, fuzzy multiple objective programming, medical supply chain, supplier selection

Procedia PDF Downloads 455
2706 Group Decision Making through Interval-Valued Intuitionistic Fuzzy Soft Set TOPSIS Method Using New Hybrid Score Function

Authors: Syed Talib Abbas Raza, Tahseen Ahmed Jilani, Saleem Abdullah

Abstract:

This paper presents interval-valued intuitionistic fuzzy soft sets based TOPSIS method for group decision making. The interval-valued intuitionistic fuzzy soft set is a mutation of an interval-valued intuitionistic fuzzy set and soft set. In group decision making problems IVIFSS makes the process much more algebraically elegant. We have used weighted arithmetic averaging operator for aggregating the information and define a new Hybrid Score Function as metric tool for comparison between interval-valued intuitionistic fuzzy values. In an illustrative example we have applied the developed method to a criminological problem. We have developed a group decision making model for integrating the imprecise and hesitant evaluations of multiple law enforcement agencies working on target killing cases in the country.

Keywords: group decision making, interval-valued intuitionistic fuzzy soft set, TOPSIS, score function, criminology

Procedia PDF Downloads 606
2705 Fuzzy Logic Based Sliding Mode Controller for a New Soft Switching Boost Converter

Authors: Azam Salimi, Majid Delshad

Abstract:

This paper presents a modified design of a sliding mode controller based on fuzzy logic for a New ZVThigh step up DC-DC Converter . Here a proportional - integral (PI)-type current mode control is employed and a sliding mode controller is designed utilizing fuzzy algorithm. Sliding mode controller guarantees robustness against all variations and fuzzy logic helps to reduce chattering phenomenon due to sliding controller, in that way efficiency increases and error, voltage and current ripples decreases. The proposed system is simulated using MATLAB / SIMULINK. This model is tested under variations of input and reference voltages and it was found that in comparison with conventional sliding mode controllers they perform better.

Keywords: switching mode power supplies, DC-DC converters, sliding mode control, robustness, fuzzy control, current mode control, non-linear behavior

Procedia PDF Downloads 542
2704 Developing a Model – an Application of Fuzzy Analytic Network Process Techniques for Hostels

Authors: Pin-Ju Juan, Peng-Yu Juan, Yi-Shan Chen

Abstract:

The main purpose of this paper is to present a fuzzy Analytic Network Process (ANP) model for the hostel organizational performance selection. In this article, we created 39 criteria for selecting hostel organizational performance acquired from literature's review and experts method practical investigations, and the methods of fuzzy analytic network process are used to consolidate decision-makers’ assessments about criteria weightings. Finally, we selected organizational performance of a hostel in Taiwan to determine the effectiveness of the proposed evaluation model in this paper.

Keywords: Fuzzy ANP, hostel, organizational performance, strategy management

Procedia PDF Downloads 205
2703 A Model of Empowerment Evaluation of Knowledge Management in Private Banks Using Fuzzy Inference System

Authors: Nazanin Pilevari, Kamyar Mahmoodi

Abstract:

The purpose of this research is to provide a model based on fuzzy inference system for evaluating empowerment of Knowledge management. The first prototype of the research was developed based on the study of literature. In the next step, experts were provided with these models and after implementing consensus-based reform, the views of Fuzzy Delphi experts and techniques, components and Index research model were finalized. Culture, structure, IT and leadership were considered as dimensions of empowerment. Then, In order to collect and extract data for fuzzy inference system based on knowledge and Experience, the experts were interviewed. The values obtained from designed fuzzy inference system, made review and assessment of the organization's empowerment of Knowledge management possible. After the design and validation of systems to measure indexes ,empowerment of Knowledge management and inputs into fuzzy inference) in the AYANDEH Bank, a questionnaire was used. In the case of this bank, the system output indicates that the status of empowerment of Knowledge management, culture, organizational structure and leadership are at the moderate level and information technology empowerment are relatively high. Based on these results, the status of knowledge management empowerment in AYANDE Bank, was moderate. Eventually, some suggestions for improving the current situation of banks were provided. According to studies of research history, the use of powerful tools in Fuzzy Inference System for assessment of Knowledge management and knowledge management empowerment such an assessment in the field of banking, are the innovation of this Research.

Keywords: knowledge management, knowledge management empowerment, fuzzy inference system, fuzzy Delphi

Procedia PDF Downloads 363
2702 Radical Web Text Classification Using a Composite-Based Approach

Authors: Kolade Olawande Owoeye, George R. S. Weir

Abstract:

The widespread of terrorism and extremism activities on the internet has become a major threat to the government and national securities due to their potential dangers which have necessitated the need for intelligence gathering via web and real-time monitoring of potential websites for extremist activities. However, the manual classification for such contents is practically difficult or time-consuming. In response to this challenge, an automated classification system called composite technique was developed. This is a computational framework that explores the combination of both semantics and syntactic features of textual contents of a web. We implemented the framework on a set of extremist webpages dataset that has been subjected to the manual classification process. Therein, we developed a classification model on the data using J48 decision algorithm, this is to generate a measure of how well each page can be classified into their appropriate classes. The classification result obtained from our method when compared with other states of arts, indicated a 96% success rate in classifying overall webpages when matched against the manual classification.

Keywords: extremist, web pages, classification, semantics, posit

Procedia PDF Downloads 149
2701 Matlab Method for Exclusive-or Nodes in Fuzzy GERT Networks

Authors: Roland Lachmayer, Mahtab Afsari

Abstract:

Research is the cornerstone for advancement of human communities. So that it is one of the indexes for evaluating advancement of countries. Research projects are usually cost and time-consuming and do not end in result in short term. Project scheduling is one of the integral parts of project management. The present article offers a new method by using C# and Matlab software to solve Fuzzy GERT networks for Exclusive-OR kind of nodes to schedule the network. In this article we concentrate on flowcharts that we used in Matlab to show how we apply Matlab to schedule Exclusive-OR nodes.

Keywords: research projects, fuzzy GERT, fuzzy CPM, CPM, α-cuts, scheduling

Procedia PDF Downloads 399
2700 Fuzzy-Sliding Controller Design for Induction Motor Control

Authors: M. Bouferhane, A. Boukhebza, L. Hatab

Abstract:

In this paper, the position control of linear induction motor using fuzzy sliding mode controller design is proposed. First, the indirect field oriented control LIM is derived. Then, a designed sliding mode control system with an integral-operation switching surface is investigated, in which a simple adaptive algorithm is utilized for generalised soft-switching parameter. Finally, a fuzzy sliding mode controller is derived to compensate the uncertainties which occur in the control, in which the fuzzy logic system is used to dynamically control parameter settings of the SMC control law. The effectiveness of the proposed control scheme is verified by numerical simulation. The experimental results of the proposed scheme have presented good performances compared to the conventional sliding mode controller.

Keywords: linear induction motor, vector control, backstepping, fuzzy-sliding mode control

Procedia PDF Downloads 491
2699 Applicability of Fuzzy Logic for Intrusion Detection in Mobile Adhoc Networks

Authors: Ruchi Makani, B. V. R. Reddy

Abstract:

Mobile Adhoc Networks (MANETs) are gaining popularity due to their potential of providing low-cost mobile connectivity solutions to real-world communication problems. Integrating Intrusion Detection Systems (IDS) in MANETs is a tedious task by reason of its distinctive features such as dynamic topology, de-centralized authority and highly controlled/limited resource environment. IDS primarily use automated soft-computing techniques to monitor the inflow/outflow of traffic packets in a given network to detect intrusion. Use of machine learning techniques in IDS enables system to make decisions on intrusion while continuous keep learning about their dynamic environment. An appropriate IDS model is essential to be selected to expedite this application challenges. Thus, this paper focused on fuzzy-logic based machine learning IDS technique for MANETs and presented their applicability for achieving effectiveness in identifying the intrusions. Further, the selection of appropriate protocol attributes and fuzzy rules generation plays significant role for accuracy of the fuzzy-logic based IDS, have been discussed. This paper also presents the critical attributes of MANET’s routing protocol and its applicability in fuzzy logic based IDS.

Keywords: AODV, mobile adhoc networks, intrusion detection, anomaly detection, fuzzy logic, fuzzy membership function, fuzzy inference system

Procedia PDF Downloads 180
2698 Development of Fuzzy Logic and Neuro-Fuzzy Surface Roughness Prediction Systems Coupled with Cutting Current in Milling Operation

Authors: Joseph C. Chen, Venkata Mohan Kudapa

Abstract:

Development of two real-time surface roughness (Ra) prediction systems for milling operations was attempted. The systems used not only cutting parameters, such as feed rate and spindle speed, but also the cutting current generated and corrected by a clamp type energy sensor. Two different approaches were developed. First, a fuzzy inference system (FIS), in which the fuzzy logic rules are generated by experts in the milling processes, was used to conduct prediction modeling using current cutting data. Second, a neuro-fuzzy system (ANFIS) was explored. Neuro-fuzzy systems are adaptive techniques in which data are collected on the network, processed, and rules are generated by the system. The inference system then uses these rules to predict Ra as the output. Experimental results showed that the parameters of spindle speed, feed rate, depth of cut, and input current variation could predict Ra. These two systems enable the prediction of Ra during the milling operation with an average of 91.83% and 94.48% accuracy by FIS and ANFIS systems, respectively. Statistically, the ANFIS system provided better prediction accuracy than that of the FIS system.

Keywords: surface roughness, input current, fuzzy logic, neuro-fuzzy, milling operations

Procedia PDF Downloads 148
2697 An Experimental Study on Some Conventional and Hybrid Models of Fuzzy Clustering

Authors: Jeugert Kujtila, Kristi Hoxhalli, Ramazan Dalipi, Erjon Cota, Ardit Murati, Erind Bedalli

Abstract:

Clustering is a versatile instrument in the analysis of collections of data providing insights of the underlying structures of the dataset and enhancing the modeling capabilities. The fuzzy approach to the clustering problem increases the flexibility involving the concept of partial memberships (some value in the continuous interval [0, 1]) of the instances in the clusters. Several fuzzy clustering algorithms have been devised like FCM, Gustafson-Kessel, Gath-Geva, kernel-based FCM, PCM etc. Each of these algorithms has its own advantages and drawbacks, so none of these algorithms would be able to perform superiorly in all datasets. In this paper we will experimentally compare FCM, GK, GG algorithm and a hybrid two-stage fuzzy clustering model combining the FCM and Gath-Geva algorithms. Firstly we will theoretically dis-cuss the advantages and drawbacks for each of these algorithms and we will describe the hybrid clustering model exploiting the advantages and diminishing the drawbacks of each algorithm. Secondly we will experimentally compare the accuracy of the hybrid model by applying it on several benchmark and synthetic datasets.

Keywords: fuzzy clustering, fuzzy c-means algorithm (FCM), Gustafson-Kessel algorithm, hybrid clustering model

Procedia PDF Downloads 517
2696 A Study on Ideals and Prime Ideals of Sub-Distributive Semirings and Its Applications to Symmetric Fuzzy Numbers

Authors: Rosy Joseph

Abstract:

From an algebraic point of view, Semirings provide the most natural generalization of group theory and ring theory. In the absence of additive inverse in a semiring, one had to impose a weaker condition on the semiring, i.e., the additive cancellative law to study interesting structural properties. In many practical situations, fuzzy numbers are used to model imprecise observations derived from uncertain measurements or linguistic assessments. In this connection, a special class of fuzzy numbers whose shape is symmetric with respect to a vertical line called the symmetric fuzzy numbers i.e., for α ∈ (0, 1] the α − cuts will have a constant mid-point and the upper end of the interval will be a non-increasing function of α, the lower end will be the image of this function, is suitable. Based on this description, arithmetic operations and a ranking technique to order the symmetric fuzzy numbers were dealt with in detail. Wherein it was observed that the structure of the class of symmetric fuzzy numbers forms a commutative semigroup with cancellative property. Also, it forms a multiplicative monoid satisfying sub-distributive property.In this paper, we introduce the algebraic structure, sub-distributive semiring and discuss its various properties viz., ideals and prime ideals of sub-distributive semiring, sub-distributive ring of difference etc. in detail. Symmetric fuzzy numbers are visualized as an illustration.

Keywords: semirings, subdistributive ring of difference, subdistributive semiring, symmetric fuzzy numbers

Procedia PDF Downloads 215
2695 On Tarski’s Type Theorems for L-Fuzzy Isotone and L-Fuzzy Relatively Isotone Maps on L-Complete Propelattices

Authors: František Včelař, Zuzana Pátíková

Abstract:

Recently a new type of very general relational structures, the so called (L-)complete propelattices, was introduced. These significantly generalize complete lattices and completely lattice L-ordered sets, because they do not assume the technically very strong property of transitivity. For these structures also the main part of the original Tarski’s fixed point theorem holds for (L-fuzzy) isotone maps, i.e., the part which concerns the existence of fixed points and the structure of their set. In this paper, fundamental properties of (L-)complete propelattices are recalled and the so called L-fuzzy relatively isotone maps are introduced. For these maps it is proved that they also have fixed points in L-complete propelattices, even if their set does not have to be of an awaited analogous structure of a complete propelattice.

Keywords: fixed point, L-complete propelattice, L-fuzzy (relatively) isotone map, residuated lattice, transitivity

Procedia PDF Downloads 283
2694 Control of Hybrid System Using Fuzzy Logic

Authors: Faiza Mahi, Fatima Debbat, Mohamed Fayçal Khelfi

Abstract:

This paper proposes a control approach using Fuzzy Lo system. More precisely, the study focuses on the improvement of users service in terms of analysis and control of a transportation system their waiting times in the exchange platforms of passengers. Many studies have been developed in the literature for such problematic, and many control tools are proposed. In this paper we focus on the use of fuzzy logic technique to control the system during its evolution in order to minimize the arrival gap of connected transportation means at the exchange points of passengers. An example of illustration is worked out and the obtained results are reported. an important area of research is the modeling and simulation ordering system. We describe an approach to analysis using Fuzzy Logic. The hybrid simulator developed in toolbox Matlab consists calculation of waiting time transportation mode.

Keywords: Fuzzy logic, Hybrid system, Waiting Time, Transportation system, Control

Procedia PDF Downloads 557
2693 Application of Fuzzy Logic in Voltage Regulation of Radial Feeder with Distributed Generators

Authors: Anubhav Shrivastava, Lakshya Bhat, Shivarudraswamy

Abstract:

Distributed Generation is the need of the hour. With current advancements in the DG technology, there are some major issues that need to be tackled in order to make this method of generation of energy more efficient and feasible. Among other problems, the control in voltage is the major issue that needs to be addressed. This paper focuses on control of voltage using reactive power control of DGs with the help of fuzzy logic. The membership functions have been defined accordingly and the control of the system is achieved. Finally, with the help of simulation results in Matlab, the control of voltage within the tolerance limit set (+/- 5%) is achieved. The voltage waveform graphs for the IEEE 14 bus system are obtained by using simple algorithm with MATLAB and then with fuzzy logic for 14 bus system. The goal of this project was to control the voltage within limits by controlling the reactive power of the DG using fuzzy logic.

Keywords: distributed generation, fuzzy logic, matlab, newton raphson, IEEE 14 bus, voltage regulation, radial network

Procedia PDF Downloads 640
2692 Mathematical Modeling for Diabetes Prediction: A Neuro-Fuzzy Approach

Authors: Vijay Kr. Yadav, Nilam Rathi

Abstract:

Accurate prediction of glucose level for diabetes mellitus is required to avoid affecting the functioning of major organs of human body. This study describes the fundamental assumptions and two different methodologies of the Blood glucose prediction. First is based on the back-propagation algorithm of Artificial Neural Network (ANN), and second is based on the Neuro-Fuzzy technique, called Fuzzy Inference System (FIS). Errors between proposed methods further discussed through various statistical methods such as mean square error (MSE), normalised mean absolute error (NMAE). The main objective of present study is to develop mathematical model for blood glucose prediction before 12 hours advanced using data set of three patients for 60 days. The comparative studies of the accuracy with other existing models are also made with same data set.

Keywords: back-propagation, diabetes mellitus, fuzzy inference system, neuro-fuzzy

Procedia PDF Downloads 261
2691 Spatio-Temporal Pest Risk Analysis with ‘BioClass’

Authors: Vladimir A. Todiras

Abstract:

Spatio-temporal models provide new possibilities for real-time action in pest risk analysis. It should be noted that estimation of the possibility and probability of introduction of a pest and of its economic consequences involves many uncertainties. We present a new mapping technique that assesses pest invasion risk using online BioClass software. BioClass is a GIS tool designed to solve multiple-criteria classification and optimization problems based on fuzzy logic and level set methods. This research describes a method for predicting the potential establishment and spread of a plant pest into new areas using a case study: corn rootworm (Diabrotica spp.), tomato leaf miner (Tuta absoluta) and plum fruit moth (Grapholita funebrana). Our study demonstrated that in BioClass we can combine fuzzy logic and geographic information systems with knowledge of pest biology and environmental data to derive new information for decision making. Pests are sensitive to a warming climate, as temperature greatly affects their survival and reproductive rate and capacity. Changes have been observed in the distribution, frequency and severity of outbreaks of Helicoverpa armigera on tomato. BioClass has demonstrated to be a powerful tool for applying dynamic models and map the potential future distribution of a species, enable resource to make decisions about dangerous and invasive species management and control.

Keywords: classification, model, pest, risk

Procedia PDF Downloads 284
2690 Pose Normalization Network for Object Classification

Authors: Bingquan Shen

Abstract:

Convolutional Neural Networks (CNN) have demonstrated their effectiveness in synthesizing 3D views of object instances at various viewpoints. Given the problem where one have limited viewpoints of a particular object for classification, we present a pose normalization architecture to transform the object to existing viewpoints in the training dataset before classification to yield better classification performance. We have demonstrated that this Pose Normalization Network (PNN) can capture the style of the target object and is able to re-render it to a desired viewpoint. Moreover, we have shown that the PNN improves the classification result for the 3D chairs dataset and ShapeNet airplanes dataset when given only images at limited viewpoint, as compared to a CNN baseline.

Keywords: convolutional neural networks, object classification, pose normalization, viewpoint invariant

Procedia PDF Downloads 356