Search results for: Cox proportional hazard regression
4124 Accurate and Repeatable Pressure Control for Critical Testing of Advanced Ceramics Using Proportional and Derivative Controller
Authors: Benchalak Muangmeesri
Abstract:
The purpose of this paper is to discuss how to test the best control performance of a ceramics. Hydraulic press machine (HPM) is the most common shaping of advanced ceramic with products, dimensions, and ceramic products mainly from synthetic powders. A microcontroller can be achieved to control process and has set high standards in the shaping of raw materials in powder form. HPM was proposed to develop a position control system that linked to the embedded controller PIC16F877 via Proportional and Derivative (PD) controller. The model is performed using MATLAB/SIMULINK and the best control performance of an HPM. Finally, PD controller results, showing the best performance as it had the smallest overshoot and highest quality using a microcontroller control.Keywords: ceramics, hydraulic press, microcontroller, PD controller
Procedia PDF Downloads 3584123 Regression Model Evaluation on Depth Camera Data for Gaze Estimation
Authors: James Purnama, Riri Fitri Sari
Abstract:
We investigate the machine learning algorithm selection problem in the term of a depth image based eye gaze estimation, with respect to its essential difficulty in reducing the number of required training samples and duration time of training. Statistics based prediction accuracy are increasingly used to assess and evaluate prediction or estimation in gaze estimation. This article evaluates Root Mean Squared Error (RMSE) and R-Squared statistical analysis to assess machine learning methods on depth camera data for gaze estimation. There are 4 machines learning methods have been evaluated: Random Forest Regression, Regression Tree, Support Vector Machine (SVM), and Linear Regression. The experiment results show that the Random Forest Regression has the lowest RMSE and the highest R-Squared, which means that it is the best among other methods.Keywords: gaze estimation, gaze tracking, eye tracking, kinect, regression model, orange python
Procedia PDF Downloads 5394122 Self-rated Health as a Predictor of Hospitalizations in Patients with Bipolar Disorder and Major Depression: A Prospective Cohort Study of the United Kingdom Biobank
Authors: Haoyu Zhao, Qianshu Ma, Min Xie, Yunqi Huang, Yunjia Liu, Huan Song, Hongsheng Gui, Mingli Li, Qiang Wang
Abstract:
Rationale: Bipolar disorder (BD) and major depressive disorder (MDD), as severe chronic illnesses that restrict patients’ psychosocial functioning and reduce their quality of life, are both categorized into mood disorders. Emerging evidence has suggested that the reliability of self-rated health (SRH) was wellvalidated and that the risk of various health outcomes, including mortality and health care costs, could be predicted by SRH. Compared with other lengthy multi-item patient-reported outcomes (PRO) measures, SRH was proven to have a comparable predictive ability to predict mortality and healthcare utilization. However, to our knowledge, no study has been conducted to assess the association between SRH and hospitalization among people with mental disorders. Therefore, our study aims to determine the association between SRH and subsequent all-cause hospitalizations in patients with BD and MDD. Methods: We conducted a prospective cohort study on people with BD or MDD in the UK from 2006 to 2010 using UK Biobank touchscreen questionnaire data and linked administrative health databases. The association between SRH and 2-year all-cause hospitalizations was assessed using proportional hazard regression after adjustment for sociodemographics, lifestyle behaviors, previous hospitalization use, the Elixhauser comorbidity index, and environmental factors. Results: A total of 29,966 participants were identified, experiencing 10,279 hospitalization events. Among the cohort, the average age was 55.88 (SD 8.01) years, 64.02% were female, and 3,029 (10.11%), 15,972 (53.30%), 8,313 (27.74%), and 2,652 (8.85%) reported excellent, good, fair, and poor SRH, respectively. Among patients reporting poor SRH, 54.19% had a hospitalization event within 2 years compared with 22.65% for those having excellent SRH. In the adjusted analysis, patients with good, fair, and poor SRH had 1.31 (95% CI 1.21-1.42), 1.82 (95% CI 1.68-1.98), and 2.45 (95% CI 2.22, 2.70) higher hazards of hospitalization, respectively, than those with excellent SRH. Conclusion: SRH was independently associated with subsequent all-cause hospitalizations in patients with BD or MDD. This large study facilitates rapid interpretation of SRH values and underscores the need for proactive SRH screening in this population, which might inform resource allocation and enhance high-risk population detection.Keywords: severe mental illnesses, hospitalization, risk prediction, patient-reported outcomes
Procedia PDF Downloads 1614121 Generalized Extreme Value Regression with Binary Dependent Variable: An Application for Predicting Meteorological Drought Probabilities
Authors: Retius Chifurira
Abstract:
Logistic regression model is the most used regression model to predict meteorological drought probabilities. When the dependent variable is extreme, the logistic model fails to adequately capture drought probabilities. In order to adequately predict drought probabilities, we use the generalized linear model (GLM) with the quantile function of the generalized extreme value distribution (GEVD) as the link function. The method maximum likelihood estimation is used to estimate the parameters of the generalized extreme value (GEV) regression model. We compare the performance of the logistic and the GEV regression models in predicting drought probabilities for Zimbabwe. The performance of the regression models are assessed using the goodness-of-fit tests, namely; relative root mean square error (RRMSE) and relative mean absolute error (RMAE). Results show that the GEV regression model performs better than the logistic model, thereby providing a good alternative candidate for predicting drought probabilities. This paper provides the first application of GLM derived from extreme value theory to predict drought probabilities for a drought-prone country such as Zimbabwe.Keywords: generalized extreme value distribution, general linear model, mean annual rainfall, meteorological drought probabilities
Procedia PDF Downloads 2014120 Seismic Hazard Assessment of Offshore Platforms
Authors: F. D. Konstandakopoulou, G. A. Papagiannopoulos, N. G. Pnevmatikos, G. D. Hatzigeorgiou
Abstract:
This paper examines the effects of pile-soil-structure interaction on the dynamic response of offshore platforms under the action of near-fault earthquakes. Two offshore platforms models are investigated, one with completely fixed supports and one with piles which are clamped into deformable layered soil. The soil deformability for the second model is simulated using non-linear springs. These platform models are subjected to near-fault seismic ground motions. The role of fault mechanism on platforms’ response is additionally investigated, while the study also examines the effects of different angles of incidence of seismic records on the maximum response of each platform.Keywords: hazard analysis, offshore platforms, earthquakes, safety
Procedia PDF Downloads 1504119 Formulation of a Rapid Earthquake Risk Ranking Criteria for National Bridges in the National Capital Region Affected by the West Valley Fault Using GIS Data Integration
Authors: George Mariano Soriano
Abstract:
In this study, a Rapid Earthquake Risk Ranking Criteria was formulated by integrating various existing maps and databases by the Department of Public Works and Highways (DPWH) and Philippine Institute of Volcanology and Seismology (PHIVOLCS). Utilizing Geographic Information System (GIS) software, the above-mentioned maps and databases were used in extracting seismic hazard parameters and bridge vulnerability characteristics in order to rank the seismic damage risk rating of bridges in the National Capital Region.Keywords: bridge, earthquake, GIS, hazard, risk, vulnerability
Procedia PDF Downloads 4104118 A Hazard Rate Function for the Time of Ruin
Authors: Sule Sahin, Basak Bulut Karageyik
Abstract:
This paper introduces a hazard rate function for the time of ruin to calculate the conditional probability of ruin for very small intervals. We call this function the force of ruin (FoR). We obtain the expected time of ruin and conditional expected time of ruin from the exact finite time ruin probability with exponential claim amounts. Then we introduce the FoR which gives the conditional probability of ruin and the condition is that ruin has not occurred at time t. We analyse the behavior of the FoR function for different initial surpluses over a specific time interval. We also obtain FoR under the excess of loss reinsurance arrangement and examine the effect of reinsurance on the FoR.Keywords: conditional time of ruin, finite time ruin probability, force of ruin, reinsurance
Procedia PDF Downloads 4074117 The Exploitation of Balancing an Inverted Pendulum System Using Sliding Mode Control
Authors: Sheren H. Salah, Ahmed Y. Ben Sasi
Abstract:
The inverted pendulum system is a classic control problem that is used in universities around the world. It is a suitable process to test prototype controllers due to its high non-linearities and lack of stability. The inverted pendulum represents a challenging control problem, which continually moves toward an uncontrolled state. This paper presents the possibility of balancing an inverted pendulum system using sliding mode control (SMC). The goal is to determine which control strategy delivers better performance with respect to pendulum’s angle and cart's position. Therefore, proportional-integral-derivative (PID) is used for comparison. Results have proven SMC control produced better response compared to PID control in both normal and noisy systems.Keywords: inverted pendulum (IP), proportional-integral derivative (PID), sliding mode control (SMC), systems and control engineering
Procedia PDF Downloads 5884116 Low SPOP Expression and High MDM2 expression Are Associated with Tumor Progression and Predict Poor Prognosis in Hepatocellular Carcinoma
Authors: Chang Liang, Weizhi Gong, Yan Zhang
Abstract:
Purpose: Hepatocellular carcinoma (HCC) is a malignant tumor with a high mortality rate and poor prognosis worldwide. Murine double minute 2 (MDM2) regulates the tumor suppressor p53, increasing cancer risk and accelerating tumor progression. Speckle-type POX virus and zinc finger protein (SPOP), a key of subunit of Cullin-Ring E3 ligase, inhibits tumor genesis and progression by the ubiquitination of its downstream substrates. This study aimed to clarify whether SPOP and MDM2 are mutually regulated in HCC and the correlation between SPOP and MDM2 and the prognosis of HCC patients. Methods: First, the expression of SPOP and MDM2 in HCC tissues were detected by TCGA database. Then, 53 paired samples of HCC tumor and adjacent tissues were collected to evaluate the expression of SPOP and MDM2 using immunohistochemistry. Chi-square test or Fisher’s exact test were used to analyze the relationship between clinicopathological features and the expression levels of SPOP and MDM2. In addition, Kaplan‒Meier curve analysis and log-rank test were used to investigate the effects of SPOP and MDM2 on the survival of HCC patients. Last, the Multivariate Cox proportional risk regression model analyzed whether the different expression levels of SPOP and MDM2 were independent risk factors for the prognosis of HCC patients. Results: Bioinformatics analysis revealed the low expression of SPOP and high expression of MDM2 were related to worse prognosis of HCC patients. The relationship between the expression of SPOP and MDM2 and tumor stem-like features showed an opposite trend. The immunohistochemistry showed the expression of SPOP protein was significantly downregulated while MDM2 protein significantly upregulated in HCC tissue compared to that in para-cancerous tissue. Tumors with low SPOP expression were related to worse T stage and Barcelona Clinic Liver Cancer (BCLC) stage, but tumors with high MDM2 expression were related to worse T stage, M stage, and BCLC stage. Kaplan–Meier curves showed HCC patients with high SPOP expression and low MDM2 expression had better survival than those with low SPOP expression and high MDM2 expression (P < 0.05). A multivariate Cox proportional risk regression model confirmed that a high MDM2 expression level was an independent risk factor for poor prognosis in HCC patients (P <0.05). Conclusion: The expression of SPOP protein was significantly downregulated, while the expression of MDM2 significantly upregulated in HCC. The low expression of SPOP and high expression. of MDM2 were associated with malignant progression and poor prognosis of HCC patients, indicating a potential therapeutic target for HCC patients.Keywords: hepatocellular carcinoma, murine double minute 2, speckle-type POX virus and zinc finger protein, ubiquitination
Procedia PDF Downloads 1454115 The Extended Skew Gaussian Process for Regression
Authors: M. T. Alodat
Abstract:
In this paper, we propose a generalization to the Gaussian process regression(GPR) model called the extended skew Gaussian process for regression(ESGPr) model. The ESGPR model works better than the GPR model when the errors are skewed. We derive the predictive distribution for the ESGPR model at a new input. Also we apply the ESGPR model to FOREX data and we find that it fits the Forex data better than the GPR model.Keywords: extended skew normal distribution, Gaussian process for regression, predictive distribution, ESGPr model
Procedia PDF Downloads 5544114 Electoral Mathematics and Asymmetrical Treatment to Political Parties: The Mexican Case
Authors: Verónica Arredondo, Miguel Martínez-Panero, Teresa Peña, Victoriano Ramírez
Abstract:
The Mexican Chamber of Deputies is composed of 500 representatives: 300 of them elected by relative majority and another 200 ones elected through proportional representation in five electoral clusters (constituencies) with 40 representatives each. In this mixed-member electoral system, the seats distribution of proportional representation is not independent of the election by relative majority, as it attempts to correct representation imbalances produced in single-member districts. This two-fold structure has been maintained in the successive electoral reforms carried out along the last three decades (eight from 1986 to 2014). In all of them, the election process of 200 seats becomes complex: Formulas in the Law are difficult to understand and to be interpreted. This paper analyzes the Mexican electoral system after the electoral reform of 2014, which was applied for the first time in 2015. The research focuses on contradictions and issues of applicability, in particular situations where seats allocation is affected by ambiguity in the law and where asymmetrical treatment of political parties arises. Due to these facts, a proposal of electoral reform will be presented. It is intended to be simpler, clearer, and more enduring than the current system. Furthermore, this model is more suitable for producing electoral outcomes free of contradictions and paradoxes. This approach would allow a fair treatment of political parties and as a result an improved opportunity to exercise democracy.Keywords: electoral mathematics, electoral reform, Mexican electoral system, political asymmetry, proportional representation
Procedia PDF Downloads 2524113 Integrated Nested Laplace Approximations For Quantile Regression
Authors: Kajingulu Malandala, Ranganai Edmore
Abstract:
The asymmetric Laplace distribution (ADL) is commonly used as the likelihood function of the Bayesian quantile regression, and it offers different families of likelihood method for quantile regression. Notwithstanding their popularity and practicality, ADL is not smooth and thus making it difficult to maximize its likelihood. Furthermore, Bayesian inference is time consuming and the selection of likelihood may mislead the inference, as the Bayes theorem does not automatically establish the posterior inference. Furthermore, ADL does not account for greater skewness and Kurtosis. This paper develops a new aspect of quantile regression approach for count data based on inverse of the cumulative density function of the Poisson, binomial and Delaporte distributions using the integrated nested Laplace Approximations. Our result validates the benefit of using the integrated nested Laplace Approximations and support the approach for count data.Keywords: quantile regression, Delaporte distribution, count data, integrated nested Laplace approximation
Procedia PDF Downloads 1664112 The Use of Geographically Weighted Regression for Deforestation Analysis: Case Study in Brazilian Cerrado
Authors: Ana Paula Camelo, Keila Sanches
Abstract:
The Geographically Weighted Regression (GWR) was proposed in geography literature to allow relationship in a regression model to vary over space. In Brazil, the agricultural exploitation of the Cerrado Biome is the main cause of deforestation. In this study, we propose a methodology using geostatistical methods to characterize the spatial dependence of deforestation in the Cerrado based on agricultural production indicators. Therefore, it was used the set of exploratory spatial data analysis tools (ESDA) and confirmatory analysis using GWR. It was made the calibration a non-spatial model, evaluation the nature of the regression curve, election of the variables by stepwise process and multicollinearity analysis. After the evaluation of the non-spatial model was processed the spatial-regression model, statistic evaluation of the intercept and verification of its effect on calibration. In an analysis of Spearman’s correlation the results between deforestation and livestock was +0.783 and with soybeans +0.405. The model presented R²=0.936 and showed a strong spatial dependence of agricultural activity of soybeans associated to maize and cotton crops. The GWR is a very effective tool presenting results closer to the reality of deforestation in the Cerrado when compared with other analysis.Keywords: deforestation, geographically weighted regression, land use, spatial analysis
Procedia PDF Downloads 3654111 Optimal Injected Current Control for Shunt Active Power Filter Using Artificial Intelligence
Authors: Brahim Berbaoui
Abstract:
In this paper, a new particle swarm optimization (PSO) based method is proposed for the implantation of optimal harmonic power flow in power systems. In this algorithm approach, proportional integral controller for reference compensating currents of active power filter is performed in order to minimize the total harmonic distortion (THD). The simulation results show that the new control method using PSO approach is not only easy to be implanted, but also very effective in reducing the unwanted harmonics and compensating reactive power. The studies carried out have been accomplished using the MATLAB Simulink Power System Toolbox.Keywords: shunt active power filter, power quality, current control, proportional integral controller, particle swarm optimization
Procedia PDF Downloads 6164110 Comparison of Methodologies to Compute the Probabilistic Seismic Hazard Involving Faults and Associated Uncertainties
Authors: Aude Gounelle, Gloria Senfaute, Ludivine Saint-Mard, Thomas Chartier
Abstract:
The long-term deformation rates of faults are not fully captured by Probabilistic Seismic Hazard Assessment (PSHA). PSHA that use catalogues to develop area or smoothed-seismicity sources is limited by the data available to constraint future earthquakes activity rates. The integration of faults in PSHA can at least partially address the long-term deformation. However, careful treatment of fault sources is required, particularly, in low strain rate regions, where estimated seismic hazard levels are highly sensitive to assumptions concerning fault geometry, segmentation and slip rate. When integrating faults in PSHA various constraints on earthquake rates from geologic and seismologic data have to be satisfied. For low strain rate regions where such data is scarce it would be especially challenging. Faults in PSHA requires conversion of the geologic and seismologic data into fault geometries, slip rates and then into earthquake activity rates. Several approaches exist for translating slip rates into earthquake activity rates. In the most frequently used approach, the background earthquakes are handled using a truncated approach, in which earthquakes with a magnitude lower or equal to a threshold magnitude (Mw) occur in the background zone, with a rate defined by the rate in the earthquake catalogue. Although magnitudes higher than the threshold are located on the fault with a rate defined using the average slip rate of the fault. As high-lighted by several research, seismic events with magnitudes stronger than the selected magnitude threshold may potentially occur in the background and not only at the fault, especially in regions of slow tectonic deformation. It also has been known that several sections of a fault or several faults could rupture during a single fault-to-fault rupture. It is then essential to apply a consistent modelling procedure to allow for a large set of possible fault-to-fault ruptures to occur aleatory in the hazard model while reflecting the individual slip rate of each section of the fault. In 2019, a tool named SHERIFS (Seismic Hazard and Earthquake Rates in Fault Systems) was published. The tool is using a methodology to calculate the earthquake rates in a fault system where the slip-rate budget of each fault is conversed into rupture rates for all possible single faults and faultto-fault ruptures. The objective of this paper is to compare the SHERIFS method with one other frequently used model to analyse the impact on the seismic hazard and through sensibility studies better understand the influence of key parameters and assumptions. For this application, a simplified but realistic case study was selected, which is in an area of moderate to hight seismicity (South Est of France) and where the fault is supposed to have a low strain.Keywords: deformation rates, faults, probabilistic seismic hazard, PSHA
Procedia PDF Downloads 684109 GIS and Remote Sensing Approach in Earthquake Hazard Assessment and Monitoring: A Case Study in the Momase Region of Papua New Guinea
Authors: Tingneyuc Sekac, Sujoy Kumar Jana, Indrajit Pal, Dilip Kumar Pal
Abstract:
Tectonism induced Tsunami, landslide, ground shaking leading to liquefaction, infrastructure collapse, conflagration are the common earthquake hazards that are experienced worldwide. Apart from human casualty, the damage to built-up infrastructures like roads, bridges, buildings and other properties are the collateral episodes. The appropriate planning must precede with a view to safeguarding people’s welfare, infrastructures and other properties at a site based on proper evaluation and assessments of the potential level of earthquake hazard. The information or output results can be used as a tool that can assist in minimizing risk from earthquakes and also can foster appropriate construction design and formulation of building codes at a particular site. Different disciplines adopt different approaches in assessing and monitoring earthquake hazard throughout the world. For the present study, GIS and Remote Sensing potentials were utilized to evaluate and assess earthquake hazards of the study region. Subsurface geology and geomorphology were the common features or factors that were assessed and integrated within GIS environment coupling with seismicity data layers like; Peak Ground Acceleration (PGA), historical earthquake magnitude and earthquake depth to evaluate and prepare liquefaction potential zones (LPZ) culminating in earthquake hazard zonation of our study sites. The liquefaction can eventuate in the aftermath of severe ground shaking with amenable site soil condition, geology and geomorphology. The latter site conditions or the wave propagation media were assessed to identify the potential zones. The precept has been that during any earthquake event the seismic wave is generated and propagates from earthquake focus to the surface. As it propagates, it passes through certain geological or geomorphological and specific soil features, where these features according to their strength/stiffness/moisture content, aggravates or attenuates the strength of wave propagation to the surface. Accordingly, the resulting intensity of shaking may or may not culminate in the collapse of built-up infrastructures. For the case of earthquake hazard zonation, the overall assessment was carried out through integrating seismicity data layers with LPZ. Multi-criteria Evaluation (MCE) with Saaty’s Analytical Hierarchy Process (AHP) was adopted for this study. It is a GIS technology that involves integration of several factors (thematic layers) that can have a potential contribution to liquefaction triggered by earthquake hazard. The factors are to be weighted and ranked in the order of their contribution to earthquake induced liquefaction. The weightage and ranking assigned to each factor are to be normalized with AHP technique. The spatial analysis tools i.e., Raster calculator, reclassify, overlay analysis in ArcGIS 10 software were mainly employed in the study. The final output of LPZ and Earthquake hazard zones were reclassified to ‘Very high’, ‘High’, ‘Moderate’, ‘Low’ and ‘Very Low’ to indicate levels of hazard within a study region.Keywords: hazard micro-zonation, liquefaction, multi criteria evaluation, tectonism
Procedia PDF Downloads 2674108 Seismotectonics of Southern Haiti: A Faulting Model for the 12 January 2010 M7 Earthquake
Authors: Newdeskarl Saint Fleur, Nathalie Feuillet, Raphaël Grandin, Éric Jacques, Jennifer Weil-Accardo, Yann Klinger
Abstract:
The prevailing consensus is that the 2010 Mw7.0 Haiti earthquake left the Enriquillo–Plantain Garden strike-slip Fault (EPGF) unruptured but broke unmapped blind north-dipping thrusts. Using high-resolution topography, aerial images, bathymetry and geology we identified previously unrecognized south-dipping NW-SE-striking active thrusts in southern Haiti. One of them, Lamentin thrust (LT), cuts across the crowded city of Carrefour, extends offshore into Port-au-Prince Bay and connects at depth with the EPGF. We propose that both faults broke in 2010. The rupture likely initiated on the thrust and propagated further along the EPGF due to unclamping. This scenario is consistent with geodetic, seismological and field data. The 2010 earthquake increased the stress toward failure on the unruptured segments of the EPGF and on neighboring thrusts, significantly increasing the seismic hazard in the Port-au-Prince urban area. The numerous active thrusts recognized in that area must be considered for future evaluation of the seismic hazard.Keywords: active faulting, enriquillo-plantain garden fault, Haiti earthquake, seismic hazard
Procedia PDF Downloads 12374107 Process Safety Evaluation of a Nuclear Power Plant through Virtual Process Hazard Analysis (PHA) using the What-If Technique
Authors: Lormaine Anne Branzuela, Elysa Largo, Julie Marisol Pagalilauan, Neil Concibido, Monet Concepcion Detras
Abstract:
Energy is a necessity both for the people and the country. The demand for energy is continually increasing, but the supply is not doing the same. The reopening of the Bataan Nuclear Power Plant (BNPP) in the Philippines has been circulating in the media for the current time. The general public has been hesitant in accepting the inclusion of nuclear energy in the Philippine energy mix due to perceived unsafe conditions of the plant. This study evaluated the possible operations of a nuclear power plant, which is of the same type as the BNPP, considering the safety of the workers, the public, and the environment using a Process Hazard Analysis (PHA) method. What-If Technique was utilized to identify the hazards and consequences on the operations of the plant, together with the level of risk it entails. Through the brainstorming sessions of the PHA team, it was found that the most critical system on the plant is the primary system. Possible leakages on pipes and equipment due to weakened seals and welds and blockages on coolant path due to fouling were the most common scenarios identified, which further caused the most critical scenario – radioactive leak through sump contamination, nuclear meltdown, and equipment damage and explosion which could result to multiple injuries and fatalities, and environmental impacts.Keywords: process safety management, process hazard analysis, what-If technique, nuclear power plant
Procedia PDF Downloads 2264106 Numerical Investigation of Beam-Columns Subjected to Non-Proportional Loadings under Ambient Temperature Conditions
Authors: George Adomako Kumi
Abstract:
The response of structural members, when subjected to various forms of non-proportional loading, plays a major role in the overall stability and integrity of a structure. This research seeks to present the outcome of a finite element investigation conducted by the use of finite element programming software ABAQUS to validate the experimental results of elastic and inelastic behavior and strength of beam-columns subjected to axial loading, biaxial bending, and torsion under ambient temperature conditions. The application of the rigorous and highly complicated ABAQUS finite element software will seek to account for material, non-linear geometry, deformations, and, more specifically, the contact behavior between the beam-columns and support surfaces. Comparisons of the three-dimensional model with the results of actual tests conducted and results from a solution algorithm developed through the use of the finite difference method will be established in order to authenticate the veracity of the developed model. The results of this research will seek to provide structural engineers with much-needed knowledge about the behavior of steel beam columns and their response to various non-proportional loading conditions under ambient temperature conditions.Keywords: beam-columns, axial loading, biaxial bending, torsion, ABAQUS, finite difference method
Procedia PDF Downloads 1814105 Study of Natural Radioactive and Radiation Hazard Index of Soil from Sembrong Catchment Area, Johor, Malaysia
Authors: M. I. A. Adziz, J. Sharib Sarip, M. T. Ishak, D. N. A. Tugi
Abstract:
Radiation exposure to humans and the environment is caused by natural radioactive material sources. Given that exposure to people and communities can occur through several pathways, it is necessary to pay attention to the increase in naturally radioactive material, particularly in the soil. Continuous research and monitoring on the distribution and determination of these natural radionuclides' activity as a guide and reference are beneficial, especially in an accidental exposure. Surface soil/sediment samples from several locations identified around the Sembrong catchment area were taken for the study. After 30 days of secular equilibrium with their daughters, the activity concentrations of the naturally occurring radioactive material (NORM) members, i.e. ²²⁶Ra, ²²⁸Ra, ²³⁸U, ²³²Th, and ⁴⁰K, were measured using high purity germanium (HPGe) gamma spectrometer. The results obtained showed that the radioactivity concentration of ²³⁸U ranged between 17.13 - 30.13 Bq/kg, ²³²Th ranged between 22.90 - 40.05 Bq/kg, ²²⁶Ra ranged between 19.19 - 32.10 Bq/kg, ²²⁸Ra ranged between 21.08 - 39.11 Bq/kg and ⁴⁰K ranged between 9.22 - 51.07 Bq/kg with average values of 20.98 Bq/kg, 27.39 Bq/kg, 23.55 Bq/kg, 26.93 Bq/kg and 23.55 Bq/kg respectively. The values obtained from this study were low or equivalent to previously reported in previous studies. It was also found that the mean/mean values obtained for the four parameters of the Radiation Hazard Index, namely radium equivalent activity (Raeq), external dose rate (D), annual effective dose and external hazard index (Hₑₓ), were 65.40 Bq/kg, 29.33 nGy/h, 19.18 ¹⁰⁻⁶Sv and 0.19 respectively. These obtained values are low compared to the world average values and the values of globally applied standards. Comparison with previous studies (dry season) also found that the values for all four parameters were low and equivalent. This indicates the level of radiation hazard in the area around the study is safe for the public.Keywords: catchment area, gamma spectrometry, naturally occurring radioactive material (NORM), soil
Procedia PDF Downloads 1034104 Relationship between Different Heart Rate Control Levels and Risk of Heart Failure Rehospitalization in Patients with Persistent Atrial Fibrillation: A Retrospective Cohort Study
Authors: Yongrong Liu, Xin Tang
Abstract:
Background: Persistent atrial fibrillation is a common arrhythmia closely related to heart failure. Heart rate control is an essential strategy for treating persistent atrial fibrillation. Still, the understanding of the relationship between different heart rate control levels and the risk of heart failure rehospitalization is limited. Objective: The objective of the study is to determine the relationship between different levels of heart rate control in patients with persistent atrial fibrillation and the risk of readmission for heart failure. Methods: We conducted a retrospective dual-centre cohort study, collecting data from patients with persistent atrial fibrillation who received outpatient treatment at two tertiary hospitals in central and western China from March 2019 to March 2020. The collected data included age, gender, body mass index (BMI), medical history, and hospitalization frequency due to heart failure. Patients were divided into three groups based on their heart rate control levels: Group I with a resting heart rate of less than 80 beats per minute, Group II with a resting heart rate between 80 and 100 beats per minute, and Group III with a resting heart rate greater than 100 beats per minute. The readmission rates due to heart failure within one year after discharge were statistically analyzed using propensity score matching in a 1:1 ratio. Differences in readmission rates among the different groups were compared using one-way ANOVA. The impact of varying levels of heart rate control on the risk of readmission for heart failure was assessed using the Cox proportional hazards model. Binary logistic regression analysis was employed to control for potential confounding factors. Results: We enrolled a total of 1136 patients with persistent atrial fibrillation. The results of the one-way ANOVA showed that there were differences in readmission rates among groups exposed to different levels of heart rate control. The readmission rates due to heart failure for each group were as follows: Group I (n=432): 31 (7.17%); Group II (n=387): 11.11%; Group III (n=317): 90 (28.50%) (F=54.3, P<0.001). After performing 1:1 propensity score matching for the different groups, 223 pairs were obtained. Analysis using the Cox proportional hazards model showed that compared to Group I, the risk of readmission for Group II was 1.372 (95% CI: 1.125-1.682, P<0.001), and for Group III was 2.053 (95% CI: 1.006-5.437, P<0.001). Furthermore, binary logistic regression analysis, including variables such as digoxin, hypertension, smoking, coronary heart disease, and chronic obstructive pulmonary disease as independent variables, revealed that coronary heart disease and COPD also had a significant impact on readmission due to heart failure (p<0.001). Conclusion: The correlation between the heart rate control level of patients with persistent atrial fibrillation and the risk of heart failure rehospitalization is positive. Reasonable heart rate control may significantly reduce the risk of heart failure rehospitalization.Keywords: heart rate control levels, heart failure rehospitalization, persistent atrial fibrillation, retrospective cohort study
Procedia PDF Downloads 744103 Ground Motion Modeling Using the Least Absolute Shrinkage and Selection Operator
Authors: Yildiz Stella Dak, Jale Tezcan
Abstract:
Ground motion models that relate a strong motion parameter of interest to a set of predictive seismological variables describing the earthquake source, the propagation path of the seismic wave, and the local site conditions constitute a critical component of seismic hazard analyses. When a sufficient number of strong motion records are available, ground motion relations are developed using statistical analysis of the recorded ground motion data. In regions lacking a sufficient number of recordings, a synthetic database is developed using stochastic, theoretical or hybrid approaches. Regardless of the manner the database was developed, ground motion relations are developed using regression analysis. Development of a ground motion relation is a challenging process which inevitably requires the modeler to make subjective decisions regarding the inclusion criteria of the recordings, the functional form of the model and the set of seismological variables to be included in the model. Because these decisions are critically important to the validity and the applicability of the model, there is a continuous interest on procedures that will facilitate the development of ground motion models. This paper proposes the use of the Least Absolute Shrinkage and Selection Operator (LASSO) in selecting the set predictive seismological variables to be used in developing a ground motion relation. The LASSO can be described as a penalized regression technique with a built-in capability of variable selection. Similar to the ridge regression, the LASSO is based on the idea of shrinking the regression coefficients to reduce the variance of the model. Unlike ridge regression, where the coefficients are shrunk but never set equal to zero, the LASSO sets some of the coefficients exactly to zero, effectively performing variable selection. Given a set of candidate input variables and the output variable of interest, LASSO allows ranking the input variables in terms of their relative importance, thereby facilitating the selection of the set of variables to be included in the model. Because the risk of overfitting increases as the ratio of the number of predictors to the number of recordings increases, selection of a compact set of variables is important in cases where a small number of recordings are available. In addition, identification of a small set of variables can improve the interpretability of the resulting model, especially when there is a large number of candidate predictors. A practical application of the proposed approach is presented, using more than 600 recordings from the National Geospatial-Intelligence Agency (NGA) database, where the effect of a set of seismological predictors on the 5% damped maximum direction spectral acceleration is investigated. The set of candidate predictors considered are Magnitude, Rrup, Vs30. Using LASSO, the relative importance of the candidate predictors has been ranked. Regression models with increasing levels of complexity were constructed using one, two, three, and four best predictors, and the models’ ability to explain the observed variance in the target variable have been compared. The bias-variance trade-off in the context of model selection is discussed.Keywords: ground motion modeling, least absolute shrinkage and selection operator, penalized regression, variable selection
Procedia PDF Downloads 3304102 Weighted Rank Regression with Adaptive Penalty Function
Authors: Kang-Mo Jung
Abstract:
The use of regularization for statistical methods has become popular. The least absolute shrinkage and selection operator (LASSO) framework has become the standard tool for sparse regression. However, it is well known that the LASSO is sensitive to outliers or leverage points. We consider a new robust estimation which is composed of the weighted loss function of the pairwise difference of residuals and the adaptive penalty function regulating the tuning parameter for each variable. Rank regression is resistant to regression outliers, but not to leverage points. By adopting a weighted loss function, the proposed method is robust to leverage points of the predictor variable. Furthermore, the adaptive penalty function gives us good statistical properties in variable selection such as oracle property and consistency. We develop an efficient algorithm to compute the proposed estimator using basic functions in program R. We used an optimal tuning parameter based on the Bayesian information criterion (BIC). Numerical simulation shows that the proposed estimator is effective for analyzing real data set and contaminated data.Keywords: adaptive penalty function, robust penalized regression, variable selection, weighted rank regression
Procedia PDF Downloads 4774101 Development of a Real Time Axial Force Measurement System and IoT-Based Monitoring for Smart Bearing
Authors: Hassam Ahmed, Yuanzhi Liu, Yassine Selami, Wei Tao, Hui Zhao
Abstract:
The purpose of this research is to develop a real time axial force measurement system for a smart bearing through the use of strain-gauges, whereby the data acquisition is performed by an Arduino microcontroller due to its easy manipulation and low-cost. The measured signal is acquired and then discretized using a Wheatstone Bridge and an Analog-Digital Converter (ADC) respectively. For bearing monitoring, a real time monitoring system based on Internet of things (IoT) and Bluetooth were developed. Experimental tests were performed on a bearing within a force range up to 600 kN. The experimental results show that there is a proportional linear relationship between the applied force and the output voltage, and the error R squared is within 0.9878 based on the regression analysis.Keywords: bearing, force measurement, IoT, strain gauge
Procedia PDF Downloads 1444100 Geospatial Multi-Criteria Evaluation to Predict Landslide Hazard Potential in the Catchment of Lake Naivasha, Kenya
Authors: Abdel Rahman Khider Hassan
Abstract:
This paper describes a multi-criteria geospatial model for prediction of landslide hazard zonation (LHZ) for Lake Naivasha catchment (Kenya), based on spatial analysis of integrated datasets of location intrinsic parameters (slope stability factors) and external landslides triggering factors (natural and man-made factors). The intrinsic dataset included: lithology, geometry of slope (slope inclination, aspect, elevation, and curvature) and land use/land cover. The landslides triggering factors included: rainfall as the climatic factor, in addition to the destructive effects reflected by proximity of roads and drainage network to areas that are susceptible to landslides. No published study on landslides has been obtained for this area. Thus, digital datasets of the above spatial parameters were conveniently acquired, stored, manipulated and analyzed in a Geographical Information System (GIS) using a multi-criteria grid overlay technique (in ArcGIS 10.2.2 environment). Deduction of landslide hazard zonation is done by applying weights based on relative contribution of each parameter to the slope instability, and finally, the weighted parameters grids were overlaid together to generate a map of the potential landslide hazard zonation (LHZ) for the lake catchment. From the total surface of 3200 km² of the lake catchment, most of the region (78.7 %; 2518.4 km²) is susceptible to moderate landslide hazards, whilst about 13% (416 km²) is occurring under high hazards. Only 1.0% (32 km²) of the catchment is displaying very high landslide hazards, and the remaining area (7.3 %; 233.6 km²) displays low probability of landslide hazards. This result confirms the importance of steep slope angles, lithology, vegetation land cover and slope orientation (aspect) as the major determining factors of slope failures. The information provided by the produced map of landslide hazard zonation (LHZ) could lay the basis for decision making as well as mitigation and applications in avoiding potential losses caused by landslides in the Lake Naivasha catchment in the Kenya Highlands.Keywords: decision making, geospatial, landslide, multi-criteria, Naivasha
Procedia PDF Downloads 2074099 Model Predictive Control (MPC) and Proportional-Integral-Derivative (PID) Control of Quadcopters: A Comparative Analysis
Authors: Anel Hasić, Naser Prljača
Abstract:
In the domain of autonomous or piloted flights, the accurate control of quadrotor trajectories is of paramount significance for large numbers of tasks. These adaptable aerial platforms find applications that span from high-precision aerial photography and surveillance to demanding search and rescue missions. Among the fundamental challenges confronting quadrotor operation is the demand for accurate following of desired flight paths. To address this control challenge, among others, two celebrated well-established control strategies have emerged as noteworthy contenders: Model Predictive Control (MPC) and Proportional-Integral-Derivative (PID) control. In this work, we focus on the extensive examination of MPC and PID control techniques by using comprehensive simulation studies in MATLAB/Simulink. Intensive simulation results demonstrate the performance of the studied control algorithms.Keywords: MATLAB, MPC, PID, quadcopter, simulink
Procedia PDF Downloads 724098 Design of a Cooperative Neural Network, Particle Swarm Optimization (PSO) and Fuzzy Based Tracking Control for a Tilt Rotor Unmanned Aerial Vehicle
Authors: Mostafa Mjahed
Abstract:
Tilt Rotor UAVs (Unmanned Aerial Vehicles) are naturally unstable and difficult to maneuver. The purpose of this paper is to design controllers for the stabilization and trajectory tracking of this type of UAV. To this end, artificial intelligence methods have been exploited. First, the dynamics of this UAV was modeled using the Lagrange-Euler method. The conventional method based on Proportional, Integral and Derivative (PID) control was applied by decoupling the different flight modes. To improve stability and trajectory tracking of the Tilt Rotor, the fuzzy approach and the technique of multilayer neural networks (NN) has been used. Thus, Fuzzy Proportional Integral and Derivative (FPID) and Neural Network-based Proportional Integral and Derivative controllers (NNPID) have been developed. The meta-heuristic approach based on Particle Swarm Optimization (PSO) method allowed adjusting the setting parameters of NNPID controller, giving us an improved NNPID-PSO controller. Simulation results under the Matlab environment show the efficiency of the approaches adopted. Besides, the Tilt Rotor UAV has become stable and follows different types of trajectories with acceptable precision. The Fuzzy, NN and NN-PSO-based approaches demonstrated their robustness because the presence of the disturbances did not alter the stability or the trajectory tracking of the Tilt Rotor UAV.Keywords: neural network, fuzzy logic, PSO, PID, trajectory tracking, tilt-rotor UAV
Procedia PDF Downloads 1224097 Improving Decision Support for Organ Transplant
Authors: Ian McCulloh, Andrew Placona, Darren Stewart, Daniel Gause, Kevin Kiernan, Morgan Stuart, Christopher Zinner, Laura Cartwright
Abstract:
An estimated 22-25% of viable deceased donor kidneys are discarded every year in the US, while waitlisted candidates are dying every day. As many as 85% of transplanted organs are refused at least once for a patient that scored higher on the match list. There are hundreds of clinical variables involved in making a clinical transplant decision and there is rarely an ideal match. Decision makers exhibit an optimism bias where they may refuse an organ offer assuming a better match is imminent. We propose a semi-parametric Cox proportional hazard model, augmented by an accelerated failure time model based on patient specific suitable organ supply and demand to estimate a time-to-next-offer. Performance is assessed with Cox-Snell residuals and decision curve analysis, demonstrating improved decision support for up to a 5-year outlook. Providing clinical decision makers with quantitative evidence of likely patient outcomes (e.g., time to next offer and the mortality associated with waiting) may improve decisions and reduce optimism bias, thus reducing discarded organs and matching more patients on the waitlist.Keywords: decision science, KDPI, optimism bias, organ transplant
Procedia PDF Downloads 1084096 MapReduce Logistic Regression Algorithms with RHadoop
Authors: Byung Ho Jung, Dong Hoon Lim
Abstract:
Logistic regression is a statistical method for analyzing a dataset in which there are one or more independent variables that determine an outcome. Logistic regression is used extensively in numerous disciplines, including the medical and social science fields. In this paper, we address the problem of estimating parameters in the logistic regression based on MapReduce framework with RHadoop that integrates R and Hadoop environment applicable to large scale data. There exist three learning algorithms for logistic regression, namely Gradient descent method, Cost minimization method and Newton-Rhapson's method. The Newton-Rhapson's method does not require a learning rate, while gradient descent and cost minimization methods need to manually pick a learning rate. The experimental results demonstrated that our learning algorithms using RHadoop can scale well and efficiently process large data sets on commodity hardware. We also compared the performance of our Newton-Rhapson's method with gradient descent and cost minimization methods. The results showed that our newton's method appeared to be the most robust to all data tested.Keywords: big data, logistic regression, MapReduce, RHadoop
Procedia PDF Downloads 2854095 Analysis of Simply Supported Beams Using Elastic Beam Theory
Authors: M. K. Dce
Abstract:
The aim of this paper is to investigate the behavior of simply supported beams having rectangular section and subjected to uniformly distributed load (UDL). In this study five beams of span 5m, 6m, 7m and 8m have been considered. The width of all the beams is 400 mm and span to depth ratio has been taken as 12. The superimposed live load has been increased from 10 kN/m to 25 kN/m at the interval of 5 kN/m. The analysis of the beams has been carried out using the elastic beam theory. On the basis of present study it has been concluded that the maximum bending moment as well as deflection occurs at the mid-span of simply supported beam and its magnitude increases in proportion to magnitude of UDL. Moreover, the study suggests that the maximum moment is proportional to square of span and maximum deflection is proportional to fourth power of span.Keywords: beam, UDL, bending moment, deflection, elastic beam theory
Procedia PDF Downloads 391