Search results for: firm integrated performance
1042 Creating an Enabling Learning Environment for Learners with Visual Impairments Inlesotho Rural Schools by Using Asset-Based Approaches
Authors: Mamochana, A. Ramatea, Fumane, P. Khanare
Abstract:
Enabling the learning environment is a significant and adaptive technique necessary to navigate learners’ educational challenges. However, research has indicated that quality provision of education in the environments that are enabling, especially to learners with visual impairments (LVIs, hereafter) in rural schools, remain an ongoing challenge globally. Hence, LVIs often have a lower level of academic performance as compared to their peers. To balance this gap and fulfill learners'fundamentalhuman rights¬ of receiving an equal quality education, appropriate measures and structures that make enabling learning environment a better place to learn must be better understood. This paper, therefore, intends to find possible means that rural schools of Lesotho can employ to make the learning environment for LVIs enabling. The present study aims to determine suitable assets that can be drawn to make the learning environment for LVIs enabling. The study is also informed by the transformative paradigm and situated within a qualitative research approach. Data were generated through focus group discussions with twelve teachers who were purposefully selected from two rural primary schools in Lesotho. The generated data were then analyzed thematically using Braun and Clarke's six-phase framework. The findings of the study indicated that participating teachers do have an understanding that rural schools boast of assets (existing and hidden) that have a positive influence in responding to the special educational needs of LVIs. However, the participants also admitted that although their schools boast of assets, they still experience limited knowledge about the use of the existing assets and thus, realized a need for improved collaboration, involvement of the existing assets, and enhancement of academic resources to make LVIs’ learning environment enabling. The findings of this study highlight the significance of the effective use of assets. Additionally, coincides with literature that shows recognizing and tapping into the existing assets enable learning for LVIs. In conclusion, the participants in the current study indicated that for LVIs’ learning environment to be enabling, there has to be sufficient use of the existing assets. The researchers, therefore, recommend that the appropriate use of assets is good, but may not be sufficient if the existing assets are not adequately managed. Hence,VILs experience a vicious cycle of vulnerability. It was thus, recommended that adequate use of assets and teachers' engagement as active assets should always be considered to make the learning environment a better place for LVIs to learan in the futureKeywords: assets, enabling learning environment, rural schools, learners with visual impairments
Procedia PDF Downloads 1081041 Determination of the Effective Economic and/or Demographic Indicators in Classification of European Union Member and Candidate Countries Using Partial Least Squares Discriminant Analysis
Authors: Esra Polat
Abstract:
Partial Least Squares Discriminant Analysis (PLSDA) is a statistical method for classification and consists a classical Partial Least Squares Regression (PLSR) in which the dependent variable is a categorical one expressing the class membership of each observation. PLSDA can be applied in many cases when classical discriminant analysis cannot be applied. For example, when the number of observations is low and when the number of independent variables is high. When there are missing values, PLSDA can be applied on the data that is available. Finally, it is adapted when multicollinearity between independent variables is high. The aim of this study is to determine the economic and/or demographic indicators, which are effective in grouping the 28 European Union (EU) member countries and 7 candidate countries (including potential candidates Bosnia and Herzegovina (BiH) and Kosova) by using the data set obtained from database of the World Bank for 2014. Leaving the political issues aside, the analysis is only concerned with the economic and demographic variables that have the potential influence on country’s eligibility for EU entrance. Hence, in this study, both the performance of PLSDA method in classifying the countries correctly to their pre-defined groups (candidate or member) and the differences between the EU countries and candidate countries in terms of these indicators are analyzed. As a result of the PLSDA, the value of percentage correctness of 100 % indicates that overall of the 35 countries is classified correctly. Moreover, the most important variables that determine the statuses of member and candidate countries in terms of economic indicators are identified as 'external balance on goods and services (% GDP)', 'gross domestic savings (% GDP)' and 'gross national expenditure (% GDP)' that means for the 2014 economical structure of countries is the most important determinant of EU membership. Subsequently, the model validated to prove the predictive ability by using the data set for 2015. For prediction sample, %97,14 of the countries are correctly classified. An interesting result is obtained for only BiH, which is still a potential candidate for EU, predicted as a member of EU by using the indicators data set for 2015 as a prediction sample. Although BiH has made a significant transformation from a war-torn country to a semi-functional state, ethnic tensions, nationalistic rhetoric and political disagreements are still evident, which inhibit Bosnian progress towards the EU.Keywords: classification, demographic indicators, economic indicators, European Union, partial least squares discriminant analysis
Procedia PDF Downloads 2801040 Determinants of Probability Weighting and Probability Neglect: An Experimental Study of the Role of Emotions, Risk Perception, and Personality in Flood Insurance Demand
Authors: Peter J. Robinson, W. J. Wouter Botzen
Abstract:
Individuals often over-weight low probabilities and under-weight moderate to high probabilities, however very low probabilities are either significantly over-weighted or neglected. Little is known about factors affecting probability weighting in Prospect Theory related to emotions specific to risk (anticipatory and anticipated emotions), the threshold of concern, as well as personality traits like locus of control. This study provides these insights by examining factors that influence probability weighting in the context of flood insurance demand in an economic experiment. In particular, we focus on determinants of flood probability neglect to provide recommendations for improved risk management. In addition, results obtained using real incentives and no performance-based payments are compared in the experiment with high experimental outcomes. Based on data collected from 1’041 Dutch homeowners, we find that: flood probability neglect is related to anticipated regret, worry and the threshold of concern. Moreover, locus of control and regret affect probabilistic pessimism. Nevertheless, we do not observe strong evidence that incentives influence flood probability neglect nor probability weighting. The results show that low, moderate and high flood probabilities are under-weighted, which is related to framing in the flooding context and the degree of realism respondents attach to high probability property damages. We suggest several policies to overcome psychological factors related to under-weighting flood probabilities to improve flood preparations. These include policies that promote better risk communication to enhance insurance decisions for individuals with a high threshold of concern, and education and information provision to change the behaviour of internal locus of control types as well as people who see insurance as an investment. Multi-year flood insurance may also prevent short-sighted behaviour of people who have a tendency to regret paying for insurance. Moreover, bundling low-probability/high-impact risks with more immediate risks may achieve an overall covered risk which is less likely to be judged as falling below thresholds of concern. These measures could aid the development of a flood insurance market in the Netherlands for which we find to be demand.Keywords: flood insurance demand, prospect theory, risk perceptions, risk preferences
Procedia PDF Downloads 2751039 Airborne CO₂ Lidar Measurements for Atmospheric Carbon and Transport: America (ACT-America) Project and Active Sensing of CO₂ Emissions over Nights, Days, and Seasons 2017-2018 Field Campaigns
Authors: Joel F. Campbell, Bing Lin, Michael Obland, Susan Kooi, Tai-Fang Fan, Byron Meadows, Edward Browell, Wayne Erxleben, Doug McGregor, Jeremy Dobler, Sandip Pal, Christopher O'Dell, Ken Davis
Abstract:
The Active Sensing of CO₂ Emissions over Nights, Days, and Seasons (ASCENDS) CarbonHawk Experiment Simulator (ACES) is a NASA Langley Research Center instrument funded by NASA’s Science Mission Directorate that seeks to advance technologies critical to measuring atmospheric column carbon dioxide (CO₂ ) mixing ratios in support of the NASA ASCENDS mission. The ACES instrument, an Intensity-Modulated Continuous-Wave (IM-CW) lidar, was designed for high-altitude aircraft operations and can be directly applied to space instrumentation to meet the ASCENDS mission requirements. The ACES design demonstrates advanced technologies critical for developing an airborne simulator and spaceborne instrument with lower platform consumption of size, mass, and power, and with improved performance. The Atmospheric Carbon and Transport – America (ACT-America) is an Earth Venture Suborbital -2 (EVS-2) mission sponsored by the Earth Science Division of NASA’s Science Mission Directorate. A major objective is to enhance knowledge of the sources/sinks and transport of atmospheric CO₂ through the application of remote and in situ airborne measurements of CO₂ and other atmospheric properties on spatial and temporal scales. ACT-America consists of five campaigns to measure regional carbon and evaluate transport under various meteorological conditions in three regional areas of the Continental United States. Regional CO₂ distributions of the lower atmosphere were observed from the C-130 aircraft by the Harris Corp. Multi-Frequency Fiber Laser Lidar (MFLL) and the ACES lidar. The airborne lidars provide unique data that complement the more traditional in situ sensors. This presentation shows the applications of CO₂ lidars in support of these science needs.Keywords: CO₂ measurement, IMCW, CW lidar, laser spectroscopy
Procedia PDF Downloads 1621038 Impact of Electric Vehicles on Energy Consumption and Environment
Authors: Amela Ajanovic, Reinhard Haas
Abstract:
Electric vehicles (EVs) are considered as an important means to cope with current environmental problems in transport. However, their high capital costs and limited driving ranges state major barriers to a broader market penetration. The core objective of this paper is to investigate the future market prospects of various types of EVs from an economic and ecological point of view. Our method of approach is based on the calculation of total cost of ownership of EVs in comparison to conventional cars and a life-cycle approach to assess the environmental benignity. The most crucial parameters in this context are km driven per year, depreciation time of the car and interest rate. The analysis of future prospects it is based on technological learning regarding investment costs of batteries. The major results are the major disadvantages of battery electric vehicles (BEVs) are the high capital costs, mainly due to the battery, and a low driving range in comparison to conventional vehicles. These problems could be reduced with plug-in hybrids (PHEV) and range extenders (REXs). However, these technologies have lower CO₂ emissions in the whole energy supply chain than conventional vehicles, but unlike BEV they are not zero-emission vehicles at the point of use. The number of km driven has a higher impact on total mobility costs than the learning rate. Hence, the use of EVs as taxis and in car-sharing leads to the best economic performance. The most popular EVs are currently full hybrid EVs. They have only slightly higher costs and similar operating ranges as conventional vehicles. But since they are dependent on fossil fuels, they can only be seen as energy efficiency measure. However, they can serve as a bridging technology, as long as BEVs and fuel cell vehicle do not gain high popularity, and together with PHEVs and REX contribute to faster technological learning and reduction in battery costs. Regarding the promotion of EVs, the best results could be reached with a combination of monetary and non-monetary incentives, as in Norway for example. The major conclusion is that to harvest the full environmental benefits of EVs a very important aspect is the introduction of CO₂-based fuel taxes. This should ensure that the electricity for EVs is generated from renewable energy sources; otherwise, total CO₂ emissions are likely higher than those of conventional cars.Keywords: costs, mobility, policy, sustainability,
Procedia PDF Downloads 2261037 Fabrication and Characteristics of Ni Doped Titania Nanotubes by Electrochemical Anodization
Authors: J. Tirano, H. Zea, C. Luhrs
Abstract:
It is well known that titanium dioxide is a semiconductor with several applications in photocatalytic process. Its band gap makes it very interesting in the photoelectrodes manufacturing used in photoelectrochemical cells for hydrogen production, a clean and environmentally friendly fuel. The synthesis of 1D titanium dioxide nanostructures, such as nanotubes, makes possible to produce more efficient photoelectrodes for solar energy to hydrogen conversion. In essence, this is because it increases the charge transport rate, decreasing recombination options. However, its principal constraint is to be mainly sensitive to UV range, which represents a very low percentage of solar radiation that reaches earth's surface. One of the alternatives to modifying the TiO2’s band gap and improving its photoactivity under visible light irradiation is to dope the nanotubes with transition metals. This option requires fabricating efficient nanostructured photoelectrodes with controlled morphology and specific properties able to offer a suitable surface area for metallic doping. Hence, currently one of the central challenges in photoelectrochemical cells is the construction of nanomaterials with a proper band position for driving the reaction while absorbing energy over the VIS spectrum. This research focuses on the synthesis and characterization of Nidoped TiO2 nanotubes for improving its photocatalytic activity in solar energy conversion applications. Initially, titanium dioxide nanotubes (TNTs) with controlled morphology were synthesized by two-step potentiostatic anodization of titanium foil. The anodization was carried out at room temperature in an electrolyte composed of ammonium fluoride, deionized water and ethylene glycol. Consequent thermal annealing of as-prepared TNTs was conducted in the air between 450 °C - 550 °C. Afterwards, the nanotubes were superficially modified by nickel deposition. Morphology and crystalline phase of the samples were carried out by SEM, EDS and XRD analysis before and after nickel deposition. Determining the photoelectrochemical performance of photoelectrodes is based on typical electrochemical characterization techniques. Also, the morphological characterization associated electrochemical behavior analysis were discussed to establish the effect of nickel nanoparticles modification on the TiO2 nanotubes. The methodology proposed in this research allows using other transition metal for nanotube surface modification.Keywords: dimensionally stable electrode, nickel nanoparticles, photo-electrode, TiO₂ nanotubes
Procedia PDF Downloads 1771036 Advances in Machine Learning and Deep Learning Techniques for Image Classification and Clustering
Authors: R. Nandhini, Gaurab Mudbhari
Abstract:
Ranging from the field of health care to self-driving cars, machine learning and deep learning algorithms have revolutionized the field with the proper utilization of images and visual-oriented data. Segmentation, regression, classification, clustering, dimensionality reduction, etc., are some of the Machine Learning tasks that helped Machine Learning and Deep Learning models to become state-of-the-art models for the field where images are key datasets. Among these tasks, classification and clustering are essential but difficult because of the intricate and high-dimensional characteristics of image data. This finding examines and assesses advanced techniques in supervised classification and unsupervised clustering for image datasets, emphasizing the relative efficiency of Convolutional Neural Networks (CNNs), Vision Transformers (ViTs), Deep Embedded Clustering (DEC), and self-supervised learning approaches. Due to the distinctive structural attributes present in images, conventional methods often fail to effectively capture spatial patterns, resulting in the development of models that utilize more advanced architectures and attention mechanisms. In image classification, we investigated both CNNs and ViTs. One of the most promising models, which is very much known for its ability to detect spatial hierarchies, is CNN, and it serves as a core model in our study. On the other hand, ViT is another model that also serves as a core model, reflecting a modern classification method that uses a self-attention mechanism which makes them more robust as this self-attention mechanism allows them to lean global dependencies in images without relying on convolutional layers. This paper evaluates the performance of these two architectures based on accuracy, precision, recall, and F1-score across different image datasets, analyzing their appropriateness for various categories of images. In the domain of clustering, we assess DEC, Variational Autoencoders (VAEs), and conventional clustering techniques like k-means, which are used on embeddings derived from CNN models. DEC, a prominent model in the field of clustering, has gained the attention of many ML engineers because of its ability to combine feature learning and clustering into a single framework and its main goal is to improve clustering quality through better feature representation. VAEs, on the other hand, are pretty well known for using latent embeddings for grouping similar images without requiring for prior label by utilizing the probabilistic clustering method.Keywords: machine learning, deep learning, image classification, image clustering
Procedia PDF Downloads 121035 The Levels of Neurosteroid 7β-Hydroxy-Epiandrosterone in Men and Pregnant Women
Authors: J. Vitku, L. Kolatorova, T. Chlupacova, J. Heracek, M. Hill, M. Duskova, L. Starka
Abstract:
Background: 7β-hydroxy-epiandrosterone (7β–OH-EpiA) is an endogenous steroid, that has been shown to exert neuroprotective and anti-inflammatory effects in vitro as well as in animal models. However, to the best of our knowledge no information is available about concentration of this androgen metabolite in human population. The aim of the study was to measure and compare levels of 7β–OH-EpiA in men and pregnant women in different biological fluids and evaluate the relationship between 7β–OH-EpiA in men and their sperm quality. Methods: First, a sensitive isotope dilution high performance liquid chromatography-mass spectrometry method for measurement of 7β–OH-EpiA in different biological fluids was developed. Validation of the method met the requirements of FDA guidelines. Afterwards 7β–OH-EpiA in plasma and seminal plasma of 191 men with different degree of infertility (healthy men, lightly infertile men, moderately infertile men, severely infertile men) was analysed. Furthermore, the levels of 7β–OH-EpiA in plasma of 34 pregnant women in 37th week of gestation and corresponding cord plasma that reflects steroid levels in the fetus were measured. Results: Concentrations of 7β–OH-EpiA in seminal plasma were significantly higher in severely infertile men in comparison with healthy men and lightly infertile men. The same trend was observed when blood plasma was evaluated. Furthermore, plasmatic 7β –OH-EpiA negatively correlated with concentration (-0.215; p < 0.01) and total count (-0.15; p < 0.05). Seminal 7β–OH-EpiA was negatively associated with motility (-0.26; p < 0.01), progressively motile sperms (-0.233; p < 0.01) and nonprogressively motile sperms (-0.188; p < 0.05). Plasmatic 7β –OH-EpiA levels in men were generally higher in comparison with pregnant women. Levels 7β–OH-EpiA were under the lower limit of quantification (LLOQ) in majority of samples of pregnant women and cord plasma. Only 4 plasma samples of pregnant women and 7 cord blood plasma samples were above LLOQ and where in range of units of pg/ml. Conclusion: Based on available information, this is the first study measuring 7β–OH-EpiA in human samples. 7β–OH-EpiA is associated with lower sperm quality and certainly it is worth to explore its role in this field thoroughly. Interestingly, levels of 7β–OH-EpiA in pregnant women were extremely low despite the fact that steroid levels including androgens are generally higher during pregnancy. Acknowledgements: This work was supported by the project MH CR 17-30528 A from the Czech Health Research Council, MH CZ - DRO (Institute of Endocrinology - EU, 00023761) and by the MEYS CR (OP RDE, Excellent research - ENDO.CZ).Keywords: 7β-hydroxy-epiandrosterone, steroid, sperm quality, pregnancy
Procedia PDF Downloads 2561034 Hidro-IA: An Artificial Intelligent Tool Applied to Optimize the Operation Planning of Hydrothermal Systems with Historical Streamflow
Authors: Thiago Ribeiro de Alencar, Jacyro Gramulia Junior, Patricia Teixeira Leite
Abstract:
The area of the electricity sector that deals with energy needs by the hydroelectric in a coordinated manner is called Operation Planning of Hydrothermal Power Systems (OPHPS). The purpose of this is to find a political operative to provide electrical power to the system in a given period, with reliability and minimal cost. Therefore, it is necessary to determine an optimal schedule of generation for each hydroelectric, each range, so that the system meets the demand reliably, avoiding rationing in years of severe drought, and that minimizes the expected cost of operation during the planning, defining an appropriate strategy for thermal complementation. Several optimization algorithms specifically applied to this problem have been developed and are used. Although providing solutions to various problems encountered, these algorithms have some weaknesses, difficulties in convergence, simplification of the original formulation of the problem, or owing to the complexity of the objective function. An alternative to these challenges is the development of techniques for simulation optimization and more sophisticated and reliable, it can assist the planning of the operation. Thus, this paper presents the development of a computational tool, namely Hydro-IA for solving optimization problem identified and to provide the User an easy handling. Adopted as intelligent optimization technique is Genetic Algorithm (GA) and programming language is Java. First made the modeling of the chromosomes, then implemented the function assessment of the problem and the operators involved, and finally the drafting of the graphical interfaces for access to the User. The results with the Genetic Algorithms were compared with the optimization technique nonlinear programming (NLP). Tests were conducted with seven hydroelectric plants interconnected hydraulically with historical stream flow from 1953 to 1955. The results of comparison between the GA and NLP techniques shows that the cost of operating the GA becomes increasingly smaller than the NLP when the number of hydroelectric plants interconnected increases. The program has managed to relate a coherent performance in problem resolution without the need for simplification of the calculations together with the ease of manipulating the parameters of simulation and visualization of output results.Keywords: energy, optimization, hydrothermal power systems, artificial intelligence and genetic algorithms
Procedia PDF Downloads 4201033 Detection of Powdery Mildew Disease in Strawberry Using Image Texture and Supervised Classifiers
Authors: Sultan Mahmud, Qamar Zaman, Travis Esau, Young Chang
Abstract:
Strawberry powdery mildew (PM) is a serious disease that has a significant impact on strawberry production. Field scouting is still a major way to find PM disease, which is not only labor intensive but also almost impossible to monitor disease severity. To reduce the loss caused by PM disease and achieve faster automatic detection of the disease, this paper proposes an approach for detection of the disease, based on image texture and classified with support vector machines (SVMs) and k-nearest neighbors (kNNs). The methodology of the proposed study is based on image processing which is composed of five main steps including image acquisition, pre-processing, segmentation, features extraction and classification. Two strawberry fields were used in this study. Images of healthy leaves and leaves infected with PM (Sphaerotheca macularis) disease under artificial cloud lighting condition. Colour thresholding was utilized to segment all images before textural analysis. Colour co-occurrence matrix (CCM) was introduced for extraction of textural features. Forty textural features, related to a physiological parameter of leaves were extracted from CCM of National television system committee (NTSC) luminance, hue, saturation and intensity (HSI) images. The normalized feature data were utilized for training and validation, respectively, using developed classifiers. The classifiers have experimented with internal, external and cross-validations. The best classifier was selected based on their performance and accuracy. Experimental results suggested that SVMs classifier showed 98.33%, 85.33%, 87.33%, 93.33% and 95.0% of accuracy on internal, external-I, external-II, 4-fold cross and 5-fold cross-validation, respectively. Whereas, kNNs results represented 90.0%, 72.00%, 74.66%, 89.33% and 90.3% of classification accuracy, respectively. The outcome of this study demonstrated that SVMs classified PM disease with a highest overall accuracy of 91.86% and 1.1211 seconds of processing time. Therefore, overall results concluded that the proposed study can significantly support an accurate and automatic identification and recognition of strawberry PM disease with SVMs classifier.Keywords: powdery mildew, image processing, textural analysis, color co-occurrence matrix, support vector machines, k-nearest neighbors
Procedia PDF Downloads 1201032 Factors Determining the Vulnerability to Occupational Health Risk and Safety of Call Center Agents in the Philippines
Authors: Lito M. Amit, Venecio U. Ultra, Young-Woong Song
Abstract:
The business process outsourcing (BPO) in the Philippines is expanding rapidly attracting more than 2% of total employment. Currently, the BPO industry is confronted with several issues pertaining to sustainable productivity such as meeting the staffing gap, high rate of employees’ turnover and workforce retention, and the occupational health and safety (OHS) of call center agents. We conducted a survey of OHS programs and health concerns among call center agents in the Philippines and determined the sociocultural factors that affect the vulnerability of call center agents to occupational health risks and hazards. The majority of the agents affirmed that OHS are implemented and OHS orientation and emergency procedures were conducted at employment initiations, perceived favorable and convenient working environment except for occasional noise disturbances and acoustic shock, visual, and voice fatigues. Male agents can easily adjust to the demands and changes in their work environment and flexible work schedules than female agents. Female agents have a higher tendency to be pressured and humiliated by low work performance, experience a higher incidence of emotional abuse, psychological abuse, and experience more physical stress than male agents. The majority of the call center agents had a night-shift schedule and regardless of other factors, night shift work brings higher stress to agents. While working in a call center, higher incidence of headaches and insomnia, burnout, suppressed anger, anxiety, and depressions were experienced by female, younger (21-25 years old) and those at night shift than their counterpart. Most common musculoskeletal disorders include body pain in the neck, shoulders and back; and hand and wrist disorders and these are commonly experienced by female and younger workers. About 30% experienced symptoms of cardiovascular and gastrointestinal disorders and weakened immune systems. Overall, these findings have shown the variable vulnerability by a different subpopulation of call center agents and are important in the occupational health risk prevention and management towards a sustainable human resource for BPO industry in the Philippines.Keywords: business process outsourcing industry, health risk of call center agents, socio-cultural determinants, Philippines
Procedia PDF Downloads 4941031 Spatial Suitability Assessment of Onshore Wind Systems Using the Analytic Hierarchy Process
Authors: Ayat-Allah Bouramdane
Abstract:
Since 2010, there have been sustained decreases in the unit costs of onshore wind energy and large increases in its deployment, varying widely across regions. In fact, the onshore wind production is affected by air density— because cold air is more dense and therefore more effective at producing wind power— and by wind speed—as wind turbines cannot operate in very low or extreme stormy winds. The wind speed is essentially affected by the surface friction or the roughness and other topographic features of the land, which slow down winds significantly over the continent. Hence, the identification of the most appropriate locations of onshore wind systems is crucial to maximize their energy output and therefore minimize their Levelized Cost of Electricity (LCOE). This study focuses on the preliminary assessment of onshore wind energy potential, in several areas in Morocco with a particular focus on the Dakhla city, by analyzing the diurnal and seasonal variability of wind speed for different hub heights, the frequency distribution of wind speed, the wind rose and the wind performance indicators such as wind power density, capacity factor, and LCOE. In addition to climate criterion, other criteria (i.e., topography, location, environment) were selected fromGeographic Referenced Information (GRI), reflecting different considerations. The impact of each criterion on the suitability map of onshore wind farms was identified using the Analytic Hierarchy Process (AHP). We find that the majority of suitable zones are located along the Atlantic Ocean and the Mediterranean Sea. We discuss the sensitivity of the onshore wind site suitability to different aspects such as the methodology—by comparing the Multi-Criteria Decision-Making (MCDM)-AHP results to the Mean-Variance Portfolio optimization framework—and the potential impact of climate change on this suitability map, and provide the final recommendations to the Moroccan energy strategy by analyzing if the actual Morocco's onshore wind installations are located within areas deemed suitable. This analysis may serve as a decision-making framework for cost-effective investment in onshore wind power in Morocco and to shape the future sustainable development of the Dakhla city.Keywords: analytic hierarchy process (ahp), dakhla, geographic referenced information, morocco, multi-criteria decision-making, onshore wind, site suitability.
Procedia PDF Downloads 1691030 On the Other Side of Shining Mercury: In Silico Prediction of Cold Stabilizing Mutations in Serine Endopeptidase from Bacillus lentus
Authors: Debamitra Chakravorty, Pratap K. Parida
Abstract:
Cold-adapted proteases enhance wash performance in low-temperature laundry resulting in a reduction in energy consumption and wear of textiles and are also used in the dehairing process in leather industries. Unfortunately, the possible drawbacks of using cold-adapted proteases are their instability at higher temperatures. Therefore, proteases with broad temperature stability are required. Unfortunately, wild-type cold-adapted proteases exhibit instability at higher temperatures and thus have low shelf lives. Therefore, attempts to engineer cold-adapted proteases by protein engineering were made previously by directed evolution and random mutagenesis. The lacuna is the time, capital, and labour involved to obtain these variants are very demanding and challenging. Therefore, rational engineering for cold stability without compromising an enzyme's optimum pH and temperature for activity is the current requirement. In this work, mutations were rationally designed with the aid of high throughput computational methodology of network analysis, evolutionary conservation scores, and molecular dynamics simulations for Savinase from Bacillus lentus with the intention of rendering the mutants cold stable without affecting their temperature and pH optimum for activity. Further, an attempt was made to incorporate a mutation in the most stable mutant rationally obtained by this method to introduce oxidative stability in the mutant. Such enzymes are desired in detergents with bleaching agents. In silico analysis by performing 300 ns molecular dynamics simulations at 5 different temperatures revealed that these three mutants were found to be better in cold stability compared to the wild type Savinase from Bacillus lentus. Conclusively, this work shows that cold adaptation without losing optimum temperature and pH stability and additionally stability from oxidative damage can be rationally designed by in silico enzyme engineering. The key findings of this work were first, the in silico data of H5 (cold stable savinase) used as a control in this work, corroborated with its reported wet lab temperature stability data. Secondly, three cold stable mutants of Savinase from Bacillus lentus were rationally identified. Lastly, a mutation which will stabilize savinase against oxidative damage was additionally identified.Keywords: cold stability, molecular dynamics simulations, protein engineering, rational design
Procedia PDF Downloads 1401029 Process Modeling in an Aeronautics Context
Authors: Sophie Lemoussu, Jean-Charles Chaudemar, Robertus A. Vingerhoeds
Abstract:
Many innovative projects exist in the field of aeronautics, each addressing specific areas so to reduce weight, increase autonomy, reduction of CO2, etc. In many cases, such innovative developments are being carried out by very small enterprises (VSE’s) or small and medium sized-enterprises (SME’s). A good example concerns airships that are being studied as a real alternative to passenger and cargo transportation. Today, no international regulations propose a precise and sufficiently detailed framework for the development and certification of airships. The absence of such a regulatory framework requires a very close contact with regulatory instances. However, VSE’s/SME’s do not always have sufficient resources and internal knowledge to handle this complexity and to discuss these issues. This poses an additional challenge for those VSE’s/SME’s, in particular those that have system integration responsibilities and that must provide all the necessary evidence to demonstrate their ability to design, produce, and operate airships with the expected level of safety and reliability. The main objective of this research is to provide a methodological framework enabling VSE’s/SME’s with limited resources to organize the development of airships while taking into account the constraints of safety, cost, time and performance. This paper proposes to provide a contribution to this problematic by proposing a Model-Based Systems Engineering approach. Through a comprehensive process modeling approach applied to the development processes, the regulatory constraints, existing best practices, etc., a good image can be obtained as to the process landscape that may influence the development of airships. To this effect, not only the necessary regulatory information is taken on board, also other international standards and norms on systems engineering and project management are being modeled and taken into account. In a next step, the model can be used for analysis of the specific situation for given developments, derive critical paths for the development, identify eventual conflicting aspects between the norms, standards, and regulatory expectations, or also identify those areas where not enough information is available. Once critical paths are known, optimization approaches can be used and decision support techniques can be applied so to better support VSE’s/SME’s in their innovative developments. This paper reports on the adopted modeling approach, the retained modeling languages, and how they all fit together.Keywords: aeronautics, certification, process modeling, project management, regulation, SME, systems engineering, VSE
Procedia PDF Downloads 1611028 Evaluating the Feasibility of Chemical Dermal Exposure Assessment Model
Authors: P. S. Hsi, Y. F. Wang, Y. F. Ho, P. C. Hung
Abstract:
The aim of the present study was to explore the dermal exposure assessment model of chemicals that have been developed abroad and to evaluate the feasibility of chemical dermal exposure assessment model for manufacturing industry in Taiwan. We conducted and analyzed six semi-quantitative risk management tools, including UK - Control of substances hazardous to health ( COSHH ) Europe – Risk assessment of occupational dermal exposure ( RISKOFDERM ), Netherlands - Dose related effect assessment model ( DREAM ), Netherlands – Stoffenmanager ( STOFFEN ), Nicaragua-Dermal exposure ranking method ( DERM ) and USA / Canada - Public Health Engineering Department ( PHED ). Five types of manufacturing industry were selected to evaluate. The Monte Carlo simulation was used to analyze the sensitivity of each factor, and the correlation between the assessment results of each semi-quantitative model and the exposure factors used in the model was analyzed to understand the important evaluation indicators of the dermal exposure assessment model. To assess the effectiveness of the semi-quantitative assessment models, this study also conduct quantitative dermal exposure results using prediction model and verify the correlation via Pearson's test. Results show that COSHH was unable to determine the strength of its decision factor because the results evaluated at all industries belong to the same risk level. In the DERM model, it can be found that the transmission process, the exposed area, and the clothing protection factor are all positively correlated. In the STOFFEN model, the fugitive, operation, near-field concentrations, the far-field concentration, and the operating time and frequency have a positive correlation. There is a positive correlation between skin exposure, work relative time, and working environment in the DREAM model. In the RISKOFDERM model, the actual exposure situation and exposure time have a positive correlation. We also found high correlation with the DERM and RISKOFDERM models, with coefficient coefficients of 0.92 and 0.93 (p<0.05), respectively. The STOFFEN and DREAM models have poor correlation, the coefficients are 0.24 and 0.29 (p>0.05), respectively. According to the results, both the DERM and RISKOFDERM models are suitable for performance in these selected manufacturing industries. However, considering the small sample size evaluated in this study, more categories of industries should be evaluated to reduce its uncertainty and enhance its applicability in the future.Keywords: dermal exposure, risk management, quantitative estimation, feasibility evaluation
Procedia PDF Downloads 1691027 Fostering Creativity in Education Exploring Leadership Perspectives on Systemic Barriers to Innovative Pedagogy
Authors: David Crighton, Kelly Smith
Abstract:
The ability to adopt creative pedagogical approaches is increasingly vital in today’s educational landscape. This study examines the institutional barriers that hinder educators, in the UK, from embracing such innovation, focusing specifically on the experiences and perspectives of educational leaders. Current literature primarily focuses on the challenges that academics and teachers encounter, particularly highlighting how management culture and audit processes negatively affect their ability to be creative in classrooms and lecture theatres. However, this focus leaves a gap in understanding management perspectives, which is crucial for providing a more holistic insight into the challenges encountered in educational settings. To explore this gap, we are conducting semi-structured interviews with senior leaders across various educational contexts, including universities, schools, and further education colleges. This qualitative methodology, combined with thematic analysis, aims to uncover the managerial, financial, and administrative pressures these leaders face in fostering creativity in teaching and supporting professional learning opportunities. Preliminary insights indicate that educational leaders face significant barriers, such as institutional policies, resource limitations, and external performance indicators. These challenges create a restrictive environment that stifles educators' creativity and innovation. Addressing these barriers is essential for empowering staff to adopt more creative pedagogical approaches, ultimately enhancing student engagement and learning outcomes. By alleviating these constraints, educational leaders can cultivate a culture that fosters creativity and flexibility in the classroom. These insights will inform practical recommendations to support institutional change and enhance professional learning opportunities, contributing to a more dynamic educational environment. In conclusion, this study offers a timely exploration of how leadership can influence the pedagogical landscape in a rapidly evolving educational context. The research seeks to highlight the crucial role that educational leaders play in shaping a culture of creativity and adaptability, ensuring that institutions are better equipped to respond to the challenges of contemporary education.Keywords: educational leadership, professional learning, creative pedagogy, marketisation
Procedia PDF Downloads 141026 Efficient Reuse of Exome Sequencing Data for Copy Number Variation Callings
Authors: Chen Wang, Jared Evans, Yan Asmann
Abstract:
With the quick evolvement of next-generation sequencing techniques, whole-exome or exome-panel data have become a cost-effective way for detection of small exonic mutations, but there has been a growing desire to accurately detect copy number variations (CNVs) as well. In order to address this research and clinical needs, we developed a sequencing coverage pattern-based method not only for copy number detections, data integrity checks, CNV calling, and visualization reports. The developed methodologies include complete automation to increase usability, genome content-coverage bias correction, CNV segmentation, data quality reports, and publication quality images. Automatic identification and removal of poor quality outlier samples were made automatically. Multiple experimental batches were routinely detected and further reduced for a clean subset of samples before analysis. Algorithm improvements were also made to improve somatic CNV detection as well as germline CNV detection in trio family. Additionally, a set of utilities was included to facilitate users for producing CNV plots in focused genes of interest. We demonstrate the somatic CNV enhancements by accurately detecting CNVs in whole exome-wide data from the cancer genome atlas cancer samples and a lymphoma case study with paired tumor and normal samples. We also showed our efficient reuses of existing exome sequencing data, for improved germline CNV calling in a family of the trio from the phase-III study of 1000 Genome to detect CNVs with various modes of inheritance. The performance of the developed method is evaluated by comparing CNV calling results with results from other orthogonal copy number platforms. Through our case studies, reuses of exome sequencing data for calling CNVs have several noticeable functionalities, including a better quality control for exome sequencing data, improved joint analysis with single nucleotide variant calls, and novel genomic discovery of under-utilized existing whole exome and custom exome panel data.Keywords: bioinformatics, computational genetics, copy number variations, data reuse, exome sequencing, next generation sequencing
Procedia PDF Downloads 2571025 Mesoporous Titania Thin Films for Gentamicin Delivery and Bone Morphogenetic Protein-2 Immobilization
Authors: Ane Escobar, Paula Angelomé, Mihaela Delcea, Marek Grzelczak, Sergio Enrique Moya
Abstract:
The antibacterial capacity of bone-anchoring implants can be improved by the use of antibiotics that can be delivered to the media after the surgery. Mesoporous films have shown great potential in drug delivery for orthopedic applications, since pore size and thickness can be tuned to produce different surface area and free volume inside the material. This work shows the synthesis of mesoporous titania films (MTF) by sol-gel chemistry and evaporation-induced self-assembly (EISA) on top of glass substrates. Pores with a diameter of 12nm were observed by Transmission Electron Microscopy (TEM). A film thickness of 100 nm was measured by Scanning Electron Microscopy (SEM). Gentamicin was used to study the antibiotic delivery from the film by means of High-performance liquid chromatography (HPLC). The Staphilococcus aureus strand was used to evaluate the effectiveness of the penicillin loaded films toward inhibiting bacterial colonization. MC3T3-E1 pre-osteoblast cell proliferation experiments proved that MTFs have a good biocompatibility and are a suitable surface for MC3T3-E1 cell proliferation. Moreover, images taken by Confocal Fluorescence Microscopy using labeled vinculin, showed good adhesion of the MC3T3-E1 cells to the MTFs, as well as complex actin filaments arrangement. In order to improve cell proliferation Bone Morphogenetic Protein-2 (BMP-2) was adsorbed on top of the mesoporous film. The deposition of the protein was proved by measurements in the contact angle, showing an increment in the hydrophobicity while the protein concentration is higher. By measuring the dehydrogenase activity in MC3T3-E1 cells cultured in dually functionalized mesoporous titatina films with gentamicin and BMP-2 is possible to find an improvement in cell proliferation. For this purpose, the absorption of a yellow-color formazan dye, product of a water-soluble salt (WST-8) reduction by the dehydrogenases, is measured. In summary, this study proves that by means of the surface modification of MTFs with proteins and loading of gentamicin is possible to achieve an antibacterial effect and a cell growth improvement.Keywords: antibacterial, biocompatibility, bone morphogenetic protein-2, cell proliferation, gentamicin, implants, mesoporous titania films, osteoblasts
Procedia PDF Downloads 1631024 A Modified Estimating Equations in Derivation of the Causal Effect on the Survival Time with Time-Varying Covariates
Authors: Yemane Hailu Fissuh, Zhongzhan Zhang
Abstract:
a systematic observation from a defined time of origin up to certain failure or censor is known as survival data. Survival analysis is a major area of interest in biostatistics and biomedical researches. At the heart of understanding, the most scientific and medical research inquiries lie for a causality analysis. Thus, the main concern of this study is to investigate the causal effect of treatment on survival time conditional to the possibly time-varying covariates. The theory of causality often differs from the simple association between the response variable and predictors. A causal estimation is a scientific concept to compare a pragmatic effect between two or more experimental arms. To evaluate an average treatment effect on survival outcome, the estimating equation was adjusted for time-varying covariates under the semi-parametric transformation models. The proposed model intuitively obtained the consistent estimators for unknown parameters and unspecified monotone transformation functions. In this article, the proposed method estimated an unbiased average causal effect of treatment on survival time of interest. The modified estimating equations of semiparametric transformation models have the advantage to include the time-varying effect in the model. Finally, the finite sample performance characteristics of the estimators proved through the simulation and Stanford heart transplant real data. To this end, the average effect of a treatment on survival time estimated after adjusting for biases raised due to the high correlation of the left-truncation and possibly time-varying covariates. The bias in covariates was restored, by estimating density function for left-truncation. Besides, to relax the independence assumption between failure time and truncation time, the model incorporated the left-truncation variable as a covariate. Moreover, the expectation-maximization (EM) algorithm iteratively obtained unknown parameters and unspecified monotone transformation functions. To summarize idea, the ratio of cumulative hazards functions between the treated and untreated experimental group has a sense of the average causal effect for the entire population.Keywords: a modified estimation equation, causal effect, semiparametric transformation models, survival analysis, time-varying covariate
Procedia PDF Downloads 1751023 Sorting Maize Haploids from Hybrids Using Single-Kernel Near-Infrared Spectroscopy
Authors: Paul R Armstrong
Abstract:
Doubled haploids (DHs) have become an important breeding tool for creating maize inbred lines, although several bottlenecks in the DH production process limit wider development, application, and adoption of the technique. DH kernels are typically sorted manually and represent about 10% of the seeds in a much larger pool where the remaining 90% are hybrid siblings. This introduces time constraints on DH production and manual sorting is often not accurate. Automated sorting based on the chemical composition of the kernel can be effective, but devices, namely NMR, have not achieved the sorting speed to be a cost-effective replacement to manual sorting. This study evaluated a single kernel near-infrared reflectance spectroscopy (skNIR) platform to accurately identify DH kernels based on oil content. The skNIR platform is a higher-throughput device, approximately 3 seeds/s, that uses spectra to predict oil content of each kernel from maize crosses intentionally developed to create larger than normal oil differences, 1.5%-2%, between DH and hybrid kernels. Spectra from the skNIR were used to construct a partial least squares regression (PLS) model for oil and for a categorical reference model of 1 (DH kernel) or 2 (hybrid kernel) and then used to sort several crosses to evaluate performance. Two approaches were used for sorting. The first used a general PLS model developed from all crosses to predict oil content and then used for sorting each induction cross, the second was the development of a specific model from a single induction cross where approximately fifty DH and one hundred hybrid kernels used. This second approach used a categorical reference value of 1 and 2, instead of oil content, for the PLS model and kernels selected for the calibration set were manually referenced based on traditional commercial methods using coloration of the tip cap and germ areas. The generalized PLS oil model statistics were R2 = 0.94 and RMSE = .93% for kernels spanning an oil content of 2.7% to 19.3%. Sorting by this model resulted in extracting 55% to 85% of haploid kernels from the four induction crosses. Using the second method of generating a model for each cross yielded model statistics ranging from R2s = 0.96 to 0.98 and RMSEs from 0.08 to 0.10. Sorting in this case resulted in 100% correct classification but required models that were cross. In summary, the first generalized model oil method could be used to sort a significant number of kernels from a kernel pool but was not close to the accuracy of developing a sorting model from a single cross. The penalty for the second method is that a PLS model would need to be developed for each individual cross. In conclusion both methods could find useful application in the sorting of DH from hybrid kernels.Keywords: NIR, haploids, maize, sorting
Procedia PDF Downloads 3021022 Evaluating Daylight Performance in an Office Environment in Malaysia, Using Venetian Blind Systems
Authors: Fatemeh Deldarabdolmaleki, Mohamad Fakri Zaky Bin Ja'afar
Abstract:
This paper presents fenestration analysis to study the balance between utilizing daylight and eliminating the disturbing parameters in a private office room with interior venetian blinds taking into account different slat angles. Mean luminance of the scene and window, luminance ratio of the workplane and window, work plane illumination and daylight glare probability(DGP) were calculated as a function of venetian blind design properties. Recently developed software, analyzing High Dynamic Range Images (HDRI captured by CCD camera), such as radiance based evalglare and hdrscope help to investigate luminance-based metrics. A total of Eight-day measurement experiment was conducted to investigate the impact of different venetian blind angles in an office environment under daylight condition in Serdang, Malaysia. Detailed result for the selected case study showed that artificial lighting is necessary during the morning session for Malaysian buildings with southwest windows regardless of the venetian blind’s slat angle. However, in some conditions of afternoon session the workplane illuminance level exceeds the maximum illuminance of 2000 lx such as 10° and 40° slat angles. Generally, a rising trend is discovered toward mean window luminance level during the day. All the conditions have less than 10% of the pixels exceeding 2000 cd/m² before 1:00 P.M. However, 40% of the selected hours have more than 10% of the scene pixels higher than 2000 cd/m² after 1:00 P.M. Surprisingly in no blind condition, there is no extreme case of window/task ratio, However, the extreme cases happen for 20°, 30°, 40° and 50° slat angles. As expected mean window luminance level is higher than 2000 cd/m² after 2:00 P.M for most cases except 60° slat angle condition. Studying the daylight glare probability, there is not any DGP value higher than 0.35 in this experiment, due to the window’s direction, location of the building and studied workplane. Specifically, this paper reviews different blind angle’s response to the suggested metrics by the previous standards, and finally conclusions and knowledge gaps are summarized and suggested next steps for research are provided. Addressing these gaps is critical for the continued progress of the energy efficiency movement.Keywords: daylighting, office environment, energy simulation, venetian blind
Procedia PDF Downloads 2281021 Collaborative Data Refinement for Enhanced Ionic Conductivity Prediction in Garnet-Type Materials
Authors: Zakaria Kharbouch, Mustapha Bouchaara, F. Elkouihen, A. Habbal, A. Ratnani, A. Faik
Abstract:
Solid-state lithium-ion batteries have garnered increasing interest in modern energy research due to their potential for safer, more efficient, and sustainable energy storage systems. Among the critical components of these batteries, the electrolyte plays a pivotal role, with LLZO garnet-based electrolytes showing significant promise. Garnet materials offer intrinsic advantages such as high Li-ion conductivity, wide electrochemical stability, and excellent compatibility with lithium metal anodes. However, optimizing ionic conductivity in garnet structures poses a complex challenge, primarily due to the multitude of potential dopants that can be incorporated into the LLZO crystal lattice. The complexity of material design, influenced by numerous dopant options, requires a systematic method to find the most effective combinations. This study highlights the utility of machine learning (ML) techniques in the materials discovery process to navigate the complex range of factors in garnet-based electrolytes. Collaborators from the materials science and ML fields worked with a comprehensive dataset previously employed in a similar study and collected from various literature sources. This dataset served as the foundation for an extensive data refinement phase, where meticulous error identification, correction, outlier removal, and garnet-specific feature engineering were conducted. This rigorous process substantially improved the dataset's quality, ensuring it accurately captured the underlying physical and chemical principles governing garnet ionic conductivity. The data refinement effort resulted in a significant improvement in the predictive performance of the machine learning model. Originally starting at an accuracy of 0.32, the model underwent substantial refinement, ultimately achieving an accuracy of 0.88. This enhancement highlights the effectiveness of the interdisciplinary approach and underscores the substantial potential of machine learning techniques in materials science research.Keywords: lithium batteries, all-solid-state batteries, machine learning, solid state electrolytes
Procedia PDF Downloads 611020 Spirits and Social Agency: A Critical Review of Studies from Africa
Authors: Sanaa Riaz
Abstract:
Spirits occupy a world that simultaneously dwells between the divine and the earthly binary while speaking to all forces of nature, marginality, and extremity in between. This paper examines the conceptualizations, interactions with, and experience of spiritual beings in relation to the concept of self and social agency, defined as a continuum of cooperation leaving those involved with an enhanced or diminished perception of self-agency. To do justice to the diverse mythological and popular interpretations of spirit entities, ethnographic examples from Africa, in particular, will be used. An examination of the nature and role of spirits in Africa allows one to understand the ways in which colonial influences brought by Catholicism and Islam added to the pre-colonial repertoire and syncretic imaginations of spirits. A comprehensive framework to analyze spirits requires situating them as a cognitive configuration of humans to communicate with other humans and forces of nature to receive knowledge about the normative in social roles, conduct, and action. Understanding spirits also requires a rethinking of the concept of self as not one encapsulated in the individual but one representing positionalities in collective negotiations, adversity, and alliances. To use the postmodern understanding of identity as a far from a coherent collection of selves fluidly moving between and dialoguing with gravitational and contradictory social forces, benevolent and maleficent spirit forces represent how people make sense of their origin, physiological and ecological changes, subsistence, and political environment and social relations. A discussion on spirits requires examining the rituals and mediational forces and their performance that allow participants to tackle adversity, voicelessness and continue to work safely and morally for the collective good. Moreover, it is important to see the conceptualization of spirits in unison with sorcery and spirit possession, central to voodoo practices, also because they speak volumes about the experiences of slavery and marginalization. This paper has two motives: It presents a critical literature review of ethnographic accounts of spirit entities in African spiritual experiences to examine the ways in which spirits become mediums through which the self is conceptualized and asserted. Second, the paper highlights the ways in which spirits become a medium to represent political and sociocultural ambiguities and desires along a spectrum of social agencies, including joint agency, vicarious agency, and interfered agency.Keywords: spirits, social agency, self, ethnographic case studies
Procedia PDF Downloads 661019 Knowledge of Artificial Insemination and Agribusiness Management for Social Innovation in Rural Populations
Authors: Yasser Y. Lenis, Daniela Garcia Gonzalez, Cristian Solarte Bacca, Diego F. Carrillo González, Amy Jo Montgomery, Dursun Barrios
Abstract:
Introduction: Artificial insemination in bovines helps to promote genetic improvement and can positively impact the rural economy. The Colombian armed conflict has forced a large portion of the rural population to abandon their territory, affecting their education, family integration, and economics. Justification: The achievement of education in rural populations was one of the Millennium Development Goals (MDGs) made by the United Nations. During the last World Summit on Sustainable Development (WSSD), it was concluded that most of the world’s poor, illiterate and undernourished population lives in rural areas; therefore, access to education is considered one of the most significant challenges for governments in countries with developing economies. Objectives: To study the effects of training in artificial insemination and rural management on the perception of knowledge and the level of knowledge in rural residents affected by the armed conflict in Nariño, Colombia. Methods: The perception of knowledge and the theoretical-practical knowledge of 63 rural residents were evaluated on the topics of bovine agribusiness management, artificial insemination, and genetic improvement through the application of three surveys. 1) evaluated the perceived level of knowledge each rural resident had about each topic using the Likert scale, 2) evaluated the theoretical knowledge before training, and 3) evaluated the theoretical knowledge upon completion of training. Results/discussion: Of the surveyed rural residents, 54% stated that they knew how business management improved the performance of their bovine agribusiness, 54% answered the pre-training knowledge test correctly, while 83% correctly answered the post-training knowledge test. Only 6% of surveyed residents perceived that they had prior knowledge of artificial insemination and reproductive anatomy topics. Before training, 35% of surveyed residents answered correctly on these topics, while upon completion of training, 65% answered correctly. Regarding genetic improvement, 11% of participating rural residents stated that they knew this subject. The correct answers on this topic went from 57% to 89% before and post-training. Conclusion: Rural extension programs contribute to closing knowledge gaps in relation to the use of reproductive biotechnologies and bovine management in rural areas affected by armed conflict.Keywords: agribusiness, insemination, knowledge, reproduction
Procedia PDF Downloads 1771018 Synthesis of Multi-Functional Iron Oxide Nanoparticles for Targeted Drug Delivery in Cancer Treatment
Authors: Masome Moeni, Roya Abedizadeh, Elham Aram, Hamid Sadeghi-Abandansari, Davood Sabour, Robert Menzel, Ali Hassanpour
Abstract:
Significant number of studies and preclinical research in formulation of cancer nano-pharmaceutics have led to an improvement in cancer care. Nonetheless, the antineoplastic agents have ‘failed to live up to its promise’ since their clinical performance is moderately low. For almost ninety years, iron oxide nanoparticles (IONPS) have managed to keep its reputation in clinical application due to their low toxicity, versatility and multi-modal capabilities. Drug Administration approved utilization of IONPs for diagnosis of cancer as contrast media in magnetic resonance imaging, as heat mediator in magnetic hyperthermia and for the treatment of iron deficiency. Furthermore, IONPs have high drug-loading capacity, which makes them good candidates as therapeutic agent transporters. There are yet challenges to overcome for successful clinical application of IONPs, including stability of drug and poor delivery, which might lead to (i) drug resistance, (ii) shorter blood circulation time, and (iii) rapid elimination and adverse side effects from the system. In this study, highly stable and super paramagnetic IONPs were prepared for efficient and targeted drug delivery in cancer treatment. The synthesis procedure was briefly involved the production of IONPs via co-precipitation followed by coating with tetraethyl orthosilicate and 3-aminopropylethoxysilane and grafting with folic acid for stability targeted purposes and controlled drug release. Physiochemical and morphological properties of modified IONPs were characterised using different analytical techniques. The resultant IONPs exhibited clusters of 10 nm spherical shape crystals with less than 100 nm size suitable for drug delivery. The functionalized IONP showed mesoporous features, high stability, dispersibility and crystallinity. Subsequently, the functionalized IONPs were successfully loaded with oxaliplatin, a chemotherapeutic agent, for a controlled drug release in an actively targeting cancer cells. FT-IR observations confirmed presence of oxaliplatin functional groups, while ICP-MS results verified the drug loading was ~ 1.3%.Keywords: cancer treatment, chemotherapeutic agent, drug delivery, iron oxide, multi-functional nanoparticle
Procedia PDF Downloads 831017 Application of Complete Ensemble Empirical Mode Decomposition with Adaptive Noise and Multipoint Optimal Minimum Entropy Deconvolution in Railway Bearings Fault Diagnosis
Authors: Yao Cheng, Weihua Zhang
Abstract:
Although the measured vibration signal contains rich information on machine health conditions, the white noise interferences and the discrete harmonic coming from blade, shaft and mash make the fault diagnosis of rolling element bearings difficult. In order to overcome the interferences of useless signals, a new fault diagnosis method combining Complete Ensemble Empirical Mode Decomposition with adaptive noise (CEEMDAN) and Multipoint Optimal Minimum Entropy Deconvolution (MOMED) is proposed for the fault diagnosis of high-speed train bearings. Firstly, the CEEMDAN technique is applied to adaptively decompose the raw vibration signal into a series of finite intrinsic mode functions (IMFs) and a residue. Compared with Ensemble Empirical Mode Decomposition (EEMD), the CEEMDAN can provide an exact reconstruction of the original signal and a better spectral separation of the modes, which improves the accuracy of fault diagnosis. An effective sensitivity index based on the Pearson's correlation coefficients between IMFs and raw signal is adopted to select sensitive IMFs that contain bearing fault information. The composite signal of the sensitive IMFs is applied to further analysis of fault identification. Next, for propose of identifying the fault information precisely, the MOMED is utilized to enhance the periodic impulses in composite signal. As a non-iterative method, the MOMED has better deconvolution performance than the classical deconvolution methods such Minimum Entropy Deconvolution (MED) and Maximum Correlated Kurtosis Deconvolution (MCKD). Third, the envelope spectrum analysis is applied to detect the existence of bearing fault. The simulated bearing fault signals with white noise and discrete harmonic interferences are used to validate the effectiveness of the proposed method. Finally, the superiorities of the proposed method are further demonstrated by high-speed train bearing fault datasets measured from test rig. The analysis results indicate that the proposed method has strong practicability.Keywords: bearing, complete ensemble empirical mode decomposition with adaptive noise, fault diagnosis, multipoint optimal minimum entropy deconvolution
Procedia PDF Downloads 3741016 Maintenance Wrench Time Improvement Project
Authors: Awadh O. Al-Anazi
Abstract:
As part of the organizational needs toward successful maintaining activities, a proper management system need to be put in place, ensuring the effectiveness of maintenance activities. The management system shall clearly describes the process of identifying, prioritizing, planning, scheduling, execution, and providing valuable feedback for all maintenance activities. Completion and accuracy of the system with proper implementation shall provide the organization with a strong platform for effective maintenance activities that are resulted in efficient outcomes toward business success. The purpose of this research was to introduce a practical tool for measuring the maintenance efficiency level within Saudi organizations. A comprehensive study was launched across many maintenance professionals throughout Saudi leading organizations. The study covered five main categories: work process, identification, planning and scheduling, execution, and performance monitoring. Each category was evaluated across many dimensions to determine its current effectiveness through a five-level scale from 'process is not there' to 'mature implementation'. Wide participation was received, responses were analyzed, and the study was concluded by highlighting major gaps and improvement opportunities within Saudi organizations. One effective implementation of the efficiency enhancement efforts was deployed in Saudi Kayan (one of Sabic affiliates). Below details describes the project outcomes: SK overall maintenance wrench time was measured at 20% (on average) from the total daily working time. The assessment indicates the appearance of several organizational gaps, such as a high amount of reactive work, poor coordination and teamwork, Unclear roles and responsibilities, as well as underutilization of resources. Multidiscipline team was assigned to design and implement an appropriate work process that is capable to govern the execution process, improve the maintenance workforce efficiency, and maximize wrench time (targeting > 50%). The enhanced work process was introduced through brainstorming and wide benchmarking, incorporated with a proper change management plan and leadership sponsorship. The project was completed in 2018. Achieved Results: SK WT was improved to 50%, which resulted in 1) reducing the Average Notification completion time. 2) reducing maintenance expenses on OT and manpower support (3.6 MSAR Actual Saving from Budget within 6 months).Keywords: efficiency, enhancement, maintenance, work force, wrench time
Procedia PDF Downloads 1461015 Impact of Interventions on Brain Functional Connectivity in Young Male Basketball Players: A Comparative Study
Authors: Mohammad Khazaei, Reza Rostami, Hassan Gharayagh Zandi, Ruhollah Basatnia, Mahboubeh Ghayour Najafabadi
Abstract:
Introduction: This study delves into the influence of diverse interventions on brain functional connectivity among young male basketball players. Given the significance of understanding how interventions affect cognitive functions in athletes, particularly in the context of basketball, this research contributes to the growing body of knowledge in sports neuroscience. Methods: Three distinct groups were selected for comprehensive investigation: the Motivational Interview Group, Placebo Consumption Group, and Ritalin Consumption Group. The study involved assessing brain functional connectivity using various frequency bands (Delta, Theta, Alpha, Beta1, Beta2, Gamma, and Total Band) before and after the interventions. The participants were subjected to specific interventions corresponding to their assigned groups. Results: The findings revealed substantial differences in brain functional connectivity across the studied groups. The Motivational Interview Group exhibited optimal outcomes in PLI (Total Band) connectivity. The Placebo Consumption Group demonstrated a marked impact on PLV (Alpha) connectivity, and the Ritalin Consumption Group experienced a considerable enhancement in imCoh (Total Band) connectivity. Discussion: The observed variations in brain functional connectivity underscore the nuanced effects of different interventions on young male basketball players. The enhanced connectivity in specific frequency bands suggests potential cognitive and performance improvements. Notably, the Motivational Interview and Placebo Consumption groups displayed unique patterns, emphasizing the multifaceted nature of interventions. These findings contribute to the understanding of tailored interventions for optimizing cognitive functions in young male basketball players. Conclusion: This study provides valuable insights into the intricate relationship between interventions and brain functional connectivity in young male basketball players. Further research with expanded sample sizes and more sophisticated statistical analyses is recommended to corroborate and expand upon these initial findings. The implications of this study extend to the broader field of sports neuroscience, aiding in the development of targeted interventions for athletes in various disciplines.Keywords: electroencephalography, Ritalin, Placebo effect, motivational interview
Procedia PDF Downloads 641014 A Study of School Meals: How Cafeteria Culture Shapes the Eating Habits of Students
Authors: Jillian Correia, Ali Sakkal
Abstract:
Lunchtime can play a pivotal role in shaping student eating habits. Studies have previously indicated that eating a healthy meal during the school day can improve students’ well-being and academic performance, and potentially prevent childhood obesity. This study investigated the school lunch program in the United Kingdom in order to gain an understanding of the attitudes and beliefs surrounding school meals and the realities of student food patterns. Using a qualitative research methodology, this study was conducted in three primary and secondary school systems in London, United Kingdom. In depth interviews consisting of 14 headteachers, teachers, staff, and chefs and fieldwork observations of approximately 830 primary and secondary school students in the three schools’ cafeterias provided the data. The results of interview responses and fieldwork observation yielded the following set of themes: (a) school meals are publicly portrayed as healthful and nutritious, yet students’ eating habits do not align with this advertising, (b) the level of importance placed on school lunch varies widely among participants and generates inconsistent views concerning who is responsible (government, families, caterers, or schools) for students’ eating habits, (c) role models (i.e. teachers and chefs) present varying levels of interaction with students and conflicting approaches when monitoring students’ eating habits. The latter finding expanded upon Osowski, Göranzon, and Fjellström’s (2013) concept of teacher roles to formulate three education philosophies – the Removed Authority Role Model, the Accommodating Role Model, and the Social Educational Role Model – concluding that the Social Educational Role Model was the most effective at fostering an environment that encouraged healthy eating habits and positive behavior. For schools looking to cultivate strong relationships between students and teachers and facilitate healthier eating habits, these findings were used to construct three key recommendations: (1) elevate the lunch environment by encouraging proper dining etiquette, (2) get teachers eating at the table with students, and (3) shift the focus from monitoring behavior to a teacher-student dialogue centered on food awareness.Keywords: food culture, eating habits, school meals, student behavior, education, food patterns, lunchtime
Procedia PDF Downloads 2641013 Integrating Circular Economy Framework into Life Cycle Analysis: An Exploratory Study Applied to Geothermal Power Generation Technologies
Authors: Jingyi Li, Laurence Stamford, Alejandro Gallego-Schmid
Abstract:
Renewable electricity has become an indispensable contributor to achieving net-zero by the mid-century to tackle climate change. Unlike solar, wind, or hydro, geothermal was stagnant in its electricity production development for decades. However, with the significant breakthrough made in recent years, especially the implementation of enhanced geothermal systems (EGS) in various regions globally, geothermal electricity could play a pivotal role in alleviating greenhouse gas emissions. Life cycle assessment has been applied to analyze specific geothermal power generation technologies, which proposed suggestions to optimize its environmental performance. For instance, selecting a high heat gradient region enables a higher flow rate from the production well and extends the technical lifespan. Although such process-level improvements have been made, the significance of geothermal power generation technologies so far has not explicitly displayed its competitiveness on a broader horizon. Therefore, this review-based study integrates a circular economy framework into life cycle assessment, clarifying the underlying added values for geothermal power plants to complete the sustainability profile. The derived results have provided an enlarged platform to discuss geothermal power generation technologies: (i) recover the heat and electricity from the process to reduce the fossil fuel requirements; (ii) recycle the construction materials, such as copper, steel, and aluminum for future projects; (iii) extract the lithium ions from geothermal brine and make geothermal reservoir become a potential supplier of the lithium battery industry; (iv) repurpose the abandoned oil and gas wells to build geothermal power plants; (v) integrate geothermal energy with other available renewable energies (e.g., solar and wind) to provide heat and electricity as a hybrid system at different weather; (vi) rethink the fluids used in stimulation process (EGS only), replace water with CO2 to achieve negative emissions from the system. These results provided a new perspective to the researchers, investors, and policymakers to rethink the role of geothermal in the energy supply network.Keywords: climate, renewable energy, R strategies, sustainability
Procedia PDF Downloads 137