Search results for: water%20purification
7245 Analysis of Efficiency Production of Grass Black Jelly (Mesona palustris) in Double Scale
Authors: Irvan Adhin Cholilie, Susinggih Wijana, Yusron Sugiarto
Abstract:
The aim of this research is to compare the results of black grass jelly produced using laboratory scale and double scale. In this research, the production from the laboratory scale is using ingredients of 1 kg black grass jelly added with 5 liters of water, while the double scale is using 5 kg black grass jelly and 75 liters of water. The results of organoleptic tests performed by 30 panelists (general) to the sample gels of grass black powder produced from both of laboratory and double scale are not different significantly in color, odor, flavor, and texture. Proximate test results conducted in both of grass black jelly powder produced in laboratory scale and double scale also have no significant differences in all parameters. Grass black jelly powder from double scale contains water, carbohydrate, crude fiber, and yield in the amount of 12,25 %; 43,7 %; 5,89 %; and 16,28 % respectively. The results of the energy efficiency analysis by boiling, draining, evaporation, drying, and milling processes are 85,11 %; 76,97 %; 99,64 %; 99,99% and 99,39% respectively. The utility needs including water needs for each batch amounted 0.1 m3 and cost Rp 220,5 per batch, the electricity needs for each batch is 20.01 kWh and cost Rp 18569.28 per batch, and LPG needs for each batch is 30 kg costed Rp 234,000.00 so that the total cost spent for the process is Rp 252,789.78 .Keywords: black grass jelly, powder, mass balance, energy balance, cost
Procedia PDF Downloads 3877244 Development of Groundwater Management Model Using Groundwater Sustainability Index
Authors: S. S. Rwanga, J. M. Ndambuki, Y. Woyessa
Abstract:
Development of a groundwater management model is an important step in the exploitation and management of any groundwater aquifer as it assists in the long-term sustainable planning of the resource. The current study was conducted in Central Limpopo province of South Africa with the overall objective of determining how much water can be withdrawn from the aquifer without producing nonreversible impacts on the groundwater quantity, hence developing a model which can sustainably protect the aquifer. The development was done through the computation of Groundwater Sustainability Index (GSI). Values of GSI close to unity and above indicated overexploitation. In this study, an index of 0.8 was considered as overexploitation. The results indicated that there is potential for higher abstraction rates compared to the current abstraction rates. GSI approach can be used in the management of groundwater aquifer to sustainably develop the resource and also provides water managers and policy makers with fundamental information on where future water developments can be carried out.Keywords: development, groundwater, groundwater sustainability index, model
Procedia PDF Downloads 1737243 Comparative Study of the Quality of Treated Water and Sludge from Wastewater Treatment Plants in the Peri-Urban Area of Casablanca
Authors: Meryem Zarri, Mohame Tahiri, Fouad Amraoui
Abstract:
In the context of water resources shortage that Morocco is experiencing in recent years, the mobilization of non-conventional resources becomes a necessity. The reuse of treated water and the bioconversion of biological sewage sludge into value-added products is considered an environmentally friendly and economical approach to the management of this significant resource which represent at least 80 % of consumed fresh wate In this work, we compare the quality of treated water and sewage sludge from wastewater treatment plants in the peri-urban Casablanca by analyzing different physicochemical and bacteriological parameters. The choice was made for three wastewater plants installed in different regions and monitored either by LYDEC and Commune of Had Soualem and use different technologies. Recycling of treated water in agriculture and watering of green spaces is dependent on the compliance of the parameters with international standards (WHO, FAO, …etc.) The preliminary tests of the samples taken during the second half of the year 2021 showed that the advanced technologies put in place at the level of the Mediouna and the airport zone stations (membrane reactor and activated sludge, respectively) give water to the output of the stations more respectful of the standards required in terms of physicochemical parameters (pH, Conductivity, Tubidity, COD, BOD5, TNK, and TPK) and bacteriological (fecal germs, Escherichia Coli, streptococci, Helminthes eggs). The parameters relating to the Had Soualem natural lagoon station are generally at the tolerance’s threshold. The results of analyzes relating to the residual sludge collected at the end of the cycle are, on the whole satisfactory despite a fluctuating variability of the bacteriological parameters.Keywords: urban wastewater treatment plants, purified wastewater, sewage sludge, physicochemical parameters, bacteriological parameters, peri-urban area of casablanca, morocco
Procedia PDF Downloads 1587242 A Boundary-Fitted Nested Grid Model for Modeling Tsunami Propagation of 2004 Indonesian Tsunami along Southern Thailand
Authors: Fazlul Karim, Esa Al-Islam
Abstract:
Many problems in oceanography and environmental sciences require the solution of shallow water equations on physical domains having curvilinear coastlines and abrupt changes of ocean depth near the shore. Finite-difference technique for the shallow water equations representing the boundary as stair step may give inaccurate results near the coastline where results are of greatest interest for various applications. This suggests the use of methods which are capable of incorporating the irregular boundary in coastal belts. At the same time, large velocity gradient is expected near the beach and islands as water depth vary abruptly near the coast. A nested numerical scheme with fine resolution is the best resort to enhance the numerical accuracy with the least grid numbers for the region of interests where the velocity changes rapidly and which is unnecessary for the away of the region. This paper describes the development of a boundary fitted nested grid (BFNG) model to compute tsunami propagation of 2004 Indonesian tsunami in Southern Thailand coastal waters. In this paper, we develop a numerical model employing the shallow water nested model and an orthogonal boundary fitted grid to investigate the tsunami impact on the Southern Thailand due to the Indonesian tsunami of 2004. Comparisons of water surface elevation obtained from numerical simulations and field measurements are made.Keywords: Indonesian tsunami of 2004, Boundary-fitted nested grid model, Southern Thailand, finite difference method
Procedia PDF Downloads 4447241 Mathematical Model for Output Yield Obtained by Single Slope Solar Still
Authors: V. Nagaraju, G. Murali, Nagarjunavarma Ganna, Atluri Pavan Kalyan, N. Sree Sai Ganesh, V. S. V. S. Badrinath
Abstract:
The present work focuses on the development of a mathematical model for the yield obtained by single slope solar still incorporated with cylindrical pipes filled with sand. The mathematical results obtained were validated with the experimental results for the 3 cm of water level at the basin. The mathematical model and results obtained with the experimental investigation are within 11% of deviation. The theoretical model to predict the yield obtained due to the capillary effect was proposed first. And then, to predict the total yield obtained, the thermal effect model was integrated with the capillary effect model. With the obtained results, it is understood that the yield obtained is more in the case of solar stills with sand-filled cylindrical pipes when compared to solar stills without sand-filled cylindrical pipes. And later model was used for predicting yield for 1 cm and 2 cm of water levels at the basin. And it is observed that the maximum yield was obtained for a 1 cm water level at the basin. It means solar still produces better yield with the lower depth of water level at the basin; this may be because of the availability of more space in the sand for evaporation.Keywords: solar still, cylindrical pipes, still efficiency, mathematical modeling, capillary effect model, yield, solar desalination
Procedia PDF Downloads 1227240 Direct Oxidation Synthesis for a Dual-Layer Silver/Silver Orthophosphate with Controllable Tetrahedral Structure as an Active Photoanode for Solar-Driven Photoelectrochemical Water Splitting
Authors: Wen Cai Ng, Saman Ilankoon, Meng Nan Chong
Abstract:
The vast increase in global energy demand, coupled with the growing concerns on environmental issues, has triggered the search for cleaner alternative energy sources. In view of this, the photoelectrochemical (PEC) water splitting offers a sustainable hydrogen (H2) production route that only requires solar energy, water, and PEC system operating in an ambient environment. However, the current advancement of PEC water splitting technologies is still far from the commercialization benchmark indicated by the solar-to-H2 (STH) efficiency of at least 10 %. This is largely due to the shortcomings of photoelectrodes used in the PEC system, such as the rapid recombination of photogenerated charge carriers and limited photo-responsiveness in the visible-light spectrum. Silver orthophosphate (Ag3PO4) possesses many desirable intrinsic properties for the fabrication into photoanode used in PEC systems, such as narrow bandgap of 2.4 eV and low valence band (VB) position. Hence, in this study, a highly efficient Ag3PO4-based photoanode was synthesized and characterized. The surface of the Ag foil substrate was directly oxidized to fabricate a top layer composed of {111}-bound Ag3PO4 tetrahedrons layer with a porous structure, forming the dual-layer Ag/Ag3PO4 photoanode. Furthermore, the key synthesis parameters were systematically investigated by varying the concentration ratio of capping agent-to-precursor (R), the volume ratio of hydrogen peroxide (H2O2)-to-water, and reaction period. Results showed that the optimized dual-layer Ag/Ag3PO4 photoanode achieved a photocurrent density as high as 4.19 mA/cm2 at 1 V vs. Ag/AgCl for the R-value of 4, the volume ratio of H2O2-to-water of 3:5 and 20 h reaction period. The current work provides a solid foundation for further nanoarchitecture modification strategies on Ag3PO4-based photoanodes for more efficient PEC water splitting applications. This piece of information needs to be backed up by evidence; therefore, you need to provide a reference. As the abstract should be self-contained, all information requiring a reference should be removed. This is a fact known to the area of research, and not necessarily required a reference to support.Keywords: solar-to-hydrogen fuel, photoelectrochemical water splitting, photoelectrode, silver orthophosphate
Procedia PDF Downloads 1237239 Numerical Modeling for Water Engineering and Obstacle Theory
Authors: Mounir Adal, Baalal Azeddine, Afifi Moulay Larbi
Abstract:
Numerical analysis is a branch of mathematics devoted to the development of iterative matrix calculation techniques. We are searching for operations optimization as objective to calculate and solve systems of equations of order n with time and energy saving for computers that are conducted to calculate and analyze big data by solving matrix equations. Furthermore, this scientific discipline is producing results with a margin of error of approximation called rates. Thus, the results obtained from the numerical analysis techniques that are held on computer software such as MATLAB or Simulink offers a preliminary diagnosis of the situation of the environment or space targets. By this we can offer technical procedures needed for engineering or scientific studies exploitable by engineers for water.Keywords: numerical analysis methods, obstacles solving, engineering, simulation, numerical modeling, iteration, computer, MATLAB, water, underground, velocity
Procedia PDF Downloads 4667238 Role of Organic Wastewater Constituents in Iron Redox Cycling for Ferric Sludge Reuse in the Fenton-Based Treatment
Authors: J. Bolobajev, M. Trapido, A. Goi
Abstract:
The practical application of the Fenton-based treatment method for organic compounds-contaminated water purification is limited mainly because of the large amount of ferric sludge formed during the treatment, where ferrous iron (Fe(II)) is used as the activator of the hydrogen peroxide oxidation processes. Reuse of ferric sludge collected from clarifiers to substitute Fe(II) salts allows reducing the total cost of Fenton-type treatment technologies and minimizing the accumulation of hazardous ferric waste. Dissolution of ferric iron (Fe(III)) from the sludge to liquid phase at acidic pH and autocatalytic transformation of Fe(III) to Fe(II) by phenolic compounds (tannic acid, lignin, phenol, catechol, pyrogallol and hydroquinone) added or present as water/wastewater constituents were found to be essentially involved in the Fenton-based oxidation mechanism. Observed enhanced formation of highly reactive species, hydroxyl radicals, resulted in a substantial organic contaminant degradation increase. Sludge reuse at acidic pH and in the presence of ferric iron reductants is a novel strategy in the Fenton-based treatment application for organic compounds-contaminated water purification.Keywords: ferric sludge recycling, ferric iron reductant, water treatment, organic pollutant
Procedia PDF Downloads 2967237 Characterization and Geochemical Modeling of Cu and Zn Sorption Using Mixed Mineral Systems Injected with Iron Sulfide under Sulfidic-Anoxic Conditions I: Case Study of Cwmheidol Mine Waste Water, Wales, United Kingdom
Authors: D. E. Egirani, J. E. Andrews, A. R. Baker
Abstract:
This study investigates sorption of Cu and Zn contained in natural mine wastewater, using mixed mineral systems in sulfidic-anoxic condition. The mine wastewater was obtained from disused mine workings at Cwmheidol in Wales, United Kingdom. These contaminants flow into water courses. These water courses include River Rheidol. In this River fishing activities exist. In an attempt to reduce Cu-Zn levels of fish intake in the watercourses, single mineral systems and 1:1 mixed mineral systems of clay and goethite were tested with the mine waste water for copper and zinc removal at variable pH. Modelling of hydroxyl complexes was carried out using phreeqc method. Reactions using batch mode technique was conducted at room temperature. There was significant differences in the behaviour of copper and zinc removal using mixed mineral systems when compared to single mineral systems. All mixed mineral systems sorb more Cu than Zn when tested with mine wastewater.Keywords: Cu- Zn, hydroxyl complexes, kinetics, mixed mineral systems, reactivity
Procedia PDF Downloads 5017236 A Study of Some Water Relations and Soil Salinity Using Geotextile Mat under Sprinkler System
Abstract:
This work aimed to study the influence of a geotextile material under sprinkler irrigation on the availability of soil moisture content and salinity of 40 cm top soil profile. Field experiment was carried out to measure soil moisture content, soil salinity and water application efficiency under sprinkler irrigation system. The results indicated that, the mats placed at 20 cm depth leads to increasing of the availability of soil moisture content in the root zone. The results further showed increases in water application efficiency because of using the geotextile material. In addition, soil salinity in the root zone decreased because of increasing soil moisture content.Keywords: geotextile, moisture content, sprinkler irrigation
Procedia PDF Downloads 4027235 Experimental Study of Moisture Effect on the Mechanical Behavior of Flax Fiber Reinforcement
Authors: Marwa Abida, Florian Gehring, Jamel Mars, Alexandre Vivet, Fakhreddine Dammak, Mohamed Haddar
Abstract:
The demand for bio-based materials in semi-structural and structural applications is constantly growing to conform to new environmental policies. Among them, Plant Fiber Reinforced Composites (PFRC) are attractive for the scientific community as well as the industrial world. Due to their relatively low densities and low environmental impact, vegetal fibers appear to be suitable as reinforcing materials for polymers. However, the major issue of plant fibers and PFRC in general is their hydrophilic behavior (high affinity to water molecules). Indeed, when absorbed, water causes fiber swelling and a loss of mechanical properties. Thus, the environmental loadings (moisture, temperature, UV) can strongly affect their mechanical properties and therefore play a critical role in the service life of PFRC. In order to analyze the influence of conditioning at relative humidity on the behavior of flax fiber reinforced composites, a preliminary study on flax fabrics has been conducted. The conditioning of the fabrics in different humid atmospheres made it possible to study the influence of the water content on the hygro-mechanical behavior of flax reinforcement through mechanical tensile tests. This work shows that increasing the relative humidity of the atmosphere induces an increase of the water content in the samples. It also brings up the significant influence of water content on the stiffness and elongation at break of the fabric, while no significant change of the breaking load is detected. Non-linear decrease of flax fabric rigidity and increase of its elongation at maximal force with the increase of water content are observed. It is concluded that water molecules act as a softening agent on flax fabrics. Two kinds of typical tensile curves are identified. Most of the tensile curves of samples show one unique linear region where the behavior appears to be linear prior to the first yarn failure. For some samples in which water content is between 2.7 % and 3.7 % (regardless the conditioning atmosphere), the emergence of a two-linear region behavior is pointed out. This phenomenon could be explained by local heterogeneities of water content which could induce premature local plasticity in some regions of the flax fabric sample behavior.Keywords: hygro-mechanical behavior, hygroscopy, flax fabric, relative humidity, mechanical properties
Procedia PDF Downloads 1907234 Water Quality in Buyuk Menderes Graben, Turkey
Authors: Tugbanur Ozen Balaban, Gultekin Tarcan, Unsal Gemici, Mumtaz Colak, I. Hakki Karamanderesi
Abstract:
Buyuk Menderes Graben is located in the Western Anatolia (Turkey). The graben has become the largest industrial and agricultural area with a total population exceeding 3.000.000. There are two big cities within the study areas from west to east as Aydın and Denizli. The study area is very rich with regard to cold ground waters and thermal waters. Electrical production using geothermal potential has become very popular in the last decades in this area. Buyuk Menderes Graben is a tectonically active extensional region and is undergoing a north–south extensional tectonic regime which commenced at the latest during Early Middle Miocene period. The basement of the study area consists of Menderes massif rocks that are made up of high-to low-grade metamorphics and they are aquifer for both cold ground waters and thermal waters depending on the location. Neogene terrestrial sediments, which are mainly composed by alluvium fan deposits unconformably cover the basement rocks in different facies have very low permeability and locally may act as cap rocks for the geothermal systems. The youngest unit is Quaternary alluvium which is the shallow regional aquifer consists of Holocene alluvial deposits in the study area. All the waters are of meteoric origin and reflect shallow or deep circulation according to the 8O, 2H and 3H contents. Meteoric waters move to deep zones by fractured system and rise to the surface along the faults. Water samples (drilling well, spring and surface waters) and local seawater were collected between 2010 and 2012 years. Geochemical modeling was calculated distribution of the aqueous species and exchange processes by using PHREEQCi speciation code. Geochemical analyses show that cold ground water types are evolving from Ca–Mg–HCO3 to Na–Cl–SO4 and geothermal aquifer waters reflect the water types of Na-Cl-HCO3 in Aydın. Water types of Denizli are Ca-Mg-HCO3 and Ca-Mg-HCO3-SO4. Thermal water types reflect generally Na-HCO3-SO4. The B versus Cl rates increase from east to west with the proportion of seawater introduced into the fresh water aquifers and geothermal reservoirs. Concentrations of some elements (As, B, Fe and Ni) are higher than the tolerance limit of the drinking water standard of Turkey (TS 266) and international drinking water standards (WHO, FAO etc).Keywords: Buyuk Menderes, isotope chemistry, geochemical modelling, water quality
Procedia PDF Downloads 5377233 Research on Key Technologies on Initial Installation of Ultra-Deep-Water Dynamic Umbilical
Authors: Weiwei Xie, Yichao Li
Abstract:
The initial installation of the umbilical can affect the subsequent installation process and final installation. Meanwhile, the design of both ends of the ultra-deep water dynamic umbilical (UDWDU), as well as the design of the surface unit and the subsea production system connected by UDWDU,], varies in different oil and gas fields. To optimize the installation process of UDWDU, on the basis of the summary and analysis of the surface-end and the subsea-end design of UDWDU and the mainstream construction resources, the method of initial installation from the surface unit side or the subsea production system side of UDWDU is studied, and each initiation installation method is pointed out if some difficulties that may be encountered.Keywords: dynamic umbilical, ultra-deep-water, initial installation, installation process
Procedia PDF Downloads 1597232 Impacts of Human Settlement Development on Highland View Wetland in Bizana, South Africa
Authors: Fikile Xaki, Zendy Magayiyana
Abstract:
The increasing population and urbanization, with the demand for land and development, has had adverse impacts on wetland areas which has resulted in changing the hydrology and water chemistry of wetlands, affecting the water supply and water quality in urban areas like the Highland View, a residential area in Mbizana, South Africa. The settlement development in Highland View has led to wetland degradation due to land uses like agriculture and conversion of wetland for settlement development. Interviews with the local community were conducted to show how settlement development on wetland affects them. The results indicated that the environmental rights of people as according to Section 24 of the South African Constitution are compromised, and sustainable development was not put into consideration during development. With the results from the survey - through questionnaires for the Mbizana Local Municipality and the community, it was clear that the community needs education and capacity building on wetland management and conservation. Geographic Information Systems (GIS) was used to map physical properties of the Highland View wetland and houses built on the wetland. With all the information gathered from the research, it was clear that local municipality, together with hydrologists, needs to develop an environmental management framework to protect the wetlands.Keywords: sustainable development, wetlands, human settlement, water
Procedia PDF Downloads 3547231 Application of Nanoparticles on Surface of Commercial Carbon-Based Adsorbent for Removal of Contaminants from Water
Authors: Ahmad Kayvani Fard, Gordon Mckay, Muataz Hussien
Abstract:
Adsorption/sorption is believed to be one of the optimal processes for the removal of heavy metals from water due to its low operational and capital cost as well as its high removal efficiency. Different materials have been reported in literature as adsorbent for heavy metal removal in waste water such as natural sorbents, organic polymers (synthetic) and mineral materials (inorganic). The selection of adsorbents and development of new functional materials that can achieve good removal of heavy metals from water is an important practice and depends on many factors, such as the availability of the material, cost of material, and material safety and etc. In this study we reported the synthesis of doped Activated carbon and Carbon nanotube (CNT) with different loading of metal oxide nanoparticles such as Fe2O3, Fe3O4, Al2O3, TiO2, SiO2 and Ag nanoparticles and their application in removal of heavy metals, hydrocarbon, and organics from waste water. Commercial AC and CNT with different loadings of mentioned nanoparticle were prepared and effect of pH, adsorbent dosage, sorption kinetic, and concentration effects are studied and optimum condition for removal of heavy metals from water is reported. The prepared composite sorbent is characterized using field emission scanning electron microscopy (FE-SEM), high transmission electron microscopy (HR-TEM), thermogravimetric analysis (TGA), X-ray diffractometer (XRD), the Brunauer, Emmett and Teller (BET) nitrogen adsorption technique, and Zeta potential. The composite materials showed higher removal efficiency and superior adsorption capacity compared to commercially available carbon based adsorbent. The specific surface area of AC increased by 50% reaching up to 2000 m2/g while the CNT specific surface area of CNT increased by more than 8 times reaching value of 890 m2/g. The increased surface area is one of the key parameters along with surface charge of the material determining the removal efficiency and removal efficiency. Moreover, the surface charge density of the impregnated CNT and AC have enhanced significantly where can benefit the adsorption process. The nanoparticles also enhance the catalytic activity of material and reduce the agglomeration and aggregation of material which provides more active site for adsorbing the contaminant from water. Some of the results for treating wastewater includes 100% removal of BTEX, arsenic, strontium, barium, phenolic compounds, and oil from water. The results obtained are promising for the use of AC and CNT loaded with metal oxide nanoparticle in treatment and pretreatment of waste water and produced water before desalination process. Adsorption can be very efficient with low energy consumption and economic feasibility.Keywords: carbon nanotube, activated carbon, adsorption, heavy metal, water treatment
Procedia PDF Downloads 2367230 Amelioration of Stability and Rheological Properties of a Crude Oil-Based Drilling Mud
Authors: Hammadi Larbi, Bergane Cheikh
Abstract:
Drilling for oil is done through many mechanisms. The goal is first to dig deep and then, after arriving at the oil source, to simply suck it up. And for this, it is important to know the role of oil-based drilling muds, which had many benefits for the drilling tool and for drilling generally, and also and essentially to know the rheological behavior of the emulsion system in particular water-in-oil inverse emulsions (Water/crude oil). This work contributes to the improvement of the stability and rheological properties of crude oil-based drilling mud by organophilic clay. Experimental data from steady-state flow measurements of crude oil-based drilling mud are classically analyzed by the Herschel-Bulkley model. The effects of organophilic clay type VG69 are studied. Microscopic observation showed that the addition of quantities of organophilic clay type VG69 less than or equal to 3 g leads to the stability of inverse Water/Oil emulsions; on the other hand, for quantities greater than 3g, the emulsions are destabilized.Keywords: drilling, organophilic clay, crude oil, stability
Procedia PDF Downloads 1297229 Development of Vacuum Planar Membrane Dehumidifier for Air-Conditioning
Authors: Chun-Han Li, Tien-Fu Yang, Chen-Yu Chen, Wei-Mon Yan
Abstract:
The conventional dehumidification method in air-conditioning system mostly utilizes a cooling coil to remove the moisture in the air via cooling the supply air down below its dew point temperature. During the process, it needs to reheat the supply air to meet the set indoor condition that consumes a considerable amount of energy and affect the coefficient of performance of the system. If the processes of dehumidification and cooling are separated and operated respectively, the indoor conditions will be more efficiently controlled. Therefore, decoupling the dehumidification and cooling processes in heating, ventilation and air conditioning system is one of the key technologies as membrane dehumidification processes for the next generation. The membrane dehumidification method has the advantages of low cost, low energy consumption, etc. It utilizes the pore size and hydrophilicity of the membrane to transfer water vapor by mass transfer effect. The moisture in the supply air is removed by the potential energy and driving force across the membrane. The process can save the latent load used to condense water, which makes more efficient energy use because it does not involve heat transfer effect. In this work, the performance measurements including the permeability and selectivity of water vapor and air with the composite and commercial membranes were conducted. According to measured data, we can choose the suitable dehumidification membrane for designing the flow channel length and components of the planar dehumidifier. The vacuum membrane dehumidification system was set up to examine the effects of temperature, humidity, vacuum pressure, flow rate, the coefficient of performance and other parameters on the dehumidification efficiency. The results showed that the commercial Nafion membrane has better water vapor permeability and selectivity. They are suitable for filtration with water vapor and air. Meanwhile, Nafion membrane has promising potential in the dehumidification process.Keywords: vacuum membrane dehumidification, planar membrane dehumidifier, water vapour and air permeability, air conditioning
Procedia PDF Downloads 1487228 Genetic Variability Studies of Some Quantitative Traits in Cowpea (Vigna unguiculata L. [Walp.] ) under Water Stress
Authors: Auwal Ibrahim Magashi, Lawan Dan Larai Fagwalawa, Muhammad Bello Ibrahim
Abstract:
A research was conducted to study genetic variability of some quantitative traits in varieties of cowpea (Vigna unguiculata L. [Walp]) under water stressed from Zaria, Nigeria. Seeds of seven varieties of cowpea (Sampea 1, Sampea 2, IAR1074, Sampea 7, Sampea 8, Sampea 10 and Sampea 12) collected from Institute for Agricultural Research (IAR), Samaru, Zaria were screened for water stressed tolerance. The seeds were then sown in poly bags containing sandy-loam arranged in Completely Randomized Design with three replications for quantitative traits evaluation. The nutritional composition of the seeds obtained from the water stress tolerant varieties of cowpea were analyzed. The result obtained revealed highly significant difference (P ≤ 0.01) in the effects of water stress on the number of wilted and dead plants at 40 days after sowing (DAS) and significant (P ≤ 0.05) 34 DAS. However, sampea 10 has the highest mean performance in terms of number of wilted plants at 34 DAS while sampea 2 and IAR 1074 has the lowest mean performance. However, sampea 7 was found to have the highest mean performance for the number of wilted plants at 40 DAS and sampea 2 is lowest. The result for quantitative traits study indicated highly significant difference (P ≤ 0.01) in the plant height, number of days to 50% flowering, number of days to maturity, number of pods per plant, pod length, number of seeds per plant and 100 seed weight; and significant (P ≤ 0.05) at seedling height and number of branches per plant. Similarly, IAR1074 was found to have high performance in terms of most of the quantitative traits under study. However, sampea 8 has the highest mean performance at nutritional level. It was therefore concluded that, all the seven cowpea genotypes were water stress tolerant and produced considerable yield that contained significant nutrients. It was recommended that IAR1074 should be grown for yield while sampea 8 should be grown for protein supplements.Keywords: cowpea, genetic variability, quantitative traits, water stress
Procedia PDF Downloads 1597227 A Review on Applications of Evolutionary Algorithms to Reservoir Operation for Hydropower Production
Authors: Nkechi Neboh, Josiah Adeyemo, Abimbola Enitan, Oludayo Olugbara
Abstract:
Evolutionary algorithms are techniques extensively used in the planning and management of water resources and systems. It is useful in finding optimal solutions to water resources problems considering the complexities involved in the analysis. River basin management is an essential area that involves the management of upstream, river inflow and outflow including downstream aspects of a reservoir. Water as a scarce resource is needed by human and the environment for survival and its management involve a lot of complexities. Management of this scarce resource is necessary for proper distribution to competing users in a river basin. This presents a lot of complexities involving many constraints and conflicting objectives. Evolutionary algorithms are very useful in solving this kind of complex problems with ease. Evolutionary algorithms are easy to use, fast and robust with many other advantages. Many applications of evolutionary algorithms, which are population based search algorithm, are discussed. Different methodologies involved in the modeling and simulation of water management problems in river basins are explained. It was found from this work that different evolutionary algorithms are suitable for different problems. Therefore, appropriate algorithms are suggested for different methodologies and applications based on results of previous studies reviewed. It is concluded that evolutionary algorithms, with wide applications in water resources management, are viable and easy algorithms for most of the applications. The results suggested that evolutionary algorithms, applied in the right application areas, can suggest superior solutions for river basin management especially in reservoir operations, irrigation planning and management, stream flow forecasting and real-time applications. The future directions in this work are suggested. This study will assist decision makers and stakeholders on the best evolutionary algorithm to use in varied optimization issues in water resources management.Keywords: evolutionary algorithm, multi-objective, reservoir operation, river basin management
Procedia PDF Downloads 4947226 Development of Combined Cure Type for Rigid Pavement with Reactive Powder Concrete
Authors: Fatih Hattatoglu, Abdulrezzak Bakiş
Abstract:
In this study, fiberless reactive powder concrete (RPC) was produced with high pressure and flexural strength. C30/37 concrete was chosen as the control sample. In this study, 9 different cure types were applied to fiberless RPC. the most suitable combined cure type was selected according to the pressure and flexure strength. Pressure and flexural strength tests were applied to these samples after curing. As a result of the study, the combined cure type with the highest pressure resistance was obtained. The highest pressure resistance was achieved with consecutive standard water cure at 20 °C for 7 days – hot water cure at 90 °C for 2 days - drying oven cure at 180 °C for 2 days. As a result of the study, the highest pressure resistance of fiberless RPC was found as 123 MPa with water cure at 20 °C for 7 days - hot water cure at 90 °C for 2 days - drying oven cure at 180 °C for 2 days; and the highest flexural resistance was found as 8.37 MPa for the same combined cure type.Keywords: combined cure, flexural test, reactive powder concrete (RPC), rigid pavement, pressure test
Procedia PDF Downloads 2117225 Assessment of Surface Water Quality in Belarus
Authors: Anastasiya Vouchak, Aliaksandr Volchak
Abstract:
Belarus is not short of water. However, there is a problem of water quality. Its pollution has both natural and man-made origin. This research is based on data from State Water Cadastre of the Republic of Belarus registered from 1994 to 2014. We analyzed changes in such hydro-chemical criteria as concentration of ammonium ions, suspended matter, dissolved oxygen, oil-products, nitrites, phosphates in water, dichromate value, water impurity index, 5-day biochemical oxygen demand (BOD). Pollution of water with ammonium ions was observed in Belarus rivers of the Western Dvina, Polota, Schara, Usha, Muhavets, Berzina, Plissa, Svisloch, Pripiat, Yaselda in 2006-2014. The threshold limit value (TLV) was 1.5-3 times as much. Concentration of ammonia in the Berezina exceeded 3 – 5 times the TLVs in 2006-2010. Maximum excess of TLV was registered in the Svisloch (10 km downstream of Minsk) in 2006-2007. It was over 4 mg/dm³ whereas the norm is 0.39 mg/dm³. In 1997 there were ammonia pollution spots in the Dnieper, the Berezina, and the Svisloch Rivers. Since 2006 we have observed pollution spots in the Neman, Ross, Vilia, Sozh, Gorin Rivers, the Osipovichi and Soligorsk reservoirs. Dichromate value exceeds the TLVs in 40% cases. The most polluted waters are the Muhavets, Berezina, Pripiat, Yaselda, Gorin Rivers, the Vileyka and Soligorsk reservoirs. The Western Dvina, Neman, Viliya, Schara, Svisloch, and Plissa Rivers are less polluted. The Dnieper is the cleanest in this respect. In terms of BOD, water is polluted in the Neman, Muhavets, Svisloch, Yaselda, Gorin Rivers, the Osipovichi, Zaslavl, and Soligorsk reservoirs. The Western Dvina, Polota, Sozh, Iputs Rivers and Lake Naroch are not polluted in this respect. This criterion has been decreasing in 33 out of 42 cases. The least suspended matter is in the Berezina, Sozh, Iputs Rivers and Lake Naroch. The muddiest water is in the Neman, Usha, Svisloch, Pripyat, Yaselda Rivers, the Osipovichi and Soligorsk reservoirs. Water impurity index shows reduction of this criterion at all gauge stations. Multi-year average values predominantly (66.6%) correspond to the third class of water quality, i.e. moderately polluted. They include the Western Dvina, Ross, Usha, Muhavets, Dnieper, Berezina, Plissa, Iputs, Pripyat, Yaselda, Gorin Rivers, the Osipovichi and Soligorsk reservoirs. Water in the Svisloch River downstream of Minsk is of the forth quality class, i.e. most polluted. In the rest cases (33.3%) water is relatively clean. They include the Lidea, Schara, Viliya, Sozh Rivers, Lake Lukoml, Lake Naroch, Vileyka and Zaslavl reservoirs. Multi-year average values range from 7.0 to 9.5 mg О₂/dm³. The Yaselda has the least value - 6.7 mg О₂/dm³. A shortage of dissolved oxygen was found in the Berezina (2010), the Yaselda (2007), the Plissa (2011-2014), the Soligorsk reservoir (1996). Contamination of water with oil-products was observed everywhere in 1994-1999. Some spots were found in the Western Dvina, Vilia, Usha, Dnieper in 2003-2006, in the Svisloch in 2002-2012. We are observing gradual decrease of oil pollutants in surface water. The quality of 67 % surface water is referred to as moderately polluted.Keywords: belarus, hydro-chemical criteria, water pollution, water quality
Procedia PDF Downloads 1507224 Urbanization on Green Cover and Groundwater Relationships in Delhi, India
Authors: Kiranmay Sarma
Abstract:
Recent decades have witnessed rapid increase in urbanization, for which, rural-urban migration is stated to be the principal reason. Urban growth throughout the world has already outstripped the capacities of most of the cities to provide basic amenities to the citizens, including clean drinking water and consequently, they are struggling to get fresh and clean water to meet water demands. Delhi, the capital of India, is one of the rapid fast growing metropolitan cities of the country. As a result, there has been large influx of population during the last few decades and pressure exerted to the limited available water resources, mainly on groundwater. Considering this important aspect, the present research has been designed to study the effects of urbanization on the green cover and groundwater and their relationships of Delhi. For the purpose, four different land uses of the study area have been considered, viz., protected forest area, trees outside forest, maintained park and settlement area. Samples for groundwater and vegetation were collected seasonally in post-monsoon (October), winter (February) and summer (June) at each study site for two years during 2012 and 2014. The results were integrated into GIS platform. The spatial distribution of groundwater showed that the concentration of most of the ions is decreasing from northern to southern parts of Delhi, thus groundwater shows an improving trend from north to south. The depth was found to be improving from south to north Delhi, i.e., opposite to the water quality. The study concludes the groundwater properties in Delhi vary spatially with depending on the types of land cover.Keywords: groundwater, urbanization, GIS, green cover, Delhi
Procedia PDF Downloads 2917223 Identifying Karst Pattern to Prevent Bell Spring from Being Submerged in Daryan Dam Reservoir
Authors: H. Shafaattalab Dehghani, H. R. Zarei
Abstract:
The large karstic Bell spring with a discharge ranging between 250 and 5300 lit/ sec is one of the most important springs of Kermanshah Province. This spring supplies drinking water of Nodsheh City and its surrounding villages. The spring is located in the reservoir of Daryan Dam and its mouth would be submerged after impounding under a water column of about 110 m height. This paper has aimed to render an account of the karstification pattern around the spring under consideration with the intention of preventing Bell Spring from being submerged in Daryan Dam Reservoir. The studies comprise engineering geology and hydrogeology investigations. Some geotechnical activities included in these studies include geophysical studies, drilling, excavation of exploratory gallery and shaft and diving. The results depict that Bell is a single-conduit siphon spring with 4 m diameter and 85 m height that 32 m of the conduit is located below the spring outlet. To survive the spring, it was decided to plug the outlet and convey the water to upper elevations under the natural pressure of the aquifer. After plugging, water was successfully conveyed to elevation 837 meter above sea level (about 120 m from the outlet) under the natural pressure of the aquifer. This signifies the accuracy of the studies done and proper recognition of the karstification pattern of Bell Spring. This is a unique experience in karst problems in Iran.Keywords: bell spring, Karst, Daryan Dam, submerged
Procedia PDF Downloads 2767222 Dispersions of Carbon Black in Microemulsions
Authors: Mohamed Youssry, Dominique Guyomard, Bernard Lestriez
Abstract:
In order to enhance the energy and power densities of electrodes for energy storage systems, the formulation and processing of electrode slurries proved to be a critical issue in determining the electrode performance. In this study, we introduce novel approach to formulate carbon black slurries based on microemulsion and lyotropic liquid crystalline phases (namely, lamellar phase) composed of non-ionic surfactant (Triton X100), decanol and water. Simultaneous measurements of electrical properties of slurries under shear flow (rheology) have been conducted to elucidate the microstructure evolution with the surfactant concentration and decanol/water ratio at rest, as well as, the structural transition under steady-shear which has been confirmed by rheo-microscopy. Interestingly, the carbon black slurries at low decanol/water ratio are weak-gel (flowable) with higher electrical conductivity than those at higher ratio which behave strong-gel viscoelastic response. In addition, the slurries show recoverable electrical behaviour under shear flow in tandem with the viscosity trend. It is likely that oil-in-water microemulsion enhances slurries’ stability without affecting on the percolating network of carbon black. On the other hand, the oil-in-water analogous and bilayer structure of lamellar phase cause the slurries less conductive as a consequence of losing the network percolation. These findings are encouraging to formulate microemulsion-based electrodes for energy storage system (lithium-ion batteries).Keywords: electrode slurries, microemulsion, microstructure transition, rheo-electrical properties
Procedia PDF Downloads 2687221 Solar System with Plate Heat Exchanger
Authors: Christer Frennfelt
Abstract:
Solar heating is the most environmentally friendly way to heat water. Brazed Plate Heat Exchangers (BPHEs) are a key component in many solar heating applications for harvesting solar energy into accumulator tanks, producing hot tap water, and heating pools. The combination of high capacity in a compact format, efficient heat transfer, and fast response makes the BPHE the ideal heat exchanger for solar thermal systems. Solar heating is common as a standalone heat source, and as an add-on heat source for boilers, heat pumps, or district heating systems. An accumulator provides the possibility to store heat, which enables combination of different heat sources to a larger extent. In turn this works as protection to reduced access to energy or increased energy prices. For example heat from solar panels is preferably stored during the day for use at night.Keywords: district heating and cooling, thermal storage, brazed plate heat exchanger, solar domestic hot water and combisystems
Procedia PDF Downloads 3527220 4-Chlorophenol Degradation in Water Using TIO₂-X%ZnS Synthesized by One-Step Sol-Gel Method
Authors: M. E. Velásquez Torres, F. Tzompantzi, J. C. Castillo-Rodríguez, A. G. Romero Villegas, S. Mendéz-Salazar, C. E. Santolalla-Vargas, J. Cardoso-Martínez
Abstract:
Photocatalytic degradation, as an advanced oxidation technology, is a promising method in organic pollutant degradation. In this sense, chlorophenols should be removed from the water because they are highly toxic. The TiO₂ - X% ZnS photocatalysts, where X represents the molar percentage of ZnS (3%, 5%, 10%, and 15%), were synthesized using the one-step sol-gel method to use them as photocatalysts to degrade 4-chlorophenol. The photocatalysts were synthesized by a one-step sol-gel method. They were refluxed for 36 hours, dried at 80°C, and calcined at 400°C. They were labeled TiO₂ - X%ZnS, where X represents the molar percentage of ZnS (3%, 5%, 10%, and 15%). The band gap was calculated using a Cary 100 UV-Visible Spectrometer with an integrating sphere accessory. Ban gap value of each photocatalyst was: 2.7 eV of TiO₂, 2.8 eV of TiO₂ - 3%ZnS and TiO₂ - 5%ZnS, 2.9 eV of TiO₂ - 10%ZnS and 2.6 eV of TiO2 - 15%ZnS. In a batch type reactor, under the irradiation of a mercury lamp (λ = 254 nm, Pen-Ray), degradations of 55 ppm 4-chlorophenol were obtained at 360 minutes with the synthesized photocatalysts: 60% (3% ZnS), 66% (5% ZnS), 74% (10% ZnS) and 58% (15% ZnS). In this sense, the best material as a photocatalyst was TiO₂ -10%ZnS with a degradation percentage of 74%.Keywords: 4-chlorophenol, photocatalysis, water pollutant, sol-gel
Procedia PDF Downloads 1347219 Swimming Pool Water Chlorination Detection System Utilizing TDSTestr
Authors: Fahad Alamoudi, Yaser Miaji, Fawzy Jalalah
Abstract:
The growing popularity of swimming pools and other activities in the water for sport, fitness, therapy or just enjoyable relaxation have led to the increased use of swimming pools and the establishment of a variety of specific-use pools such as spa pools, Waterslides and more recently, hydrotherapy and wave pools. In this research a few simple equipments are used for test, Detect and alert for detection of water cleanness and pollution. YSI Photometer Systems, TDSTestr High model, rio 12HF, and Electrode A1. The researchers used electrolysis as a method of separating bonded elements and compounds by passing an electric current through them. The results which use 41 experiments show the higher the salt concentration, the more efficient the electrode and the smaller the gap between the plates and The lower the electrode voltage. Furthermore, it is proved that the larger the surface area, the lower the cell voltage and the higher current used the more chlorine produced.Keywords: photometer, electrode, electrolysis, swimming pool chlorination
Procedia PDF Downloads 3517218 Studies on the Physico-Chemical Parameters of Jebba Lake, Niger State, Nigeria
Authors: M. B. Mshelia, J. K. Balogun, J. Auta, N. O. Bankole
Abstract:
Studies on some aspects of the physico-chemical parameters of Jebba Lake, Niger State, Nigeria was carried out from January to December, 2011. The aim was to investigate some of the physico-chemical parameters relevant to life and health of fish in the water body. Six (6) sampling sites were selected at random which covered Northern (Faku and Awuru), middle (Old Gbajibo and Shankade) and southern zones (New Gbajibo and Jebba dam} of Jebba Lake. Sampling was carried out for the period of 12 Months. The Physico-chemical parameters that were considered were water temperature, pH, dissolved oxygen, electrical conductivity, water transparency, phosphate and nitrate. They were all measured using standard methods. The results showed that water temperature values ranged between 26.06 ± 0.15a in Jebba lake site to 27.34 ± 0.12b in Shankade sampling site, depth varied from 8.08m to 31.64m, water current was between 20.10.62 cm/sec and 26.46 cm/sec, Secchi disc transparency ranged from0.46±0.01 m in New Gbajibo, while the highest mean value was 0.53 ± 0.04 m in Jebba dam., pH varied from 6.49 ± 0.01 and 7.59,5.35±0.03a mg/l in New Gbajibo and 6.75 ± 0.03 mg/l in Faku.The dissolved oxygen varied between 5.35±0.03a mg/l in New Gbajibo and 6.75 ± 0.03 mg/l in Faku.,The mean conductivity value was highest in Faku and Jebba with 128.8 ± 0.32 and 128.8 ± 0.42homs/cm) respectively, Alkalinity ranged 43.00±0.02 to33.30±0.32 mg/l., The nitrate-nitrogen range (2.37 ± 0.08 – 6.40 ± 0.50mg/l)., The mean values of phosphate-phosphorus (PO4-P) recorded varied between 0.18 ± 0.00 mg/l in Faku to 0.47 + 0.10 mg/l in Old Gbajibo.The highest mean value for total dissolved solids was 57.88 ± 0.28 mg/l in Shankade, while the lowest mean value of 39.17 ± 0.42 mg/l was recorded in Faku. Free CO2 ranged from 1.75 mg/l to 2.94 mg/l, Biochemical oxygen demand (BOD) was between 4.25 mg/l and 5.41 mg/l and nitrate-nitrogen concentration was between 2.37 mg/l and 6.40 mg/l. There were significant differences (P < 0.05) between these parameters in relation to stations. Generally, the physico-chemical characteristics of Lake Jebba were within the productive values for aquatic systems, and strongly indicate that the lake is unpolluted.Keywords: Jebba Lake, water quality, secchi disc, DO meter, sampling sites, physico-chemical parameters
Procedia PDF Downloads 4377217 Crossing Narrative Waters in World Cinema: Alamar (2009) and Kaili Blues (2015)
Authors: Dustin Dill
Abstract:
The physical movement of crossing over water points to both developing narrative tropes and innovative cinematography in World Cinema today. Two prime examples, Alamar (2009) by Pedro González-Rubio and Kaili Blues (2015) by Bi Gan, demonstrate how contemporary storytelling in a film not only rests upon these water shots but also emerges from them. The range of symbolism that these episodes in the story provoke goes hand in hand with the diverse filming sequences found in the respective productions. While González-Rubio decides to cut the scene into long and longer shots, Gan uses a single take. The differing angles depict equally unique directors and film projects: Alamar runs parallel to many definitions of the essay film, and Kaili Blues resonates much more with mystery and art film. Nonetheless, the crossing of water scenes influence the narratives’ subjects despite the generic consequences, and it is within the essay, mystery, and art film genres which allows for a better understanding of World Cinema. Tiago de Luca explains World Cinema’s prerogative of giving form to a certain type of spectator does not always line up. Given the immense number of interpretations of crossing water —the escape from suffering to find nirvana, rebirth, and colonization— underline the difficulty of categorizing it. If before this type of cross-genre was a trait that defined World Cinema in its beginning, this study observes that González-Rubio and Gan question the all-encompassing genre with their experimental shots of a universal narrative trope, the crossing of water.Keywords: cinematography, genre, narrative, world cinema
Procedia PDF Downloads 2967216 A Case Study on Impact of Climate Change and Adaptation in Kabul Metropolitan Area
Authors: Mohammad Rahim Rahimi, Yuji Hoshino, Kota Masuyama, Naoya Nakajima
Abstract:
The aim of this paper is to study the behavior or influence of climate adaptation and change in Kabul Metropolitan Area (KMA). The Kabul Metropolitan Area (KMA) in Afghanistan includes Kabul existing city and Kabul New City (KNC). Kabul Metropolitan Area has admitted the challenges due to climate change, which includes, natural climate change, social transformations, city landscape, economic and political issues, etc. KMA will withhold a large population within its boundaries. The main problems competed in KMA were the temperature changes over the years, especially in Hindukush and Central Highland of Afghanistan from 1950 up to 2010, 1°C and 1.71°C raised respectively and reduction of water table in existing Kabul city due to the use of more water from underground water resources. Moreover, the cause of temperature rise, the precipitation in spring season and melting of snow early or melting in compressed time as well as the water source is directly related to the capacity of the mountains snow and precipitation. In addition, the temperature increased, and precipitation declined in spring period. It is directly related to separation of dissertation, migration to the cities and other challenges that we will discuss in this paper.Keywords: climate change, climate adaption, adaptation in Kabul metropolitan area, precipitation
Procedia PDF Downloads 253