Search results for: solar desalination
192 Water Productivity as an Indicator of Bioenergetic Sustainability in Sugarcane
Authors: Rubens Duarte Coelho, Timóteo Herculino da Silva Barros, Jefferson de Olveira Costa
Abstract:
Brazil has an electrical matrix of predominantly renewable origin, with emphasis on water sources, which account for 65.2%, biomass energy for 8.2%, wind for 6.8% and solar for 0.13% of the domestic supply. Among these sources, sugarcane cultivation stands out, aiming both at the production of bioethanol and biomass to supply “clean energy”. However, like all other crops, sugar cane demands a large volume of a natural resource that is increasingly “scarce” in quantity and quality: water. Adequate and strategic water management throughout the entire sugarcane cycle is of fundamental importance, and water productivity can be used to adjust irrigation planning and decision-making, increasing the productivity of stalks, bioethanol, biomass, and sugar. In this way, water productivity is a good indicator for analysis and decision-making considering the sustainability of cultivation, as it allows evaluation of the variation in the ratio between production and the amount of water used, suggesting values that maximize the use of this natural resource. In this context, studies that relate water demand, in this case, expressed by water productivity, with the energy production of this crop, in this case, expressed by the production of bioethanol, biomass and sugar, are fundamental to obtaining an efficient production of renewable energy, which aims at the rational use of natural resources, especially water. The objective of the present work was to evaluate the response of sugarcane varieties subjected to different water availability to obtain better sustainability in bioenergy production, presenting water productivity indices for Bioethanol, Sugar and Biomass. The variety that responded best was RB966928, with a bioethanol yield of 68.7 L Mg-1. Future research should focus on the water response under each of the sugarcane fractions in terms of their elemental composition so that the influence of water on the energy supply of this crop can be better understood.Keywords: energy matrix, water use, water use efficiency, sustainability
Procedia PDF Downloads 74191 Photocatalytic Degradation of Organic Polluant Reacting with Tungstates: Role of Microstructure and Size Effect on Oxidation Kinetics
Authors: A. Taoufyq, B. Bakiz, A. Benlhachemi, L. Patout, D. V. Chokouadeua, F. Guinneton, G. Nolibe, A. Lyoussi, J-R. Gavarri
Abstract:
Currently, the photo catalytic reactions occurring under solar illumination have attracted worldwide attentions due to a tremendous set of environmental problems. Taking the sunlight into account, it is indispensable to develop highly effective visible-light-driver photo catalysts. Nano structured materials such as MxM’1-xWO6 system are widely studied due to its interesting piezoelectric, dielectric and catalytic properties. These materials can be used in photo catalysis technique for environmental applications, such as waste water treatments. The aim of this study was to investigate the photo catalytic activity of polycrystalline phases of bismuth tungstate of formula Bi2WO6. Polycrystalline samples were elaborated using a coprecipitation technique followed by a calcination process at different temperatures (300, 400, 600 and 900°C). The obtained polycrystalline phases have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Crystal cell parameters and cell volume depend on elaboration temperature. High-resolution electron microscopy images and image simulations, associated with X-ray diffraction data, allowed confirming the lattices and space groups Pca21. The photo catalytic activity of the as-prepared samples was studied by irradiating aqueous solutions of Rhodamine B, associated with Bi2WO6 additives having variable crystallite sizes. The photo catalytic activity of such bismuth tungstates increased as the crystallite sizes decreased. The high specific area of the photo catalytic particles obtained at 300°C seems to condition the degradation kinetics of RhB.Keywords: Bismuth tungstate, crystallite sizes, electron microscopy, photocatalytic activity, X-ray diffraction.
Procedia PDF Downloads 448190 Electrochemical Growth and Properties of Cu2O Nanostructures
Authors: A. Azizi, S. Laidoudi, G. Schmerber, A. Dinia
Abstract:
Cuprous oxide (Cu2O) is a well-known oxide semiconductor with a band gap of 2.1 eV and a natural p-type conductivity, which is an attractive material for device applications because of its abundant availability, non toxicity, and low production cost. It has a higher absorption coefficient in the visible region and the minority carrier diffusion length is also suitable for use as a solar cell absorber layer and it has been explored in junction with n type ZnO for photovoltaic applications. Cu2O nanostructures have been made by a variety of techniques; the electrodeposition method has emerged as one of the most promising processing routes as it is particularly provides advantages such as a low-cost, low temperature and a high level of purity in the products. In this work, Cu2O nanostructures prepared by electrodeposition from aqueous cupric sulfate solution with citric acid at 65°C onto a fluorine doped tin oxide (FTO) coated glass substrates were investigated. The effects of deposition potential on the electrochemical, surface morphology, structural and optical properties of Cu2O thin films were investigated. During cyclic voltammetry experiences, the potential interval where the electrodeposition of Cu2O is carried out was established. The Mott–Schottky (M-S) plot demonstrates that all the films are p-type semiconductors, the flat-band potential and the acceptor density for the Cu2O thin films are determined. AFM images reveal that the applied potential has a very significant influence on the surface morphology and size of the crystallites of thin Cu2O. The XRD measurements indicated that all the obtained films display a Cu2O cubic structure with a strong preferential orientation of the (111) direction. The optical transmission spectra in the UV-Visible domains revealed the highest transmission (75 %), and their calculated gap values increased from 1.93 to 2.24 eV, with increasing potentials.Keywords: Cu2O, electrodeposition, Mott–Schottky plot, nanostructure, optical properties, XRD
Procedia PDF Downloads 354189 Application of the Best Technique for Estimating the Rest-Activity Rhythm Period in Shift Workers
Authors: Rakesh Kumar Soni
Abstract:
Under free living conditions, human biological clocks show a periodicity of 24 hour for numerous physiological, behavioral and biochemical variables. However, this period is not the original period; rather it merely exhibits synchronization with the solar clock. It is, therefore, most important to investigate characteristics of human circadian clock, essentially in shift workers, who normally confront with contrasting social clocks. Aim of the present study was to investigate rest-activity rhythm and to vouch for the best technique for the computation of periods in this rhythm in subjects randomly selected from different groups of shift workers. The rest-activity rhythm was studied in forty-eight shift workers from three different organizations, namely Newspaper Printing Press (NPP), Chhattisgarh State Electricity Board (CSEB) and Raipur Alloys (RA). Shift workers of NPP (N = 20) were working on a permanent night shift schedule (NS; 20:00-04:00). However, in CSEB (N = 14) and RA (N = 14), shift workers were working in a 3-shift system comprising of rotations from night (NS; 22:00-06:00) to afternoon (AS; 14:00-22:00) and to morning shift (MS; 06:00-14:00). Each subject wore an Actiwatch (AW64, Mini Mitter Co. Inc., USA) for 7 and/or 21 consecutive days, only after furnishing a certificate of consent. One-minute epoch length was chosen for the collection of wrist activity data. Period was determined by using Actiware sleep software (Periodogram), Lomb-Scargle Periodogram (LSP) and Spectral analysis software (Spectre). Other statistical techniques, such as ANOVA and Duncan’s multiple-range test were also used whenever required. A statistically significant circadian rhythm in rest-activity, gauged by cosinor, was documented in all shift workers, irrespective of shift work. Results indicate that the efficiency of the technique to determine the period (τ) depended upon the clipping limits of the τs. It appears that the technique of spectre is more reliable.Keywords: biological clock, rest activity rhythm, spectre, periodogram
Procedia PDF Downloads 162188 Synthesis of Nanoparticles and Thin Film of Cu₂ZnSnS₄ by Hydrothermal Method and Its Application as Congo Red Photocatalyst
Authors: Paula Salazar, Rodrigo Henríquez, Pablo Zerega
Abstract:
The textile, food and pharmaceutical industries are expanding daily worldwide, and they are located within the most polluting industries due to the fact that wastewater is discharged into watercourses with high concentrations of dyes and traces of drugs. Many of these compounds are stable to light and biodegradation, being considered as emerging organic contaminants. Advanced oxidation processes (AOPs) emerge as an effective alternative for the removal and elimination of this type of contaminants. Heterogeneous photocatalysis has been extensively studied as it is an efficient, low-cost and durable method. As the main photocatalyst, TiO₂ has been used for the degradation of a large number of dyes and drugs. The disadvantage of TiO₂ is its absorption in the UV region of the solar spectrum. On the other hand, quaternary chalcogenides based on Cu₂SnZnX₄ (X = S, Se) are a possible alternative due to their narrow bandgap (ca. between 0.8 to 1.5 eV depending on the phase considered), low cost, an abundance of its constituent elements in the earth's crust and its low toxicity. The objective of this research was to synthesize Cu₂SnZnS₄ (CZTS) through of a low-cost hydrothermal method and evaluate it as a potential photo-catalyst in the photo-degradation process of Congo Red. The synthesis of the nanoparticle in suspension and film onto fluorine-doped tin oxide coated glass (FTO) was carried out using a mixture of: 2 mmol CuCl₂, 1 mmol ZnCl₂, 1 mmol SnCl₂ and 4 mmol CH4N₂S in a Teflon reactor at 180⁰C for 72 h. Characterization was performed through scanning electron microscopy (SEM), X-ray diffraction (XRD) and UV VIS spectroscopy. Photo-degradation monitoring was carried out employing a UV VIS spectrophotometer. The results show that photodegradation of 55% of the dye can be obtained after 4h of exposure to polychromatic light, it should be noted that the Congo Red dye is being studied for the first time.Keywords: CZTS, hydrothermal, photocatalysis, dye
Procedia PDF Downloads 119187 Adaptive Design of Large Prefabricated Concrete Panels Collective Housing
Authors: Daniel M. Muntean, Viorel Ungureanu
Abstract:
More than half of the urban population in Romania lives today in residential buildings made out of large prefabricated reinforced concrete panels. Since their initial design was made in the 1960’s, these housing units are now being technically and morally outdated, consuming large amounts of energy for heating, cooling, ventilation and lighting, while failing to meet the needs of the contemporary life-style. Due to their widespread use, the design of a system that improves their energy efficiency would have a real impact, not only on the energy consumption of the residential sector, but also on the quality of life that it offers. Furthermore, with the transition of today’s existing power grid to a “smart grid”, buildings could become an active element for future electricity networks by contributing in micro-generation and energy storage. One of the most addressed issues today is to find locally adapted strategies that can be applied considering the 20-20-20 EU policy criteria and to offer sustainable and innovative solutions for the cost-optimal energy performance of buildings adapted on the existing local market. This paper presents a possible adaptive design scenario towards sustainable retrofitting of these housing units. The apartments are transformed in order to meet the current living requirements and additional extensions are placed on top of the building, replacing the unused roof space, acting not only as housing units, but as active solar energy collection systems. An adaptive building envelope is ensured in order to achieve overall air-tightness and an elevator system is introduced to facilitate access to the upper levels.Keywords: adaptive building, energy efficiency, retrofitting, residential buildings, smart grid
Procedia PDF Downloads 297186 Prolonged Synthesis of Chitin Polysaccharide from Chlorovirus System
Authors: Numfon Rakkhumkaew, Takeru Kawasaki, Makoto Fujie, Takashi Yamada
Abstract:
Chlorella viruses or chloroviruses contain a gene that encodes a function for chitin synthesis, which is expressed early in viral infection to produce chitin polysaccharide, a polymer of β-1, 4-linked GlcNAc, on the outside of Chlorella cell wall. Interestingly, chlorovirus system is an eco-friendly system which converses CO2 and solar energy from the environment into useful materials. However, infected Chlorella cells are lysed at the final stage of viral infection, and this phenomenon is caused the breaking down of polysaccharide. To postpone the lysing period and prolong the synthesis of chitin polysaccharide on cells, the slow growing virus incorporated with aphidicolin treatment, an inhibitor of DNA synthesis, was investigated. In this study, a total of 25 virus isolates from water samples in Japan region were analyzed for CHS (the gene for CH synthase) gene by PCR (polymerase chain reaction). The accumulation and appearance of chitin polysaccharide on infected cells were detected by biotinylated chitin-binding proteins WGA (wheat germ agglutinin)-biotin for chitin in conjunction with avidin-Cy 2 or Cy 3 and investigated by fluorescence microscopy, observed as green or yellow fluorescence over the cell surface. Among all chlorovirus isolates, cells infected with CNF1 revealed the accumulation of chitin over the cell surface within 30 min p.i. and continued to accumulate on cells until 4 h p.i. before cell lyses which was 1.6 times longer accumulation period than cells infected with CVK2 (prototype virus). Furthermore, addition of aphidicolin could extend the chitin accumulation on cells infected with CNF1 until 8 h p.i. before cell lyses. Whereas, CVK2-infected cells treated with aphidicolin could prolong the chitin synthesis only for 6 h p.i. before cell lyses. Therefore, chitin synthesis by Chlorella-virus system could be prolonged by using slow-growing viral isolates and with aphidicolin.Keywords: chitin, chlorovirus, Chlorella virus, aphidicolin
Procedia PDF Downloads 212185 Influence of Gold Nanoparticles on NiAlZr Type Layered Double Hydroxide for the Catalytic Transfer Oxidation of Biomass Derived Aldehydes
Authors: Nihel Dib, Redouane Bachir, Ghezlane Berrahou, Chaima Zoulikha Tabet Zatla, Sumeya Bedrane, Ginessa Blanco Montilla, Jose Juan Calvino Gamez
Abstract:
In recent decades, the world’s population has rapidly increased annually, resulting in the consumption of huge amounts of conventional non-renewable petroleum-based resources at an alarming rate. The scarcity of such resources will shut down the corresponding industries and consequently have negative effects on the well-being of humanity. Accordingly, to combat the forthcoming crises and to serve the ever-growing demands, seeking potentially sustainable resources such as geothermal, wind, solar, and biomass has become an active field of study. Currently, lignocellulosic biomass, one of the world’s most plentiful resources, is acknowledged as a cost-effective material that has drawn great interest from many researchers since it has substantial energy potential as well as containing useful C5 and C6 sugars. These C5 and C6 sugars are the key reactants for the production of the valuable 16-platform chemicals such as 5-hydroxymethyl furfural, furfural, levulinic acid, succinic acid, and fumaric acid, all of which are crucial intermediates for synthesizing high-value bio-based chemicals and polymers. Succinic acid (SA) has been predicted to make a significant contribution to the global bio-based economy soon since it serves as a C4 building block that is used in a wide spectrum of industries, including biopolymers, solvents, and pharmaceuticals. In the present work, we modify the HDL MgAl with Zr to try to create acid sites on the supports and deposit gold by deposition precipitation with urea with a low gold content (0.25%). The catalyst was used to produce succinic acid by selective oxidation of furfuraldehyde with hydrogen peroxide under mild reaction conditions.Keywords: hydrotalcite, catalysis, gold, biomass, furfural, oxidation
Procedia PDF Downloads 67184 Feasibility Study of Tidal Current of the Bay of Bengal to Generate Electricity as a Renewable Energy
Authors: Myisha Ahmad, G. M. Jahid Hasan
Abstract:
Electricity is the pinnacle of human civilization. At present, the growing concerns over significant climate change have intensified the importance of the use of renewable energy technologies for electricity generation. The interest is primarily due to better energy security, smaller environmental impact and providing a sustainable alternative compared to the conventional energy sources. Solar power, wind, biomass, tidal power, and wave power are some of the most reliable sources of renewable energy. Ocean approximately holds 2×10³ TW of energy and has the largest renewable energy resource on the planet. Ocean energy has many forms namely, encompassing tides, ocean circulation, surface waves, salinity and thermal gradients. Ocean tide in particular, associates both potential and kinetic energy. The study is focused on the latter concept that deals with tidal current energy conversion technologies. Tidal streams or marine currents generate kinetic energy that can be extracted by marine current energy devices and converted into transmittable energy form. The principle of technology development is very comparable to that of wind turbines. Conversion of marine tidal resources into substantial electrical power offers immense opportunities to countries endowed with such resources and this work is aimed at addressing such prospects of Bangladesh. The study analyzed the extracted current velocities from numerical model works at several locations in the Bay of Bengal. Based on current magnitudes, directions and available technologies the most fitted locations were adopted and possible annual generation capacity was estimated. The paper also examines the future prospects of tidal current energy along the Bay of Bengal and establishes a constructive approach that could be adopted in future project developments.Keywords: bay of Bengal, energy potential, renewable energy, tidal current
Procedia PDF Downloads 373183 Solar-Assisted City Bus Electrical Installation: Opportunities and Impact on the Environment in Sydney
Authors: M. J. Geca, T. Tulwin, A. Majczak
Abstract:
On-board electricity consumption in the diesel city bus during operation is an important energy source. Electricity is generated by a combustion engine-driven alternator. Increased fuel consumption to generate on-board electricity in the bus has a negative impact on the emission of toxic components and carbon dioxide. At the same time, the bus roof surface allows placing a set of lightweight photovoltaic panels with power from 1 to 1.5 kW. The article presents an experimental study of electricity consumption of a city bus with diesel engine equipped with photovoltaic installation. The stream of electricity consumed by the bus and generated by a standard alternator and PV system was recorded. Base on the experimental research carried out in central Europe; the article analyses the impact of an additional source of electricity in the form of a photovoltaic installation on fuel consumption and emissions of toxic components of vehicles located in the latitude of Sydney. In Poland, the maximum global value of horizontal irradiation GHI is 1150 kWh/m², while for Sydney 1652 kWh/m². In addition, the profile of temperature and sunshine per year is different for these two different latitudes as presented in the article. Electricity generated directly from the sun powers the bus's electrical receivers. The photovoltaic system is able to replace 23% of annual electricity consumption, which at the same time will reduce 4% of fuel consumption and CO₂ reduction. Approximately 25% of the light is lost during vehicle traffic in Sydney latitude. The temperature losses of photovoltaic panels are comparable due to the cooling during vehicle motion. Acknowledgement: The project/research was financed in the framework of the project Lublin University of Technology - Regional Excellence Initiative, funded by the Polish Ministry of Science and Higher Education (contract no. 030/RID/2018/19).Keywords: electric energy, photovoltaic system, fuel consumption, CO₂
Procedia PDF Downloads 109182 Microbial Electrochemical Remediation System: Integrating Wastewater Treatment with Simultaneous Power Generation
Authors: Monika Sogani, Zainab Syed, Adrian C. Fisher
Abstract:
Pollution of estrogenic compounds has caught the attention of researchers as the slight increase of estrogens in the water bodies has a significant impact on the aquatic system. They belong to a class of endocrine disrupting compounds (EDCs) and are able to mimic hormones or interfere with the action of endogenous hormones. The microbial electrochemical remediation system (MERS) is employed here for exploiting an electrophototrophic bacterium for evaluating the capacity of biodegradation of ethinylestradiol hormone (EE2) under anaerobic conditions with power generation. MERS using electro-phototrophic bacterium offers a tailored solution of wastewater treatment in a developing country like India which has a huge solar potential. It is a clean energy generating technology as they require only sunlight, water, nutrients, and carbon dioxide to operate. Its main feature that makes it superior over other technologies is that the main fuel for this MERS is sunlight which is indefinitely present. When grown in light with organic compounds, these photosynthetic bacteria generate ATP by cyclic photophosphorylation and use carbon compounds to make cell biomass (photoheterotrophic growth). These cells showed EE2 degradation and were able to generate hydrogen as part of the process of nitrogen fixation. The two designs of MERS were studied, and a maximum of 88.45% decrease in EE2 was seen in a total period of 14 days in the better design. This research provides a better insight into microbial electricity generation and self-sustaining wastewater treatment facilities. Such new models of waste treatment aiming waste to energy generation needs to be followed and implemented for building a resource efficient and sustainable economy.Keywords: endocrine disrupting compounds, ethinylestradiol, microbial electrochemical remediation systems, wastewater treatment
Procedia PDF Downloads 117181 The Proton Flow Battery for Storing Renewable Energy: Hydrogen Storage Capacity of Selected Activated Carbon Electrodes Made from Brown Coal
Authors: Amandeep Singh Oberoi, John Andrews, Alan L. Chaffee, Lachlan Ciddor
Abstract:
Electrochemical storage of hydrogen in activated carbon electrodes as part of a reversible fuel cell offers a potentially attractive option for storing surplus electrical energy from inherently variable solar and wind energy resources. Such a system – which we have called a proton flow battery – promises to have roundtrip energy efficiency comparable to lithium ion batteries, while having higher gravimetric and volumetric energy densities. Activated carbons with high internal surface area, high pore volume, light weight and easy availability have attracted considerable research interest as a solid-state hydrogen storage medium. This paper compares the physical characteristics and hydrogen storage capacities of four activated carbon electrodes made by different methods from brown coal. The fabrication methods for these samples are explained. Their proton conductivity was measured using electrochemical impedance spectroscopy, and their hydrogen storage capacity by galvanostatic charging and discharging in a three-electrode electrolytic cell with 1 mol sulphuric acid as electrolyte. The highest hydrogen storage capacity obtained was 1.29 wt%, which compares favourably with metal hydrides used in commercially available solid-state hydrogen storages. The hydrogen storage capacity of the samples increased monotonically with increasing BET surface area (calculated from CO2 adsorption method). The results point the way towards selecting high-performing electrodes for proton flow batteries that the competitiveness of this energy storage technology.Keywords: activated carbon, electrochemical hydrogen storage, proton flow battery, proton conductivity
Procedia PDF Downloads 574180 Performance Comparison of Droop Control Methods for Parallel Inverters in Microgrid
Authors: Ahmed Ismail, Mustafa Baysal
Abstract:
Although the energy source in the world is mainly based on fossil fuels today, there is a need for alternative energy generation systems, which are more economic and environmentally friendly, due to continuously increasing demand of electric energy and lacking power resources and networks. Distributed Energy Resources (DERs) such as fuel cells, wind and solar power have recently become widespread as alternative generation. In order to solve several problems that might be encountered when integrating DERs to power system, the microgrid concept has been proposed. A microgrid can operate both grid connected and island mode to benefit both utility and customers. For most distributed energy resources (DER) which are connected in parallel in LV-grid like micro-turbines, wind plants, fuel cells and PV cells electrical power is generated as a direct current (DC) and converted to an alternative currents (AC) by inverters. So the inverters are assumed to be primary components in a microgrid. There are many control techniques of parallel inverters to manage active and reactive sharing of the loads. Some of them are based on droop method. In literature, the studies are usually focused on improving the transient performance of inverters. In this study, the performance of two different controllers based on droop control method is compared for the inverters operated in parallel without any communication feedback. For this aim, a microgrid in which inverters are controlled by conventional droop controller and modified droop controller is designed. Modified controller is obtained by adding PID into conventional droop control. Active and reactive power sharing performance, voltage and frequency responses of those control methods are measured in several operational cases. Study cases have been simulated by MATLAB-SIMULINK.Keywords: active and reactive power sharing, distributed generation, droop control, microgrid
Procedia PDF Downloads 592179 Analysing the Renewable Energy Integration Paradigm in the Post-COVID-19 Era: An Examination of the Upcoming Energy Law of China
Authors: Lan Wu
Abstract:
The declared transformation towards a ‘new electricity system dominated by renewable energy’ by China requires a cleaner electricity consumption mix with high shares of renewable energy sourced-electricity (RES-E). Unfortunately, integration of RES-E into Chinese electricity markets remains a problem pending more robust legal support, evidenced by the curtailment of wind and solar power as a consequence of integration constraints. The upcoming energy law of the PRC (energy law) is expected to provide such long-awaiting support and coordinate the existing diverse sector-specific laws to deal with the weak implementation that dampening the delivery of their desired regulatory effects. However, in the shadow of the COVID-19 crisis, it remains uncertain how this new energy law brings synergies to RES-E integration, mindful of the significant impacts of the pandemic. Through the theoretical lens of the interplay between China’s electricity reform and legislative development, the present paper investigates whether there is a paradigm shift in energy law regarding renewable energy integration compared with the existing sector-specific energy laws. It examines the 2020 draft for comments on the energy law and analyses its relationship with sector-specific energy laws focusing on RES-E integration. The comparison is drawn upon five key aspects of the RES-E integration issue, including the status of renewables, marketisation, incentive schemes, consumption mechanisms, access to power grids, and dispatching. The analysis shows that it is reasonable to expect a more open and well-organized electricity market enabling absorption of high shares of RES-E. The present paper concludes that a period of prosperous development of RES-E in the post-COVID-19 era can be anticipated with the legal support by the upcoming energy law. It contributes to understanding the signals China is sending regarding the transition towards a cleaner energy future.Keywords: energy law, energy transition, electricity market reform, renewable energy integration
Procedia PDF Downloads 193178 Living Wall Systems: An Approach for Reducing Energy Consumption in Curtain Wall Façades
Authors: Salma Maher, Ahmed Elseragy, Sally Eldeeb
Abstract:
Nowadays, Urbanism and climate change lead to the rapid growth in energy consumption and the increase of using air-conditioning for cooling. In a hot climate area, there is a need for a new sustainable alternative that is more convenient for an existing situation. The Building envelope controls the heat transfer between the outside and inside the building. While the building façade is the most critical part, types of façade material play a vital role in influences of the energy demand for heating and cooling due to exposure to direct solar radiation throughout the day. Since the beginning of the twentieth century, the use of curtain walls in office buildings façades started to increase rapidly, which lead to more cooling loads in energy consumption. Integrating the living wall system in urban areas as a sustainable renovation and energy-saving method for the built environment will reduce the energy demand of buildings and will also provide environmental benefits. Also, it will balance the urban ecology and enhance urban life quality. The results show that the living wall systems reduce the internal temperature up to 4.0 °C. This research carries on an analytical study by highlighting the different types of living wall systems and verifying their thermal performance, energy-saving, and life potential on the building. These assessing criteria include the reason for using the Living wall systems in the building façade as well as the effect it has upon the surrounding environment. Finally, the paper ends with concluding the effect of using living wall systems on building. And, it suggests a system as long-lasting, and energy-efficient solution to be applied in curtain wall façades in a hot climate area.Keywords: living wall systems, energy consumption, curtain walls, energy-saving, sustainability, urban life quality
Procedia PDF Downloads 139177 Facile Synthesis of Sulfur Doped TiO2 Nanoparticles with Enhanced Photocatalytic Activity
Authors: Vishnu V. Pillai, Sunil P. Lonkar, Akhil M. Abraham, Saeed M. Alhassan
Abstract:
An effectual technology for wastewater treatment is a great demand now in order to encounter the water pollution caused by organic pollutants. Photocatalytic oxidation technology is widely used in removal of such unsafe contaminants. Among the semi-conducting metal oxides, robust and thermally stable TiO2 has emerged as a fascinating material for photocatalysis. Enhanced catalytic activity was observed for nanostructured TiO2 due to its higher surface, chemical stability and higher oxidation ability. However, higher charge carrier recombination and wide band gap of TiO2 limits its use as a photocatalyst in the UV region. It is desirable to develop a photocatalyst that can efficiently absorb the visible light, which occupies the main part of the solar spectrum. Hence, in order to extend its photocatalytic efficiency under visible light, TiO2 nanoparticles are often doped with metallic or non-metallic elements. Non-metallic doping of TiO2 has attracted much attention due to the low thermal stability and enhanced recombination of charge carriers endowed by metallic doping of TiO2. Amongst, sulfur doped TiO2 is most widely used photocatalyst in environmental purification. However, the most of S-TiO2 synthesis technique uses toxic chemicals and complex procedures. Hence, a facile, scalable and environmentally benign preparation process for S-TiO2 is highly desirable. In present work, we have demonstrated new and facile solid-state reaction method for S-TiO2 synthesis that uses abundant elemental sulfur as S source and moderate temperatures. The resulting nano-sized S-TiO2 has been successfully employed as visible light photocatalyst in methylene blue dye removal from aqueous media.Keywords: ecofriendly, nanomaterials, methylene blue, photocatalysts
Procedia PDF Downloads 347176 Synthesis and Characterization of Silver/Graphene Oxide Co-Decorated TiO2 Nanotubular Arrays for Biomedical Applications
Authors: Alireza Rafieerad, Bushroa Abd Razak, Bahman Nasiri Tabrizi, Jamunarani Vadivelu
Abstract:
Recently, reports on the fabrication of nanotubular arrays have generated considerable scientific interest, owing to the broad range of applications of the oxide nanotubes in solar cells, orthopedic and dental implants, photocatalytic devices as well as lithium-ion batteries. A more attractive approach for the fabrication of oxide nanotubes with controllable morphology is the electrochemical anodization of substrate in a fluoride-containing electrolyte. Consequently, titanium dioxide nanotubes (TiO2 NTs) have been highly considered as an applicable material particularly in the district of artificial implants. In addition, regarding long-term efficacy and reasons of failing and infection after surgery of currently used dental implants required to enhance the cytocompatibility properties of Ti-based bone-like tissue. As well, graphene oxide (GO) with relevant biocompatibility features in tissue sites, osseointegration and drug delivery functionalization was fully understood. Besides, the boasting antibacterial ability of silver (Ag) remarkably provided for implantable devices without infection symptoms. Here, surface modification of Ti–6Al–7Nb implants (Ti67IMP) by the development of Ag/GO co-decorated TiO2 NTs was examined. Initially, the anodic TiO2 nanotubes obtained at a constant potential of 60 V were annealed at 600 degree centigrade for 2 h to improve the adhesion of the coating. Afterward, the Ag/GO co-decorated TiO2 NTs were developed by spin coating on Ti67IM. The microstructural features, phase composition and wettability behavior of the nanostructured coating were characterized comparably. In a nutshell, the results of the present study may contribute to the development of the nanostructured Ti67IMP with improved surface properties.Keywords: anodic tio2 nanotube, biomedical applications, graphene oxide, silver, spin coating
Procedia PDF Downloads 324175 Infrared Photodetectors Based on Nanowire Arrays: Towards Far Infrared Region
Authors: Mohammad Karimi, Magnus Heurlin, Lars Samuelson, Magnus Borgstrom, Hakan Pettersson
Abstract:
Nanowire semiconductors are promising candidates for optoelectronic applications such as solar cells, photodetectors and lasers due to their quasi-1D geometry and large surface to volume ratio. The functional wavelength range of NW-based detectors is typically limited to the visible/near-infrared region. In this work, we present electrical and optical properties of IR photodetectors based on large square millimeter ensembles (>1million) of vertically processed semiconductor heterostructure nanowires (NWs) grown on InP substrates which operate in longer wavelengths. InP NWs comprising single or multiple (20) InAs/InAsP QDics axially embedded in an n-i-n geometry, have been grown on InP substrates using metal organic vapor phase epitaxy (MOVPE). The NWs are contacted in vertical direction by atomic layer deposition (ALD) deposition of 50 nm SiO2 as an insulating layer followed by sputtering of indium tin oxide (ITO) and evaporation of Ti and Au as top contact layer. In order to extend the sensitivity range to the mid-wavelength and long-wavelength regions, the intersubband transition within conduction band of InAsP QDisc is suggested. We present first experimental indications of intersubband photocurrent in NW geometry and discuss important design parameters for realization of intersubband detectors. Key advantages with the proposed design include large degree of freedom in choice of materials compositions, possible enhanced optical resonance effects due to periodically ordered NW arrays and the compatibility with silicon substrates. We believe that the proposed detector design offers the route towards monolithic integration of compact and sensitive III-V NW long wavelength detectors with Si technology.Keywords: intersubband photodetector, infrared, nanowire, quantum disc
Procedia PDF Downloads 384174 Kinetics and Mechanism Study of Photocatalytic Degradation Using Heterojunction Semiconductors
Authors: Ksenija Milošević, Davor Lončarević, Tihana Mudrinić, Jasmina Dostanić
Abstract:
Heterogeneous photocatalytic processes have gained growing interest as an efficient method to generate hydrogen by using clean energy sources and degrading various organic pollutants. The main obstacles that restrict efficient photoactivity are narrow light-response range and high rates of charge carrier recombination. The formation of heterojunction by combining a semiconductor with low VB and a semiconductor with high CB and a suitable band gap was found to be an efficient method to prepare more sensible materials with improved charge separation, appropriate oxidation and reduction ability, and enhanced visible-light harvesting. In our research, various binary heterojunction systems based on the wide-band gap (TiO₂) and narrow bandgap (g-C₃N₄, CuO, and Co₂O₃) photocatalyst were studied. The morphology, optical, and electrochemical properties of the photocatalysts were analyzed by X-ray diffraction (XRD), scanning electron microscopy (FE-SEM), N₂ physisorption, diffuse reflectance measurements (DRS), and Mott-Schottky analysis. The photocatalytic performance of the synthesized catalysts was tested in single and simultaneous systems. The synthesized photocatalysts displayed good adsorption capacity and enhanced visible-light photocatalytic performance. The mutual interactions of pollutants on their adsorption and degradation efficiency were investigated. The interfacial connection between photocatalyst constituents and the mechanism of the transport pathway of photogenerated charge species was discussed. A radical scavenger study revealed the interaction mechanisms of the photocatalyst constituents in single and multiple pollutant systems under solar and visible light irradiation, indicating the type of heterojunction system (Z scheme or type II).Keywords: bandgap alignment, heterojunction, photocatalysis, reaction mechanism
Procedia PDF Downloads 100173 Effect of Doping on Band Gap of Zinc Oxide and Degradation of Methylene Blue and Industrial Effluent
Authors: V. P. Borker, K. S. Rane, A. J. Bhobe, R. S. Karmali
Abstract:
Effluent of dye industries contains chemicals and organic dyes. Sometimes they are thrown in the water bodies without any treatment. This leads to environmental pollution and is detrimental to flora and fauna. Semiconducting oxide zinc oxide with wide bandgap 3.37 eV is used as a photocatalyst in degrading organic dyes using UV radiations. It generates electron-hole pair on exposure to UV light. If degradation is aimed at solar radiations, bandgap of zinc oxide is to be reduced so as to utilize visible radiation. Thus, in present study, zinc oxide, ZnO is synthesized from zinc oxalate, N doped zinc oxide, ZnO₁₋ₓNₓ from hydrazinated zinc oxalate, cadmium doped zinc oxide Zn₀.₉Cd₀.₁₀ and magnesium-doped zinc oxide Zn₀.₉Mg₀.₁₀ from mixed metal oxalate and hydrazinated mixed metal oxalate. The precursors were characterized by FTIR. They were decomposed to form oxides and XRD were recorded. The compounds were monophasic. Bandgap was calculated using Diffuse Reflectance Spectrum. The bandgap of ZnO was reduced to 3.24 because of precursor method of synthesis leading large surface area. The bandgap of Zn₀.₉Cd₀.₁₀ was 3.11 eV and that of Zn₀.₉Mg₀.₁₀ 3.41 eV. The lowest value was of ZnO₁₋ₓNₓ 3.09 eV. These oxides were used to degrade methylene blue, a model dye in sunlight. ZnO₁₋ₓNₓ was also used to degrade effluent of industry manufacturing colours, crayons and markers. It was observed that ZnO₁₋ₓNₓ acts as a good photocatalyst for degradation of methylene blue. It can degrade the solution within 120 minutes. Similarly, diluted effluent was decolourised using this oxide. Some colours were degraded using ZnO. Thus, the use of these two oxides could mineralize effluent. Lesser bandgap leads to more electro hole pair thus helps in the formation of hydroxyl ion radicals. These radicals attack the dye molecule, fragmentation takes place and it is mineralised.Keywords: cadmium doped zinc oxide, dye degradation, dye effluent degradation, N doped zinc oxide, zinc oxide
Procedia PDF Downloads 166172 Investigation of Natural Resource Sufficiency for Development of a Sustainable Agriculture Strategy Based on Permaculture in Malta
Authors: Byron Baron
Abstract:
Typical of the Mediterranean region, the Maltese islands exhibit calcareous soils containing low organic carbon content and high salinity, in addition to being relatively shallow. This has lead to the common practice of applying copious amounts of artificial fertilisers as well as other chemical inputs, together with the use of ground water having high salinity. Such intensive agricultural activities, over a prolonged time period, on such land has lead further to the loss of any soil fertility, together with direct negative impacts on the quality of fresh water reserves and the local ecosystem. The aim of this study was to investigate whether the natural resources on the island would be sufficient to apply ecological intensification i.e. the use of natural processes to replace anthropological inputs without any significant loss in food production. This was implementing through a sustainable agricultural system based on permaculture practices. Ecological intensification following permaculture principles was implemented for two years in order to capture the seasonal changes in duplicate. The areas dedicated to wild plants were only trimmed back to avoid excessive seeding but never mowing. A number of local staple crops were grown throughout this period, also in duplicate. Concomitantly, a number of practices were implemented following permaculture principles such as reducing land tilling, applying only natural fertiliser, mulching, monitoring of soil parameters using sensors, no use of herbicides or pesticides, and precision irrigation linked to a desalination system. Numerous environmental parameters were measured at regular intervals so as to quantify any improvements in ecological conditions. Crop output was also measured as kilos of produce per area. The results clearly show that over the two year period, the variety of wild plant species increased, the number of visiting pollinators increased, there were no pest infestations (although an increase in the number of pests was observed), and a slight improvement in overall soil health was also observed. This was obviously limited by the short duration of the testing implementation. Dedicating slightly less than 15% of total land area to wild plants in the form of borders around plots of crops assisted pollination and provided a foraging area for gleaning bats (measured as an increased number of feeding buzzes) whilst not giving rise to any pest infestations and no apparent yield losses or ill effects to the crops. Observed increases in crop yields were not significant. The study concluded that with the right support for the initial establishment of a healthy ecosystem and controlled intervention, the available natural resources on the island can substantially improve the condition of the local agricultural land area, resulting is a more prolonged economical output with greater ecological sustainability. That being said, more comprehensive and long-term monitoring is required in order to fully validate these results and design a sustainable agriculture system that truly achieves the best outcome for the Maltese context.Keywords: ecological intensification, soil health, sustainable agriculture, permaculture
Procedia PDF Downloads 63171 Effects of Hydroxysafflor Yellow a (HSYA) on UVA-Induced Damage in HaCaT Keratinocytes
Authors: Szu-Chieh Yu, Pei-Chin Chiand, Chih-Yi Lin, Yi-Wen Chien
Abstract:
UV radiation from sunlight cause numbers of acute and chronic skin damage which can result in inflammation, immune changes, physical changes and DNA damage that facilitates skin aging and the development of skin carcinogenesis. Reactive oxygen species (ROS) are generated by excessive solar UV radiation, resulting in oxidative damage to cellar components, proteins, lipids, and nucleic acids. Thus, antioxidation plays an important role that protects skin against ROS-induced injury. Safflower (Carthamus tinctorius L.) is an important Chinese medicine contained abundance flavones and hydroxysafflor yellow A (HSYA) which is main active ingredient. HSYA is part of quinochalcone and has unique structures of hydroxy groups that provided the antioxidant effect. In this study, the aim was to investigate the protective role of HYSA in human keratinocytes (HaCaT) against UVA-induced oxidative damage and the possible mechanism. The HaCaT cells were UVA-irradiated and the effects of HYSA on cell viability, reactive oxygen species generation, DNA fragmentation and lipid peroxidation were measured. The mRNA expression of matrix metalloproteinase Ι (MMP Ι), cyclooxygenase-2 (COX-2) were determined by RT-PCR. In this study, UVA exposure lead to decrease in cell viability and increase in reactive oxygen species generation in HaCaT cells. HYSA could effectively increase the viability of HaCaT cells after UVA exposure and protect them from UVA-induced oxidative stress. Moreover, HYSA can reduce inflammation through inhibition the mRNA expression of MMP Ι and COX-2. Our results suggest that HSYA can act as a free radical scavenger while keratinocytes were photodamaged. HYSA could be a useful natural medicine for the protection of epidermal cells from UVA-induced damage and will be developed into products for skin care.Keywords: HaCaT keratinocytes, hydroxysafflor yellow A (HSYA), MMP Ι, oxidative stress
Procedia PDF Downloads 377170 Energy Options and Environmental Impacts of Carbon Dioxide Utilization Pathways
Authors: Evar C. Umeozor, Experience I. Nduagu, Ian D. Gates
Abstract:
The energy requirements of carbon dioxide utilization (CDU) technologies/processes are diverse, so also are their environmental footprints. This paper explores the energy and environmental impacts of systems for CO₂ conversion to fuels, chemicals, and materials. Energy needs of the technologies and processes deployable in CO₂ conversion systems are met by one or combinations of hydrogen (chemical), electricity, heat, and light. Likewise, the environmental footprint of any CO₂ utilization pathway depends on the systems involved. So far, evaluation of CDU systems has been constrained to particular energy source/type or a subset of the overall system needed to make CDU possible. This introduces limitations to the general understanding of the energy and environmental implications of CDU, which has led to various pitfalls in past studies. A CDU system has an energy source, CO₂ supply, and conversion units. We apply a holistic approach to consider the impacts of all components in the process, including various sources of energy, CO₂ feedstock, and conversion technologies. The electricity sources include nuclear power, renewables (wind and solar PV), gas turbine, and coal. Heat is supplied from either electricity or natural gas, and hydrogen is produced from either steam methane reforming or electrolysis. The CO₂ capture unit uses either direct air capture or post-combustion capture via amine scrubbing, where applicable, integrated configurations of the CDU system are explored. We demonstrate how the overall energy and environmental impacts of each utilization pathway are obtained by aggregating the values for all components involved. Proper accounting of the energy and emission intensities of CDU must incorporate total balances for the utilization process and differences in timescales between alternative conversion pathways. Our results highlight opportunities for the use of clean energy sources, direct air capture, and a number of promising CO₂ conversion pathways for producing methanol, ethanol, synfuel, urea, and polymer materials.Keywords: carbon dioxide utilization, processes, energy options, environmental impacts
Procedia PDF Downloads 145169 Studying the Photodegradation Behavior of Microplastics Released from Agricultural Plastic Products to the Farmland
Authors: Maryam Salehi, Gholamreza Bonyadinejad
Abstract:
The application of agricultural plastic products like mulch, greenhouse covers, and silage films is increasing due to their economic benefits in providing an early and better-quality harvest. In 2015, the 4 million tons (valued a 10.6 million USD) global market for agricultural plastic films was estimated to grow by 5.6% per year through 2030. Despite the short-term benefits provided by plastic products, their long-term sustainability issues and negative impacts on soil health are not well understood. After their removal from the field, some plastic residuals remain in the soil. Plastic residuals in farmlands may fragment to small particles called microplastics (d<5mm). The microplastics' exposure to solar radiation could alter their surface chemistry and make them susceptible to fragmentation. Thus, this study examined the photodegradation of low density polyethylene as the model microplastics that are released to the agriculture farmland. The variation of plastic’s surface chemistry, morphology, and bulk characteristics were studied after accelerated UV-A radiation experiments and sampling from an agricultural field. The Attenuated Total Reflectance Fourier Transform Spectroscopy (ATR-FTIR) and X-ray Photoelectron Spectroscopy (XPS) demonstrated the formation of oxidized surface functional groups onto the microplastics surface due to the photodegradation. The Differential Scanning Calorimetry (DSC) analysis revealed an increased crystallinity for the photodegraded microplastics compared to the new samples. The gel permeation chromatography (GPC) demonstrated the reduced molecular weight for the polymer due to the photodegradation. This study provides an important opportunity to advance understanding of soil pollution. Understanding the plastic residuals’ variations as they are left in the soil is providing a critical piece of information to better estimate the microplastics' impacts on environmental biodiversity, ecosystem sustainability, and food safety.Keywords: soil health, plastic pollution, sustainability, photodegradation
Procedia PDF Downloads 219168 Optimal Design of a PV/Diesel Hybrid System for Decentralized Areas through Economic Criteria
Authors: David B. Tsuanyo, Didier Aussel, Yao Azoumah, Pierre Neveu
Abstract:
An innovative concept called “Flexy-Energy”is developing at 2iE. This concept aims to produce electricity at lower cost by smartly mix different available energies sources in accordance to the load profile of the region. With a higher solar irradiation and due to the fact that Diesel generator are massively used in sub-Saharan rural areas, PV/Diesel hybrid systems could be a good application of this concept and a good solution to electrify this region, provided they are reliable, cost effective and economically attractive to investors. Presentation of the developed approach is the aims of this paper. The PV/Diesel hybrid system designed consists to produce electricity and/or heat from a coupling between Diesel gensets and PV panels without batteries storage, while ensuring the substitution of gasoil by bio-fuels available in the area where the system will be installed. The optimal design of this system is based on his technical performances; the Life Cycle Cost (LCC) and Levelized Cost of Energy are developed and use as economic criteria. The Net Present Value (NPV), the internal rate of return (IRR) and the discounted payback (DPB) are also evaluated according to dual electricity pricing (in sunny and unsunny hours). The PV/Diesel hybrid system obtained is compared to the standalone Diesel gensets. The approach carried out in this paper has been applied to Siby village in Mali (Latitude 12 ° 23'N 8 ° 20'W) with 295 kWh as daily demand. This approach provides optimal physical characteristics (size of the components, number of component) and dynamical characteristics in real time (number of Diesel generator on, their load rate, fuel specific consumptions, and PV penetration rate) of the system. The system obtained is slightly cost effective; but could be improved with optimized tariffing strategies.Keywords: investments criteria, optimization, PV hybrid, sizing, rural electrification
Procedia PDF Downloads 440167 Analysis and Modeling of the Building’s Facades in Terms of Different Convection Coefficients
Authors: Enes Yasa, Guven Fidan
Abstract:
Building Simulation tools need to better evaluate convective heat exchanges between external air and wall surfaces. Previous analysis demonstrated the significant effects of convective heat transfer coefficient values on the room energy balance. Some authors have pointed out that large discrepancies observed between widely used building thermal models can be attributed to the different correlations used to calculate or impose the value of the convective heat transfer coefficients. Moreover, numerous researchers have made sensitivity calculations and proved that the choice of Convective Heat Transfer Coefficient values can lead to differences from 20% to 40% of energy demands. The thermal losses to the ambient from a building surface or a roof mounted solar collector represent an important portion of the overall energy balance and depend heavily on the wind induced convection. In an effort to help designers make better use of the available correlations in the literature for the external convection coefficients due to the wind, a critical discussion and a suitable tabulation is presented, on the basis of algebraic form of the coefficients and their dependence upon characteristic length and wind direction, in addition to wind speed. Many research works have been conducted since early eighties focused on the convection heat transfer problems inside buildings. In this context, a Computational Fluid Dynamics (CFD) program has been used to predict external convective heat transfer coefficients at external building surfaces. For the building facades model, effects of wind speed and temperature differences between the surfaces and the external air have been analyzed, showing different heat transfer conditions and coefficients. In order to provide further information on external convective heat transfer coefficients, a numerical work is presented in this paper, using a Computational Fluid Dynamics (CFD) commercial package (CFX) to predict convective heat transfer coefficients at external building surface.Keywords: CFD in buildings, external convective heat transfer coefficients, building facades, thermal modelling
Procedia PDF Downloads 419166 Analysis of the Factors of Local Acceptance of Wind Power Generation Facilities
Authors: Hyunjoo Park, Taehyun Kim, Taehyun Kim
Abstract:
The government that declared 'de-nuclearization' pushes up renewable energy policies such as solar power and wind power as an alternative to nuclear power generation. However, local residents who are concerned about the development and natural disasters have been hit by opposition, and related businesses around the country are experiencing difficulties. There is also a voice saying that installing a large wind power generator will cause landslides, low frequencies and noise, which will have a bad influence. Renewal is only a harmful and disgusting facility for the residents. In this way, it is expected that extreme social conflicts will occur in the decision making process related to the locally unwanted land-use (LULU). The government's efforts to solve this problem have been steadily progressing, but the systematic methodology for bringing in active participation and opinion gathering of the residents has not yet been established except for the simple opinion poll or referendum. Therefore, it is time to identify the factors that concern the local residents about the wind power generation facilities, and to find ways to make policy decision-making possible. In this study, we analyze the perception of people about offshore and onshore wind power facilities through questionnaires or interviews, and examine quantitative and qualitative precedent studies to analyze them. In addition, the study evaluates what factors affect the local acceptance of wind power facilities. As a result of the factor analysis of the questionnaire items, factors affecting the residents' acceptance of the wind power facility were extracted from four factors such as environmental, economic, risk, social, and management factor. The study also found that the influence of the determinants of local acceptance on the regional acceptability differs according to the demographic characteristics such as gender and income level. This study will contribute to minimizing the conflict on the installation of wind power facilities through communication among the local residents.Keywords: factor analysis, local acceptance, locally unwanted land-use, LULU, wind power generation facilities
Procedia PDF Downloads 153165 Rock-Bed Thermocline Storage: A Numerical Analysis of Granular Bed Behavior and Interaction with Storage Tank
Authors: Nahia H. Sassine, Frédéric-Victor Donzé, Arnaud Bruch, Barthélemy Harthong
Abstract:
Thermal Energy Storage (TES) systems are central elements of various types of power plants operated using renewable energy sources. Packed bed TES can be considered as a cost–effective solution in concentrated solar power plants (CSP). Such a device is made up of a tank filled with a granular bed through which heat-transfer fluid circulates. However, in such devices, the tank might be subjected to catastrophic failure induced by a mechanical phenomenon known as thermal ratcheting. Thermal stresses are accumulated during cycles of loading and unloading until the failure happens. For instance, when rocks are used as storage material, the tank wall expands more than the solid medium during charge process, a gap is created between the rocks and tank walls and the filler material settles down to fill it. During discharge, the tank contracts against the bed, resulting in thermal stresses that may exceed the wall tank yield stress and generate plastic deformation. This phenomenon is repeated over the cycles and the tank will be slowly ratcheted outward until it fails. This paper aims at studying the evolution of tank wall stresses over granular bed thermal cycles, taking into account both thermal and mechanical loads, with a numerical model based on the discrete element method (DEM). Simulations were performed to study two different thermal configurations: (i) the tank is heated homogeneously along its height or (ii) with a vertical gradient of temperature. Then, the resulting loading stresses applied on the tank are compared as well the response of the internal granular material. Besides the study of the influence of different thermal configurations on the storage tank response, other parameters are varied, such as the internal angle of friction of the granular material, the dispersion of particles diameters as well as the tank’s dimensions. Then, their influences on the kinematics of the granular bed submitted to thermal cycles are highlighted.Keywords: discrete element method (DEM), thermal cycles, thermal energy storage, thermocline
Procedia PDF Downloads 401164 Effect of Loop Diameter, Height and Insulation on a High Temperature CO2 Based Natural Circulation Loop
Authors: S. Sadhu, M. Ramgopal, S. Bhattacharyya
Abstract:
Natural circulation loops (NCLs) are buoyancy driven flow systems without any moving components. NCLs have vast applications in geothermal, solar and nuclear power industry where reliability and safety are of foremost concern. Due to certain favorable thermophysical properties, especially near supercritical regions, carbon dioxide can be considered as an ideal loop fluid in many applications. In the present work, a high temperature NCL that uses supercritical carbon dioxide as loop fluid is analysed. The effects of relevant design and operating variables on loop performance are studied. The system operating under steady state is modelled taking into account the axial conduction through loop fluid and loop wall, and heat transfer with surroundings. The heat source is considered to be a heater with controlled heat flux and heat sink is modelled as an end heat exchanger with water as the external cold fluid. The governing equations for mass, momentum and energy conservation are normalized and are solved numerically using finite volume method. Results are obtained for a loop pressure of 90 bar with the power input varying from 0.5 kW to 6.0 kW. The numerical results are validated against the experimental results reported in the literature in terms of the modified Grashof number (Grm) and Reynolds number (Re). Based on the results, buoyancy and friction dominated regions are identified for a given loop. Parametric analysis has been done to show the effect of loop diameter, loop height, ambient temperature and insulation. The results show that for the high temperature loop, heat loss to surroundings affects the loop performance significantly. Hence this conjugate heat transfer between the loop and surroundings has to be considered in the analysis of high temperature NCLs.Keywords: conjugate heat transfer, heat loss, natural circulation loop, supercritical carbon dioxide
Procedia PDF Downloads 239163 Transmission Line Protection Challenges under High Penetration of Renewable Energy Sources and Proposed Solutions: A Review
Authors: Melake Kuflom
Abstract:
European power networks involve the use of multiple overhead transmission lines to construct a highly duplicated system that delivers reliable and stable electrical energy to the distribution level. The transmission line protection applied in the existing GB transmission network are normally independent unit differential and time stepped distance protection schemes, referred to as main-1 & main-2 respectively, with overcurrent protection as a backup. The increasing penetration of renewable energy sources, commonly referred as “weak sources,” into the power network resulted in the decline of fault level. Traditionally, the fault level of the GB transmission network has been strong; hence the fault current contribution is more than sufficient to ensure the correct operation of the protection schemes. However, numerous conventional coal and nuclear generators have been or about to shut down due to the societal requirement for CO2 emission reduction, and this has resulted in a reduction in the fault level on some transmission lines, and therefore an adaptive transmission line protection is required. Generally, greater utilization of renewable energy sources generated from wind or direct solar energy results in a reduction of CO2 carbon emission and can increase the system security and reliability but reduces the fault level, which has an adverse effect on protection. Consequently, the effectiveness of conventional protection schemes under low fault levels needs to be reviewed, particularly for future GB transmission network operating scenarios. The proposed paper will evaluate the transmission line challenges under high penetration of renewable energy sources andprovides alternative viable protection solutions based on the problem observed. The paper will consider the assessment ofrenewable energy sources (RES) based on a fully rated converter technology. The DIgSILENT Power Factory software tool will be used to model the network.Keywords: fault level, protection schemes, relay settings, relay coordination, renewable energy sources
Procedia PDF Downloads 205