Search results for: nonlinear load
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3818

Search results for: nonlinear load

2378 Numerical Simulation of Precast Concrete Panels for Airfield Pavement

Authors: Josef Novák, Alena Kohoutková, Vladimír Křístek, Jan Vodička

Abstract:

Numerical analysis software belong to the main tools for simulating the real behavior of various concrete structures and elements. In comparison with experimental tests, they offer an affordable way to study the mechanical behavior of structures under various conditions. The contribution deals with a precast element of an innovative airfield pavement system which is being developed within an ongoing scientific project. The proposed system consists a two-layer surface course of precast concrete panels positioned on a two-layer base of fiber-reinforced concrete with recycled aggregate. As the panels are supposed to be installed directly on the hardened base course, imperfections at the interface between the base course and surface course are expected. Considering such circumstances, three various behavior patterns could be established and considered when designing the precast element. Enormous costs of full-scale experiments force to simulate the behavior of the element in a numerical analysis software using finite element method. The simulation was conducted on a nonlinear model in order to obtain such results which could fully compensate results from the experiments. First, several loading schemes were considered with the aim to observe the critical one which was used for the simulation later on. The main objective of the simulation was to optimize reinforcement of the element subject to quasi-static loading from airplanes. When running the simulation several parameters were considered. Namely, it concerns geometrical imperfections, manufacturing imperfections, stress state in reinforcement, stress state in concrete and crack width. The numerical simulation revealed that the precast element should be heavily reinforced to fulfill all the demands assumed. The main cause of using high amount of reinforcement is the size of the imperfections which could occur at real structure. Improving manufacturing quality, the installation of the precast panels on a fresh base course or using a bedding layer underneath the surface course belong to the main steps how to reduce the size of imperfections and consequently lower the consumption of reinforcement.

Keywords: nonlinear analysis, numerical simulation, precast concrete, pavement

Procedia PDF Downloads 256
2377 Detection and Distribution Pattern of Prevelant Genotypes of Hepatitis C in a Tertiary Care Hospital of Western India

Authors: Upasana Bhumbla

Abstract:

Background: Hepatitis C virus is a major cause of chronic hepatitis, which can further lead to cirrhosis of the liver and hepatocellular carcinoma. Worldwide the burden of Hepatitis C infection has become a serious threat to the human race. Hepatitis C virus (HCV) has population-specific genotypes and provides valuable epidemiological and therapeutic information. Genotyping and assessment of viral load in HCV patients are important for planning the therapeutic strategies. The aim of the study is to study the changing trends of prevalence and genotypic distribution of hepatitis C virus in a tertiary care hospital in Western India. Methods: It is a retrospective study; blood samples were collected and tested for anti HCV antibodies by ELISA in Dept. of Microbiology. In seropositive Hepatitis C patients, quantification of HCV-RNA was done by real-time PCR and in HCV-RNA positive samples, genotyping was conducted. Results: A total of 114 patients who were seropositive for Anti HCV were recruited in the study, out of which 79 (69.29%) were HCV-RNA positive. Out of these positive samples, 54 were further subjected to genotype determination using real-time PCR. Genotype was not detected in 24 samples due to low viral load; 30 samples were positive for genotype. Conclusion: Knowledge of genotype is crucial for the management of HCV infection and prediction of prognosis. Patients infected with HCV genotype 1 and 4 will have to receive Interferon and Ribavirin for 48 weeks. Patients with these genotypes show a poor sustained viral response when tested 24 weeks after completion of therapy. On the contrary, patients infected with HCV genotype 2 and 3 are reported to have a better response to therapy.

Keywords: hepatocellular, genotype, ribavarin, seropositive

Procedia PDF Downloads 127
2376 Innovative Preparation Techniques: Boosting Oral Bioavailability of Phenylbutyric Acid Through Choline Salt-Based API-Ionic Liquids and Therapeutic Deep Eutectic Systems

Authors: Lin Po-Hsi, Sheu Ming-Thau

Abstract:

Urea cycle disorders (UCD) are rare genetic metabolic disorders that compromise the body's urea cycle. Sodium phenylbutyrate (SPB) is a medication commonly administered in tablet or powder form to lower ammonia levels. Nonetheless, its high sodium content poses risks to sodium-sensitive UCD patients. This necessitates the creation of an alternative drug formulation to mitigate sodium load and optimize drug delivery for UCD patients. This study focused on crafting a novel oral drug formulation for UCD, leveraging choline bicarbonate and phenylbutyric acid. The active pharmaceutical ingredient-ionic liquids (API-ILs) and therapeutic deep eutectic systems (THEDES) were formed by combining these with choline chloride. These systems display characteristics like maintaining a liquid state at room temperature and exhibiting enhanced solubility. This in turn amplifies drug dissolution rate, permeability, and ultimately oral bioavailability. Incorporating choline-based phenylbutyric acid as a substitute for traditional SPB can effectively curtail the sodium load in UCD patients. Our in vitro dissolution experiments revealed that the ILs and DESs, synthesized using choline bicarbonate and choline chloride with phenylbutyric acid, surpassed commercial tablets in dissolution speed. Pharmacokinetic evaluations in SD rats indicated a notable uptick in the oral bioavailability of phenylbutyric acid, underscoring the efficacy of choline salt ILs in augmenting its bioavailability. Additional in vitro intestinal permeability tests on SD rats authenticated that the ILs, formulated with choline bicarbonate and phenylbutyric acid, demonstrate superior permeability compared to their sodium and acid counterparts. To conclude, choline salt ILs developed from choline bicarbonate and phenylbutyric acid present a promising avenue for UCD treatment, with the added benefit of reduced sodium load. They also hold merit in formulation engineering. The sustained-release capabilities of DESs position them favorably for drug delivery, while the low toxicity and cost-effectiveness of choline chloride signal potential in formulation engineering. Overall, this drug formulation heralds a prospective therapeutic avenue for UCD patients.

Keywords: phenylbutyric acid, sodium phenylbutyrate, choline salt, ionic liquids, deep eutectic systems, oral bioavailability

Procedia PDF Downloads 116
2375 Gradient-Based Reliability Optimization of Integrated Energy Systems Under Extreme Weather Conditions: A Case Study in Ningbo, China

Authors: Da LI, Peng Xu

Abstract:

Recent extreme weather events, such as the 2021 European floods and North American heatwaves, have exposed the vulnerability of energy systems to both extreme demand scenarios and potential physical damage. Current integrated energy system designs often overlook performance under these challenging conditions. This research, focusing on a regional integrated energy system in Ningbo, China, proposes a distinct design method to optimize system reliability during extreme events. A multi-scenario model was developed, encompassing various extreme load conditions and potential system damages caused by severe weather. Based on this model, a comprehensive reliability improvement scheme was designed, incorporating a gradient approach to address different levels of disaster severity through the integration of advanced technologies like distributed energy storage. The scheme's effectiveness was validated through Monte Carlo simulations. Results demonstrate significant enhancements in energy supply reliability and peak load reduction capability under extreme scenarios. The findings provide several insights for improving energy system adaptability in the face of climate-induced challenges, offering valuable references for building reliable energy infrastructure capable of withstanding both extreme demands and physical threats across a spectrum of disaster intensities.

Keywords: extreme weather events, integrated energy systems, reliability improvement, climate change adaptation

Procedia PDF Downloads 25
2374 Soliton Solutions in (3+1)-Dimensions

Authors: Magdy G. Asaad

Abstract:

Solitons are among the most beneficial solutions for science and technology for their applicability in physical applications including plasma, energy transport along protein molecules, wave transport along poly-acetylene molecules, ocean waves, constructing optical communication systems, transmission of information through optical fibers and Josephson junctions. In this talk, we will apply the bilinear technique to generate a class of soliton solutions to the (3+1)-dimensional nonlinear soliton equation of Jimbo-Miwa type. Examples of the resulting soliton solutions are computed and a few solutions are plotted.

Keywords: Pfaffian solutions, N-soliton solutions, soliton equations, Jimbo-Miwa

Procedia PDF Downloads 453
2373 Tool for Analysing the Sensitivity and Tolerance of Mechatronic Systems in Matlab GUI

Authors: Bohuslava Juhasova, Martin Juhas, Renata Masarova, Zuzana Sutova

Abstract:

The article deals with the tool in Matlab GUI form that is designed to analyse a mechatronic system sensitivity and tolerance. In the analysed mechatronic system, a torque is transferred from the drive to the load through a coupling containing flexible elements. Different methods of control system design are used. The classic form of the feedback control is proposed using Naslin method, modulus optimum criterion and inverse dynamics method. The cascade form of the control is proposed based on combination of modulus optimum criterion and symmetric optimum criterion. The sensitivity is analysed on the basis of absolute and relative sensitivity of system function to the change of chosen parameter value of the mechatronic system, as well as the control subsystem. The tolerance is analysed in the form of determining the range of allowed relative changes of selected system parameters in the field of system stability. The tool allows to analyse an influence of torsion stiffness, torsion damping, inertia moments of the motor and the load and controller(s) parameters. The sensitivity and tolerance are monitored in terms of the impact of parameter change on the response in the form of system step response and system frequency-response logarithmic characteristics. The Symbolic Math Toolbox for expression of the final shape of analysed system functions was used. The sensitivity and tolerance are graphically represented as 2D graph of sensitivity or tolerance of the system function and 3D/2D static/interactive graph of step/frequency response.

Keywords: mechatronic systems, Matlab GUI, sensitivity, tolerance

Procedia PDF Downloads 433
2372 Automated Distribution System Management: Substation Remote Diagnostic and Operation Solution for Obafemi Awolowo University

Authors: Aderonke Oluseun Akinwumi, Olusola A. Komolaf

Abstract:

This paper gives information about the wide array of challenges facing both the electric utilities and consumers in the distribution system in developing countries, using Obafemi Awolowo University, Ile-Ife Nigeria as a case study. It also proffers cost-effective solution through remote monitoring, diagnostic and operation of distribution networks without compromising the system reliability. As utilities move from manned and unintelligent networks to completely unmanned smart grids, switching activities at substations and feeders will be managed and controlled remotely by dedicated systems hence this design. The Substation Remote Diagnostic and Operation Solution (sRDOs) would remotely monitor the load on Medium Voltage (MV) and Low Voltage (LV) feeders as well as distribution transformers and allow the utility disconnect non-paying customers with absolutely no extra resource deployment and without interrupting supply to paying customers. The aftermath of the implementation of this design improved the lifetime of key distribution infrastructure by automatically isolating feeders during overload conditions and more importantly erring consumers. This increased the ratio of revenue generated on electricity bills to total network load.

Keywords: electric utility, consumers, remote monitoring, diagnostic, system reliability, manned and unintelligent networks, unmanned smart grids, switching activities, medium voltage, low voltage, distribution transformer

Procedia PDF Downloads 131
2371 Effect of Composition on Work Hardening Coefficient of Bismuth-Lead Binary Alloy

Authors: K. A. Mistry, I. B. Patel, A. H. Prajapati

Abstract:

In the present work, the alloy of Bismuth-lead is prepared on the basis of percentage of molecular weight 9:1, 5:5 and 1:9 ratios and grown by Zone- Refining Technique under a vacuum atmosphere. The EDAX of these samples are done and the results are reported. Micro hardness test has been used as an alternative test for measuring material’s tensile properties. The effect of temperature and load on the hardness of the grown alloy has been studied. Further the comparative studies of work hardening coefficients are reported. In the present work, the alloy of Bismuth-lead is prepared on the basis of percentage of molecular weight 9:1, 5:5 and 1:9 ratios and grown by Zone- Refining Technique under a vacuum atmosphere. The EDAX of these samples are done and the results are reported. Micro hardness test has been used as an alternative test for measuring material’s tensile properties. The effect of temperature and load on the hardness of the grown alloy has been studied. Further the comparative studies of work hardening coefficients are reported.

Keywords: EDAX, hardening coefficient, micro hardness, Bi-Pb alloy

Procedia PDF Downloads 306
2370 Digital Image Correlation: Metrological Characterization in Mechanical Analysis

Authors: D. Signore, M. Ferraiuolo, P. Caramuta, O. Petrella, C. Toscano

Abstract:

The Digital Image Correlation (DIC) is a newly developed optical technique that is spreading in all engineering sectors because it allows the non-destructive estimation of the entire surface deformation without any contact with the component under analysis. These characteristics make the DIC very appealing in all the cases the global deformation state is to be known without using strain gages, which are the most used measuring device. The DIC is applicable to any material subjected to distortion caused by either thermal or mechanical load, allowing to obtain high-definition mapping of displacements and deformations. That is why in the civil and the transportation industry, DIC is very useful for studying the behavior of metallic materials as well as of composite materials. DIC is also used in the medical field for the characterization of the local strain field of the vascular tissues surface subjected to uniaxial tensile loading. DIC can be carried out in the two dimension mode (2D DIC) if a single camera is used or in a three dimension mode (3D DIC) if two cameras are involved. Each point of the test surface framed by the cameras can be associated with a specific pixel of the image, and the coordinates of each point are calculated knowing the relative distance between the two cameras together with their orientation. In both arrangements, when a component is subjected to a load, several images related to different deformation states can be are acquired through the cameras. A specific software analyzes the images via the mutual correlation between the reference image (obtained without any applied load) and those acquired during the deformation giving the relative displacements. In this paper, a metrological characterization of the digital image correlation is performed on aluminum and composite targets both in static and dynamic loading conditions by comparison between DIC and strain gauges measures. In the static test, interesting results have been obtained thanks to an excellent agreement between the two measuring techniques. In addition, the deformation detected by the DIC is compliant with the result of a FEM simulation. In the dynamic test, the DIC was able to follow with a good accuracy the periodic deformation of the specimen giving results coherent with the ones given by FEM simulation. In both situations, it was seen that the DIC measurement accuracy depends on several parameters such as the optical focusing, the parameters chosen to perform the mutual correlation between the images and, finally, the reference points on image to be analyzed. In the future, the influence of these parameters will be studied, and a method to increase the accuracy of the measurements will be developed in accordance with the requirements of the industries especially of the aerospace one.

Keywords: accuracy, deformation, image correlation, mechanical analysis

Procedia PDF Downloads 311
2369 Structural Behaviour of Small-Scale Fibre-Filled Steel Tubular Planar Frames

Authors: Sadaf Karkoodi, Hassan Karampour

Abstract:

There is a growing interest in the construction industry towards hybrid systems. The hybrid systems use construction materials such as timber, steel, and concrete smartly, can be prefabricated, and are cost-effective and sustainable solutions to an industry targeting reduced carbon footprint. Moreover, in case of periodical shortage in timber resources, reusable and waste wood such as fibres can be used in the hybrid modules, which facilitates the circular economy. In this research, a hybrid frame is proposed and experimentally validated by introducing dried wood fibre products inside cold-formed steel square hollow sections without using any adhesives. As such, fibre-filled steel tubular (FFST) columns, beams, and 2D frames are manufactured and tested. The results show that the FFST columns have stiffness and strength 44% and 55% higher than cold-formed steel columns, respectively. The bearing strength of the FFST beams shows an increase of 39.5% compared to steel only. The flexural stiffness and strength of the FFST beams are 8.5% and 28% higher than the bare steel beams, respectively. The FFST frame depicted an 18.4% higher ultimate load capacity than the steel-only frame under a mid-point concentrated load. Moreover, the FFST beam-to-column bolted connection showed high ductile performance. The initial results and the proposed simple manufacturing process suggest that the proposed FFST concept can be upscaled and used in real structures.

Keywords: wood fibre, reusing wood, fibre-filled steel, hybrid construction

Procedia PDF Downloads 79
2368 Monitoring of Quantitative and Qualitative Changes in Combustible Material in the Białowieża Forest

Authors: Damian Czubak

Abstract:

The Białowieża Forest is a very valuable natural area, included in the World Natural Heritage at UNESCO, where, due to infestation by the bark beetle (Ips typographus), norway spruce (Picea abies) have deteriorated. This catastrophic scenario led to an increase in fire danger. This was due to the occurrence of large amounts of dead wood and grass cover, as light penetrated to the bottom of the stands. These factors in a dry state are materials that favour the possibility of fire and the rapid spread of fire. One of the objectives of the study was to monitor the quantitative and qualitative changes of combustible material on the permanent decay plots of spruce stands from 2012-2022. In addition, the size of the area with highly flammable vegetation was monitored and a classification of the stands of the Białowieża Forest by flammability classes was made. The key factor that determines the potential fire hazard of a forest is combustible material. Primarily its type, quantity, moisture content, size and spatial structure. Based on the inventory data on the areas of forest districts in the Białowieża Forest, the average fire load and its changes over the years were calculated. The analysis was carried out taking into account the changes in the health status of the stands and sanitary operations. The quantitative and qualitative assessment of fallen timber and fire load of ground cover used the results of the 2019 and 2021 inventories. Approximately 9,000 circular plots were used for the study. An assessment was made of the amount of potential fuel, understood as ground cover vegetation and dead wood debris. In addition, monitoring of areas with vegetation that poses a high fire risk was conducted using data from 2019 and 2021. All sub-areas were inventoried where vegetation posing a specific fire hazard represented at least 10% of the area with species characteristic of that cover. In addition to the size of the area with fire-prone vegetation, a very important element is the size of the fire load on the indicated plots. On representative plots, the biomass of the land cover was measured on an area of 10 m2 and then the amount of biomass of each component was determined. The resulting element of variability of ground covers in stands was their flammability classification. The classification developed made it possible to track changes in the flammability classes of stands over the period covered by the measurements.

Keywords: classification, combustible material, flammable vegetation, Norway spruce

Procedia PDF Downloads 93
2367 Formation Flying Design Applied for an Aurora Borealis Monitoring Mission

Authors: Thais Cardoso Franco, Caio Nahuel Sousa Fagonde, Willer Gomes dos Santos

Abstract:

Aurora Borealis is an optical phenomenon composed of luminous events observed in the night skies in the polar regions resulting from disturbances in the magnetosphere due to the impact of solar wind particles with the Earth's upper atmosphere, channeled by the Earth's magnetic field, which causes atmospheric molecules to become excited and emit electromagnetic spectrum, leading to the display of lights in the sky. However, there are still different implications of this phenomenon under study: high intensity auroras are often accompanied by geomagnetic storms that cause blackouts on Earth and impair the transmission of signals from the Global Navigation Satellite Systems (GNSS). Auroras are also known to occur on other planets and exoplanets, so the activity is an indication of active space weather conditions that can aid in learning about the planetary environment. In order to improve understanding of the phenomenon, this research aims to design a satellite formation flying solution for collecting and transmitting data for monitoring aurora borealis in northern hemisphere, an approach that allows studying the event with multipoint data collection in a reduced time interval, in order to allow analysis from the beginning of the phenomenon until its decline. To this end, the ideal number of satellites, the spacing between them, as well as the ideal topology to be used will be analyzed. From an orbital study, approaches from different altitudes, eccentricities and inclinations will also be considered. Given that at large relative distances between satellites in formation, controllers tend to fail, a study on the efficiency of nonlinear adaptive control methods from the point of view of position maintenance and propellant consumption will be carried out. The main orbital perturbations considered in the simulation: non-homogeneity terrestrial, atmospheric drag, gravitational action of the Sun and the Moon, accelerations due to solar radiation pressure and relativistic effects.

Keywords: formation flying, nonlinear adaptive control method, aurora borealis, adaptive SDRE method

Procedia PDF Downloads 39
2366 Intelligent Control Design of Car Following Behavior Using Fuzzy Logic

Authors: Abdelkader Merah, Kada Hartani

Abstract:

A reference model based control approach for improving behavior following car is proposed in this paper. The reference model is nonlinear and provides dynamic solutions consistent with safety constraints and comfort specifications. a robust fuzzy logic based control strategy is further proposed in this paper. A set of simulation results showing the suitability of the proposed technique for various demanding cenarios is also included in this paper.

Keywords: reference model, longitudinal control, fuzzy logic, design of car

Procedia PDF Downloads 430
2365 Application Reliability Method for Concrete Dams

Authors: Mustapha Kamel Mihoubi, Mohamed Essadik Kerkar

Abstract:

Probabilistic risk analysis models are used to provide a better understanding of the reliability and structural failure of works, including when calculating the stability of large structures to a major risk in the event of an accident or breakdown. This work is interested in the study of the probability of failure of concrete dams through the application of reliability analysis methods including the methods used in engineering. It is in our case, the use of level 2 methods via the study limit state. Hence, the probability of product failures is estimated by analytical methods of the type first order risk method (FORM) and the second order risk method (SORM). By way of comparison, a level three method was used which generates a full analysis of the problem and involves an integration of the probability density function of random variables extended to the field of security using the Monte Carlo simulation method. Taking into account the change in stress following load combinations: normal, exceptional and extreme acting on the dam, calculation of the results obtained have provided acceptable failure probability values which largely corroborate the theory, in fact, the probability of failure tends to increase with increasing load intensities, thus causing a significant decrease in strength, shear forces then induce a shift that threatens the reliability of the structure by intolerable values of the probability of product failures. Especially, in case the increase of uplift in a hypothetical default of the drainage system.

Keywords: dam, failure, limit-state, monte-carlo, reliability, probability, simulation, sliding, taylor

Procedia PDF Downloads 324
2364 Three-Dimensional Finite Element Analysis of Geogrid-Reinforced Piled Embankments on Soft Clay

Authors: Mahmoud Y. Shokry, Rami M. El-Sherbiny

Abstract:

This paper aims to highlight the role of some parameters that may be of a noticeable impact on numerical analysis/design of embankments. It presents the results of a three-dimensional (3-D) finite element analysis of a monitored earth embankment that was constructed on soft clay formation stabilized by cast in-situ piles using software PLAXIS 3D. A comparison between the predicted and the monitored responses is presented to assess the adequacy of the adopted numerical model. The model was used in the targeted parametric study. Moreover, a comparison was performed between the results of the 3-D analyses and the analytical solutions. This paper concluded that the effect of using mono pile caps led to decrease both the total and differential settlement and increased the efficiency of the piled embankment system. The study of using geogrids revealed that it can contribute in decreasing the settlement and maximizing the part of the embankment load transferred to piles. Moreover, it was found that increasing the stiffness of the geogrids provides higher values of tensile forces and hence has more effective influence on embankment load carried by piles rather than using multi-number of layers with low values of geogrid stiffness. The efficiency of the piled embankments system was also found to be greater when higher embankments are used rather than the low height embankments. The comparison between the numerical 3-D model and the theoretical design methods revealed that many analytical solutions are conservative and non-accurate rather than the 3-D finite element numerical models.

Keywords: efficiency, embankment, geogrids, soft clay

Procedia PDF Downloads 323
2363 Neural Network Supervisory Proportional-Integral-Derivative Control of the Pressurized Water Reactor Core Power Load Following Operation

Authors: Derjew Ayele Ejigu, Houde Song, Xiaojing Liu

Abstract:

This work presents the particle swarm optimization trained neural network (PSO-NN) supervisory proportional integral derivative (PID) control method to monitor the pressurized water reactor (PWR) core power for safe operation. The proposed control approach is implemented on the transfer function of the PWR core, which is computed from the state-space model. The PWR core state-space model is designed from the neutronics, thermal-hydraulics, and reactivity models using perturbation around the equilibrium value. The proposed control approach computes the control rod speed to maneuver the core power to track the reference in a closed-loop scheme. The particle swarm optimization (PSO) algorithm is used to train the neural network (NN) and to tune the PID simultaneously. The controller performance is examined using integral absolute error, integral time absolute error, integral square error, and integral time square error functions, and the stability of the system is analyzed by using the Bode diagram. The simulation results indicated that the controller shows satisfactory performance to control and track the load power effectively and smoothly as compared to the PSO-PID control technique. This study will give benefit to design a supervisory controller for nuclear engineering research fields for control application.

Keywords: machine learning, neural network, pressurized water reactor, supervisory controller

Procedia PDF Downloads 156
2362 Artificial Neural Networks in Environmental Psychology: Application in Architectural Projects

Authors: Diego De Almeida Pereira, Diana Borchenko

Abstract:

Artificial neural networks are used for many applications as they are able to learn complex nonlinear relationships between input and output data. As the number of neurons and layers in a neural network increases, it is possible to represent more complex behaviors. The present study proposes that artificial neural networks are a valuable tool for architecture and engineering professionals concerned with understanding how buildings influence human and social well-being based on theories of environmental psychology.

Keywords: environmental psychology, architecture, neural networks, human and social well-being

Procedia PDF Downloads 496
2361 Numerical Solutions of Generalized Burger-Fisher Equation by Modified Variational Iteration Method

Authors: M. O. Olayiwola

Abstract:

Numerical solutions of the generalized Burger-Fisher are obtained using a Modified Variational Iteration Method (MVIM) with minimal computational efforts. The computed results with this technique have been compared with other results. The present method is seen to be a very reliable alternative method to some existing techniques for such nonlinear problems.

Keywords: burger-fisher, modified variational iteration method, lagrange multiplier, Taylor’s series, partial differential equation

Procedia PDF Downloads 430
2360 Evaluation of Fracture Resistance and Moisture Damage of Hot Mix Asphalt Using Plastic Coated Aggregates

Authors: Malleshappa Japagal, Srinivas Chitragar

Abstract:

The use of waste plastic in pavement is becoming important alternative worldwide for disposal of plastic as well as to improve the stability of pavement and to meet out environmental issues. However, there are still concerns on fatigue and fracture resistance of Hot Mix Asphalt with the addition of plastic waste, (HMA-Plastic mixes) and moisture damage potential. The present study was undertaken to evaluate fracture resistance of HMA-Plastic mixes using semi-circular bending (SCB) test and moisture damage potential by Indirect Tensile strength (ITS) test using retained tensile strength (TSR). In this study, a dense graded asphalt mix with 19 mm nominal maximum aggregate size was designed in the laboratory using Marshall Mix design method. Aggregates were coated with different percentages of waste plastic (0%, 2%, 3% and 4%) by weight of aggregate and performance evaluation of fracture resistance and Moisture damage was carried out. The following parameters were estimated for the mixes: J-Integral or Jc, strain energy at failure, peak load at failure, and deformation at failure. It was found that the strain energy and peak load of all the mixes decrease with an increase in notch depth, indicating that increased percentage of plastic waste gave better fracture resistance. The moisture damage potential was evaluated by Tensile strength ratio (TSR). The experimental results shown increased TRS value up to 3% addition of waste plastic in HMA mix which gives better performance hence the use of waste plastic in road construction is favorable.

Keywords: hot mix asphalt, semi circular bending, marshall mix design, tensile strength ratio

Procedia PDF Downloads 306
2359 Cryptographic Resource Allocation Algorithm Based on Deep Reinforcement Learning

Authors: Xu Jie

Abstract:

As a key network security method, cryptographic services must fully cope with problems such as the wide variety of cryptographic algorithms, high concurrency requirements, random job crossovers, and instantaneous surges in workloads. Its complexity and dynamics also make it difficult for traditional static security policies to cope with the ever-changing situation. Cyber Threats and Environment. Traditional resource scheduling algorithms are inadequate when facing complex decision-making problems in dynamic environments. A network cryptographic resource allocation algorithm based on reinforcement learning is proposed, aiming to optimize task energy consumption, migration cost, and fitness of differentiated services (including user, data, and task security) by modeling the multi-job collaborative cryptographic service scheduling problem as a multi-objective optimized job flow scheduling problem and using a multi-agent reinforcement learning method, efficient scheduling and optimal configuration of cryptographic service resources are achieved. By introducing reinforcement learning, resource allocation strategies can be adjusted in real-time in a dynamic environment, improving resource utilization and achieving load balancing. Experimental results show that this algorithm has significant advantages in path planning length, system delay and network load balancing and effectively solves the problem of complex resource scheduling in cryptographic services.

Keywords: cloud computing, cryptography on-demand service, reinforcement learning, workflow scheduling

Procedia PDF Downloads 15
2358 Analysis of Splicing Methods for High Speed Automated Fibre Placement Applications

Authors: Phillip Kearney, Constantina Lekakou, Stephen Belcher, Alessandro Sordon

Abstract:

The focus in the automotive industry is to reduce human operator and machine interaction, so manufacturing becomes more automated and safer. The aim is to lower part cost and construction time as well as defects in the parts, sometimes occurring due to the physical limitations of human operators. A move to automate the layup of reinforcement material in composites manufacturing has resulted in the use of tapes that are placed in position by a robotic deposition head, also described as Automated Fibre Placement (AFP). The process of AFP is limited with respect to the finite amount of material that can be loaded into the machine at any one time. Joining two batches of tape material together involves a splice to secure the ends of the finishing tape to the starting edge of the new tape. The splicing method of choice for the majority of prepreg applications is a hand stich method, and as the name suggests requires human input to achieve. This investigation explores three methods for automated splicing, namely, adhesive, binding and stitching. The adhesive technique uses an additional adhesive placed on the tape ends to be joined. Binding uses the binding agent that is already impregnated onto the tape through the application of heat. The stitching method is used as a baseline to compare the new splicing methods to the traditional technique currently in use. As the methods will be used within a High Speed Automated Fibre Placement (HSAFP) process, this meant the parameters of the splices have to meet certain specifications: (a) the splice must be able to endure a load of 50 N in tension applied at a rate of 1 mm/s; (b) the splice must be created in less than 6 seconds, dictated by the capacity of the tape accumulator within the system. The samples for experimentation were manufactured with controlled overlaps, alignment and splicing parameters, these were then tested in tension using a tensile testing machine. Initial analysis explored the use of the impregnated binding agent present on the tape, as in the binding splicing technique. It analysed the effect of temperature and overlap on the strength of the splice. It was found that the optimum splicing temperature was at the higher end of the activation range of the binding agent, 100 °C. The optimum overlap was found to be 25 mm; it was found that there was no improvement in bond strength from 25 mm to 30 mm overlap. The final analysis compared the different splicing methods to the baseline of a stitched bond. It was found that the addition of an adhesive was the best splicing method, achieving a maximum load of over 500 N compared to the 26 N load achieved by a stitching splice and 94 N by the binding method.

Keywords: analysis, automated fibre placement, high speed, splicing

Procedia PDF Downloads 155
2357 Numerical Model of Low Cost Rubber Isolators for Masonry Housing in High Seismic Regions

Authors: Ahmad B. Habieb, Gabriele Milani, Tavio Tavio, Federico Milani

Abstract:

Housings in developing countries have often inadequate seismic protection, particularly for masonry. People choose this type of structure since the cost and application are relatively cheap. Seismic protection of masonry remains an interesting issue among researchers. In this study, we develop a low-cost seismic isolation system for masonry using fiber reinforced elastomeric isolators. The elastomer proposed consists of few layers of rubber pads and fiber lamina, making it lower in cost comparing to the conventional isolators. We present a finite element (FE) analysis to predict the behavior of the low cost rubber isolators undergoing moderate deformations. The FE model of the elastomer involves a hyperelastic material property for the rubber pad. We adopt a Yeoh hyperelasticity model and estimate its coefficients through the available experimental data. Having the shear behavior of the elastomers, we apply that isolation system onto small masonry housing. To attach the isolators on the building, we model the shear behavior of the isolation system by means of a damped nonlinear spring model. By this attempt, the FE analysis becomes computationally inexpensive. Several ground motion data are applied to observe its sensitivity. Roof acceleration and tensile damage of walls become the parameters to evaluate the performance of the isolators. In this study, a concrete damage plasticity model is used to model masonry in the nonlinear range. This tool is available in the standard package of Abaqus FE software. Finally, the results show that the low-cost isolators proposed are capable of reducing roof acceleration and damage level of masonry housing. Through this study, we are also capable of monitoring the shear deformation of isolators during seismic motion. It is useful to determine whether the isolator is applicable. According to the results, the deformations of isolators on the benchmark one story building are relatively small.

Keywords: masonry, low cost elastomeric isolator, finite element analysis, hyperelasticity, damped non-linear spring, concrete damage plasticity

Procedia PDF Downloads 286
2356 Distributed Cost-Based Scheduling in Cloud Computing Environment

Authors: Rupali, Anil Kumar Jaiswal

Abstract:

Cloud computing can be defined as one of the prominent technologies that lets a user change, configure and access the services online. it can be said that this is a prototype of computing that helps in saving cost and time of a user practically the use of cloud computing can be found in various fields like education, health, banking etc.  Cloud computing is an internet dependent technology thus it is the major responsibility of Cloud Service Providers(CSPs) to care of data stored by user at data centers. Scheduling in cloud computing environment plays a vital role as to achieve maximum utilization and user satisfaction cloud providers need to schedule resources effectively.  Job scheduling for cloud computing is analyzed in the following work. To complete, recreate the task calculation, and conveyed scheduling methods CloudSim3.0.3 is utilized. This research work discusses the job scheduling for circulated processing condition also by exploring on this issue we find it works with minimum time and less cost. In this work two load balancing techniques have been employed: ‘Throttled stack adjustment policy’ and ‘Active VM load balancing policy’ with two brokerage services ‘Advanced Response Time’ and ‘Reconfigure Dynamically’ to evaluate the VM_Cost, DC_Cost, Response Time, and Data Processing Time. The proposed techniques are compared with Round Robin scheduling policy.

Keywords: physical machines, virtual machines, support for repetition, self-healing, highly scalable programming model

Procedia PDF Downloads 168
2355 Comparison of Power Generation Status of Photovoltaic Systems under Different Weather Conditions

Authors: Zhaojun Wang, Zongdi Sun, Qinqin Cui, Xingwan Ren

Abstract:

Based on multivariate statistical analysis theory, this paper uses the principal component analysis method, Mahalanobis distance analysis method and fitting method to establish the photovoltaic health model to evaluate the health of photovoltaic panels. First of all, according to weather conditions, the photovoltaic panel variable data are classified into five categories: sunny, cloudy, rainy, foggy, overcast. The health of photovoltaic panels in these five types of weather is studied. Secondly, a scatterplot of the relationship between the amount of electricity produced by each kind of weather and other variables was plotted. It was found that the amount of electricity generated by photovoltaic panels has a significant nonlinear relationship with time. The fitting method was used to fit the relationship between the amount of weather generated and the time, and the nonlinear equation was obtained. Then, using the principal component analysis method to analyze the independent variables under five kinds of weather conditions, according to the Kaiser-Meyer-Olkin test, it was found that three types of weather such as overcast, foggy, and sunny meet the conditions for factor analysis, while cloudy and rainy weather do not satisfy the conditions for factor analysis. Therefore, through the principal component analysis method, the main components of overcast weather are temperature, AQI, and pm2.5. The main component of foggy weather is temperature, and the main components of sunny weather are temperature, AQI, and pm2.5. Cloudy and rainy weather require analysis of all of their variables, namely temperature, AQI, pm2.5, solar radiation intensity and time. Finally, taking the variable values in sunny weather as observed values, taking the main components of cloudy, foggy, overcast and rainy weather as sample data, the Mahalanobis distances between observed value and these sample values are obtained. A comparative analysis was carried out to compare the degree of deviation of the Mahalanobis distance to determine the health of the photovoltaic panels under different weather conditions. It was found that the weather conditions in which the Mahalanobis distance fluctuations ranged from small to large were: foggy, cloudy, overcast and rainy.

Keywords: fitting, principal component analysis, Mahalanobis distance, SPSS, MATLAB

Procedia PDF Downloads 144
2354 Design of an Automated Deep Learning Recurrent Neural Networks System Integrated with IoT for Anomaly Detection in Residential Electric Vehicle Charging in Smart Cities

Authors: Wanchalerm Patanacharoenwong, Panaya Sudta, Prachya Bumrungkun

Abstract:

The paper focuses on the development of a system that combines Internet of Things (IoT) technologies and deep learning algorithms for anomaly detection in residential Electric Vehicle (EV) charging in smart cities. With the increasing number of EVs, ensuring efficient and reliable charging systems has become crucial. The aim of this research is to develop an integrated IoT and deep learning system for detecting anomalies in residential EV charging and enhancing EV load profiling and event detection in smart cities. This approach utilizes IoT devices equipped with infrared cameras to collect thermal images and household EV charging profiles from the database of Thailand utility, subsequently transmitting this data to a cloud database for comprehensive analysis. The methodology includes the use of advanced deep learning techniques such as Recurrent Neural Networks (RNN) and Long Short-Term Memory (LSTM) algorithms. IoT devices equipped with infrared cameras are used to collect thermal images and EV charging profiles. The data is transmitted to a cloud database for comprehensive analysis. The researchers also utilize feature-based Gaussian mixture models for EV load profiling and event detection. Moreover, the research findings demonstrate the effectiveness of the developed system in detecting anomalies and critical profiles in EV charging behavior. The system provides timely alarms to users regarding potential issues and categorizes the severity of detected problems based on a health index for each charging device. The system also outperforms existing models in event detection accuracy. This research contributes to the field by showcasing the potential of integrating IoT and deep learning techniques in managing residential EV charging in smart cities. The system ensures operational safety and efficiency while also promoting sustainable energy management. The data is collected using IoT devices equipped with infrared cameras and is stored in a cloud database for analysis. The collected data is then analyzed using RNN, LSTM, and feature-based Gaussian mixture models. The approach includes both EV load profiling and event detection, utilizing a feature-based Gaussian mixture model. This comprehensive method aids in identifying unique power consumption patterns among EV owners and outperforms existing models in event detection accuracy. In summary, the research concludes that integrating IoT and deep learning techniques can effectively detect anomalies in residential EV charging and enhance EV load profiling and event detection accuracy. The developed system ensures operational safety and efficiency, contributing to sustainable energy management in smart cities.

Keywords: cloud computing framework, recurrent neural networks, long short-term memory, Iot, EV charging, smart grids

Procedia PDF Downloads 64
2353 Technical and Economic Analysis of Smart Micro-Grid Renewable Energy Systems: An Applicable Case Study

Authors: M. A. Fouad, M. A. Badr, Z. S. Abd El-Rehim, Taher Halawa, Mahmoud Bayoumi, M. M. Ibrahim

Abstract:

Renewable energy-based micro-grids are presently attracting significant consideration. The smart grid system is presently considered a reliable solution for the expected deficiency in the power required from future power systems. The purpose of this study is to determine the optimal components sizes of a micro-grid, investigating technical and economic performance with the environmental impacts. The micro grid load is divided into two small factories with electricity, both on-grid and off-grid modes are considered. The micro-grid includes photovoltaic cells, back-up diesel generator wind turbines, and battery bank. The estimated load pattern is 76 kW peak. The system is modeled and simulated by MATLAB/Simulink tool to identify the technical issues based on renewable power generation units. To evaluate system economy, two criteria are used: the net present cost and the cost of generated electricity. The most feasible system components for the selected application are obtained, based on required parameters, using HOMER simulation package. The results showed that a Wind/Photovoltaic (W/PV) on-grid system is more economical than a Wind/Photovoltaic/Diesel/Battery (W/PV/D/B) off-grid system as the cost of generated electricity (COE) is 0.266 $/kWh and 0.316 $/kWh, respectively. Considering the cost of carbon dioxide emissions, the off-grid will be competitive to the on-grid system as COE is found to be (0.256 $/kWh, 0.266 $/kWh), for on and off grid systems.

Keywords: renewable energy sources, micro-grid system, modeling and simulation, on/off grid system, environmental impacts

Procedia PDF Downloads 270
2352 Nonlinear Power Measurement Algorithm of the Input Mix Components of the Noise Signal and Pulse Interference

Authors: Alexey V. Klyuev, Valery P. Samarin, Viktor F. Klyuev, Andrey V. Klyuev

Abstract:

A power measurement algorithm of the input mix components of the noise signal and pulse interference is considered. The algorithm efficiency analysis has been carried out for different interference to signal ratio. Algorithm performance features have been explored by numerical experiment results.

Keywords: noise signal, pulse interference, signal power, spectrum width, detection

Procedia PDF Downloads 337
2351 Semilocal Convergence of a Three Step Fifth Order Iterative Method under Hölder Continuity Condition in Banach Spaces

Authors: Ramandeep Behl, Prashanth Maroju, S. S. Motsa

Abstract:

In this paper, we study the semilocal convergence of a fifth order iterative method using recurrence relation under the assumption that first order Fréchet derivative satisfies the Hölder condition. Also, we calculate the R-order of convergence and provide some a priori error bounds. Based on this, we give existence and uniqueness region of the solution for a nonlinear Hammerstein integral equation of the second kind.

Keywords: Holder continuity condition, Frechet derivative, fifth order convergence, recurrence relations

Procedia PDF Downloads 612
2350 The Relationship between Lithological and Geomechanical Properties of Carbonate Rocks. Case study: Arab-D Reservoir Outcrop Carbonate, Central Saudi Arabia

Authors: Ammar Juma Abdlmutalib, Osman Abdullatif

Abstract:

Upper Jurrasic Arab-D Reservoir is considered as the largest oil reservoir in Saudi Arabia. The equivalent outcrop is exposed near Riyadh. The study investigates the relationships between lithofacies properties changes and geomechanical properties of Arab-D Reservoir in the outcrop scale. The methods used included integrated field observations and laboratory measurements. Schmidt Hammer Rebound Hardness, Point Load Index tests were carried out to estimate the strength of the samples, ultrasonic wave velocity test also was applied to measure P-wave, S-wave, and dynamic Poisson's ratio. Thin sections have been analyzed and described. The results show that there is a variation in geomechanical properties between the Arab-D member and Upper Jubaila Formation at outcrop scale, the change in texture or grain size has no or little effect on these properties. This is because of the clear effect of diagenesis which changes the strength of the samples. The result also shows the negative or inverse correlation between porosity and geomechanical properties. As for the strength, dolomitic mudstone and wackestone within Upper Jubaila Formation has higher Schmidt hammer values, wavy rippled sandy grainstone which is rich in quarts has the greater point load index values. While laminated mudstone and breccias, facies has lower strength. This emphasizes the role of mineral content in the geomechanical properties of Arab-D reservoir lithofacies.

Keywords: geomechanical properties, Arab-D reservoir, lithofacies changes, Poisson's ratio, diageneis

Procedia PDF Downloads 398
2349 Experimental Characterization of the AA7075 Aluminum Alloy Using Hot Shear Tensile Test

Authors: Trunal Bhujangrao, Catherine Froustey, Fernando Veiga, Philippe Darnis, Franck Girot Mata

Abstract:

The understanding of the material behavior under shear loading has great importance for a researcher in manufacturing processes like cutting, machining, milling, turning, friction stir welding, etc. where the material experiences large deformation at high temperature. For such material behavior analysis, hot shear tests provide a useful means to investigate the evolution of the microstructure at a wide range of temperature and to improve the material behavior model. Shear tests can be performed by direct shear loading (e.g. torsion of thin-walled tubular samples), or appropriate specimen design to convert a tensile or compressive load into shear (e.g. simple shear tests). The simple shear tests are straightforward and designed to obtained very large deformation. However, many of these shear tests are concerned only with the elastic response of the material. It is becoming increasingly important to capture a plastic response of the material. Plastic deformation is significantly more complex and is known to depend more heavily on the strain rate, temperature, deformation, etc. Besides, there is not enough work is done on high-temperature shear loading, because of geometrical instability occurred during the plastic deformation. The aim of this study is to design a new shear tensile specimen geometry to convert the tensile load into dominant shear loading under plastic deformation. Design of the specimen geometry is based on FEM. The material used in this paper is AA7075 alloy, tested quasi statically under elevated temperature. Finally, the microstructural changes taking place during

Keywords: AA7075 alloy, dynamic recrystallization, edge effect, large strain, shear tensile test

Procedia PDF Downloads 147