Search results for: network knowledge graph
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12072

Search results for: network knowledge graph

10632 Documentation of Traditional Knowledge on Wild Medicinal Plants of Egypt

Authors: Nahla S. Abdel-Azim, Khaled A. Shams, Elsayed A. Omer, Mahmoud M. Sakr

Abstract:

Medicinal plants play a significant role in the health care system in Egypt. Knowledge developed over the years by people is mostly unrecorded and orally passes on from one generation to the next. This knowledge is facing the danger of becoming extinct. Therefore there is an urgent need to document the medicinal and aromatic plants associated with traditional knowledge. The Egyptian Encyclopedia of wild medicinal plants (EEWMP) is the first attempt to collect most of the basic elements of the medicinal plant resources of Egypt and their traditional uses. It includes scientific data on about 500 medicinal plants in the form of monographs. Each monograph contains all available information and scientific data on the selected species including the following: names, description, distribution, parts used, habitat, conservational status, active or major chemical constituents, folk medicinal uses and heritage resources, pharmacological and biological activities, authentication, pharmaceutical products, and cultivation. The DNA bar-coding is also included (when available). A brief Arabic summary is given for every monograph. This work revealed the diversity in plant parts used in the treatment of different ailments. In addition, the traditional knowledge gathered can be considered a good starting point for effective in situ and ex-situ conservation of endangered plant species.

Keywords: encyclopedia, medicinal plant, traditional medicine, wild flora

Procedia PDF Downloads 214
10631 Teacher Knowledge: Unbridling Teacher Agency in the Context of Professional Development for Transformative Teaching and Learning

Authors: Bernice Badal

Abstract:

This article addresses a persistent challenge related to teacher agency in knowledge acquisition in professional development (PD) workshops in contexts of educational change, given that scholarship identifies a need for more teacher involvement and amplification of teacher's voices. Theoretical concepts are drawn from Bandura’s Social cognitive theory, incorporating the triadic causation model of agency to examine the reciprocal nature of the context, teacher characteristics, and systemic influences that shape how knowledge is transmitted and acquired in PD workshops. This qualitative study, using a mix of classroom observations and interviews, explored the political, contextual, and personal characteristics of teacher agency in PD through an analysis of data extracted from a PhD study. The narratives of six teachers from three township schools are examined to show how PD efforts in South Africa have failed to take account of the holistic development of teacher agency in knowledge dissemination and how this shapes teacher self-efficacy beliefs about being able to masterfully apply the tenets of the reform. Agency, teacher voice, and contextual considerations were used as markers of the quality of the training provided to understand how knowledge is acquired and meaning is made. The findings suggest that systemic influences of institutionally imposed PD offer partial understandings of the reform, which is offered in traditional formats that do not consider teacher empowerment in knowledge production and the development of teacher agency. Common in all the participants’ responses is the need for more information and training on the prescribed approach for teaching English as a second language; however, this paper holds the view that more information may not solve teachers’ dilemmas. Accordingly, it recommends a restructuring of the programme with facilitators being more cognisant of teacher agency for the development of transformative teachers. The findings of the study contribute to the field of teacher knowledge, teacher training, and professional development in the context of educational reforms.

Keywords: teacher professional development, teacher voice, teacher agency, educational reforms, teacher knowledge

Procedia PDF Downloads 71
10630 Can the Intervention of SCAMPER Bring about Changes of Neural Activation While Taking Creativity Tasks?

Authors: Yu-Chu Yeh, WeiChin Hsu, Chih-Yen Chang

Abstract:

Substitution, combination, modification, putting to other uses, elimination, and rearrangement (SCAMPER) has been regarded as an effective technique that provides a structured way to help people to produce creative ideas and solutions. Although some neuroscience studies regarding creativity training have been conducted, no study has focused on SCAMPER. This study therefore aimed at examining whether the learning of SCAMPER through video tutorials would result in alternations of neural activation. Thirty college students were randomly assigned to the experimental group or the control group. The experimental group was requested to watch SCAMPER videos, whereas the control group was asked to watch natural-scene videos which were regarded as neutral stimulating materials. Each participant was brain scanned in a Functional magnetic resonance imaging (fMRI) machine while undertaking a creativity test before and after watching the videos. Furthermore, a two-way ANOVA was used to analyze the interaction between groups (the experimental group; the control group) and tasks (C task; M task; X task). The results revealed that the left precuneus significantly activated in the interaction of groups and tasks, as well as in the main effect of group. Furthermore, compared with the control group, the experimental group had greater activation in the default mode network (left precuneus and left inferior parietal cortex) and the motor network (left postcentral gyrus and left supplementary area). The findings suggest that the SCAMPER training may facilitate creativity through the stimulation of the default mode network and the motor network.

Keywords: creativity, default mode network, neural activation, SCAMPER

Procedia PDF Downloads 100
10629 Design of an Improved Distributed Framework for Intrusion Detection System Based on Artificial Immune System and Neural Network

Authors: Yulin Rao, Zhixuan Li, Burra Venkata Durga Kumar

Abstract:

Intrusion detection refers to monitoring the actions of internal and external intruders on the system and detecting the behaviours that violate security policies in real-time. In intrusion detection, there has been much discussion about the application of neural network technology and artificial immune system (AIS). However, many solutions use static methods (signature-based and stateful protocol analysis) or centralized intrusion detection systems (CIDS), which are unsuitable for real-time intrusion detection systems that need to process large amounts of data and detect unknown intrusions. This article proposes a framework for a distributed intrusion detection system (DIDS) with multi-agents based on the concept of AIS and neural network technology to detect anomalies and intrusions. In this framework, multiple agents are assigned to each host and work together, improving the system's detection efficiency and robustness. The trainer agent in the central server of the framework uses the artificial neural network (ANN) rather than the negative selection algorithm of AIS to generate mature detectors. Mature detectors can distinguish between self-files and non-self-files after learning. Our analyzer agents use genetic algorithms to generate memory cell detectors. This kind of detector will effectively reduce false positive and false negative errors and act quickly on known intrusions.

Keywords: artificial immune system, distributed artificial intelligence, multi-agent, intrusion detection system, neural network

Procedia PDF Downloads 109
10628 Finite Volume Method in Loop Network in Hydraulic Transient

Authors: Hossain Samani, Mohammad Ehteram

Abstract:

In this paper, we consider finite volume method (FVM) in water hammer. We will simulate these techniques on a looped network with complex boundary conditions. After comparing methods, we see the FVM method as the best method. We compare the results of FVM with experimental data. Finite volume using staggered grid is applied for solving water hammer equations.

Keywords: hydraulic transient, water hammer, interpolation, non-liner interpolation

Procedia PDF Downloads 349
10627 Identification and Optimisation of South Africa's Basic Access Road Network

Authors: Diogo Prosdocimi, Don Ross, Matthew Townshend

Abstract:

Road authorities are mandated within limited budgets to both deliver improved access to basic services and facilitate economic growth. This responsibility is further complicated if maintenance backlogs and funding shortfalls exist, as evident in many countries including South Africa. These conditions require authorities to make difficult prioritisation decisions, with the effect that Road Asset Management Systems with a one-dimensional focus on traffic volumes may overlook the maintenance of low-volume roads that provide isolated communities with vital access to basic services. Given these challenges, this paper overlays the full South African road network with geo-referenced information for population, primary and secondary schools, and healthcare facilities to identify the network of connective roads between communities and basic service centres. This connective network is then rationalised according to the Gross Value Added and number of jobs per mesozone, administrative and functional road classifications, speed limit, and road length, location, and name to estimate the Basic Access Road Network. A two-step floating catchment area (2SFCA) method, capturing a weighted assessment of drive-time to service centres and the ratio of people within a catchment area to teachers and healthcare workers, is subsequently applied to generate a Multivariate Road Index. This Index is used to assign higher maintenance priority to roads within the Basic Access Road Network that provide more people with better access to services. The relatively limited incidence of Basic Access Roads indicates that authorities could maintain the entire estimated network without exhausting the available road budget before practical economic considerations get any purchase. Despite this fact, a final case study modelling exercise is performed for the Namakwa District Municipality to demonstrate the extent to which optimal relocation of schools and healthcare facilities could minimise the Basic Access Road Network and thereby release budget for investment in roads that best promote GDP growth.

Keywords: basic access roads, multivariate road index, road prioritisation, two-step floating catchment area method

Procedia PDF Downloads 231
10626 Research Engagement in Africa: Cost and Challenges

Authors: Teboho Moja, Frans Swanepoel, Okunade Samuel Kehinde

Abstract:

Knowledge production is key to development worldwide. However, some countries are producers of knowledge used globally, whilst others are mainly consumers of that knowledge. There is a correlation between knowledge production and funding levels for research. Countries in Africa recognize the need to provide research funding at levels that would enhance knowledge production but struggle in balancing many competing needs. African countries have committed to funding research at the level of 1% of their GDP on research and development (R&D), which is the recommended percentage to be earmarked for education; however, many countries have not been able to fulfill this. In 2015-2016 Science Granting Councils in 15 out of 54 African states came together to form a Science Granting Council Initiative to strengthen the research capacity in their countries and to support research and evidence-based policies that will contribute to the continent’s economic and social development. The members of the SGCI work collaboratively; however, there is a challenge in addressing research problems that cut across national boundaries as many governments are more interested in prioritizing national issues given their limited resources. This article focuses on the governance structures of those science granting councils to understand and explore reasons for the continuing underfunding of research, the impact of research, and the perceived direct benefit of research outcomes in informing policy and in benefitting the broader society.

Keywords: research, Science Granting Council, funding, European Research Council, African Research Council

Procedia PDF Downloads 179
10625 Evaluation of Classification Algorithms for Diagnosis of Asthma in Iranian Patients

Authors: Taha SamadSoltani, Peyman Rezaei Hachesu, Marjan GhaziSaeedi, Maryam Zolnoori

Abstract:

Introduction: Data mining defined as a process to find patterns and relationships along data in the database to build predictive models. Application of data mining extended in vast sectors such as the healthcare services. Medical data mining aims to solve real-world problems in the diagnosis and treatment of diseases. This method applies various techniques and algorithms which have different accuracy and precision. The purpose of this study was to apply knowledge discovery and data mining techniques for the diagnosis of asthma based on patient symptoms and history. Method: Data mining includes several steps and decisions should be made by the user which starts by creation of an understanding of the scope and application of previous knowledge in this area and identifying KD process from the point of view of the stakeholders and finished by acting on discovered knowledge using knowledge conducting, integrating knowledge with other systems and knowledge documenting and reporting.in this study a stepwise methodology followed to achieve a logical outcome. Results: Sensitivity, Specifity and Accuracy of KNN, SVM, Naïve bayes, NN, Classification tree and CN2 algorithms and related similar studies was evaluated and ROC curves were plotted to show the performance of the system. Conclusion: The results show that we can accurately diagnose asthma, approximately ninety percent, based on the demographical and clinical data. The study also showed that the methods based on pattern discovery and data mining have a higher sensitivity compared to expert and knowledge-based systems. On the other hand, medical guidelines and evidence-based medicine should be base of diagnostics methods, therefore recommended to machine learning algorithms used in combination with knowledge-based algorithms.

Keywords: asthma, datamining, classification, machine learning

Procedia PDF Downloads 447
10624 Examining the Nutrition Knowledge, Attitude, and Practices of Elderly Residents in Duguri District, Bauchi State, Nigeria: A Village-Level Analysis

Authors: Iliyasu A. A. Ibrahim

Abstract:

Nutrition knowledge, attitudes, and practices (KAPs) play a vital role in preventing malnutrition and its consequences, impacting quality of life. This study aimed to assess KAPs among elderly individuals (60-90 years) in 4 villages of Duguri District, Alkaleri, Nigeria. A cross-sectional study was conducted among 2000 geriatrics from four villages. Studies showed that 70.6% of participants demonstrated poor nutrition knowledge, 60.2% exhibited unhealthy practices, while 50.5% displayed negative attitudes. Village-wise Comparison indicated that Yashi village recorded the lowest poor knowledge score (47.2%), Mainamaji (57.4%), Kungibar (66.2%), and Badara (67.2%) followed. Yashi village showed the most positive attitude (51.1%). The study revealed factors influencing KAPs, such as travel exposure and higher education, correlated with better attitudes and practices. The study highlights the significance of addressing nutrition-related KAP gaps among Duguri district’s elderly. Raising awareness and implementing a nutrition strategy with a focus on older adults is crucial. Concrete measures must ensure elders' nutritional needs are met, enhancing their quality of life.

Keywords: nutrition, knowledge, attitude, practice, elderly, Duguri

Procedia PDF Downloads 10
10623 Exploring the Applications of Neural Networks in the Adaptive Learning Environment

Authors: Baladitya Swaika, Rahul Khatry

Abstract:

Computer Adaptive Tests (CATs) is one of the most efficient ways for testing the cognitive abilities of students. CATs are based on Item Response Theory (IRT) which is based on item selection and ability estimation using statistical methods of maximum information selection/selection from posterior and maximum-likelihood (ML)/maximum a posteriori (MAP) estimators respectively. This study aims at combining both classical and Bayesian approaches to IRT to create a dataset which is then fed to a neural network which automates the process of ability estimation and then comparing it to traditional CAT models designed using IRT. This study uses python as the base coding language, pymc for statistical modelling of the IRT and scikit-learn for neural network implementations. On creation of the model and on comparison, it is found that the Neural Network based model performs 7-10% worse than the IRT model for score estimations. Although performing poorly, compared to the IRT model, the neural network model can be beneficially used in back-ends for reducing time complexity as the IRT model would have to re-calculate the ability every-time it gets a request whereas the prediction from a neural network could be done in a single step for an existing trained Regressor. This study also proposes a new kind of framework whereby the neural network model could be used to incorporate feature sets, other than the normal IRT feature set and use a neural network’s capacity of learning unknown functions to give rise to better CAT models. Categorical features like test type, etc. could be learnt and incorporated in IRT functions with the help of techniques like logistic regression and can be used to learn functions and expressed as models which may not be trivial to be expressed via equations. This kind of a framework, when implemented would be highly advantageous in psychometrics and cognitive assessments. This study gives a brief overview as to how neural networks can be used in adaptive testing, not only by reducing time-complexity but also by being able to incorporate newer and better datasets which would eventually lead to higher quality testing.

Keywords: computer adaptive tests, item response theory, machine learning, neural networks

Procedia PDF Downloads 175
10622 Hysteresis Modeling in Iron-Dominated Magnets Based on a Deep Neural Network Approach

Authors: Maria Amodeo, Pasquale Arpaia, Marco Buzio, Vincenzo Di Capua, Francesco Donnarumma

Abstract:

Different deep neural network architectures have been compared and tested to predict magnetic hysteresis in the context of pulsed electromagnets for experimental physics applications. Modelling quasi-static or dynamic major and especially minor hysteresis loops is one of the most challenging topics for computational magnetism. Recent attempts at mathematical prediction in this context using Preisach models could not attain better than percent-level accuracy. Hence, this work explores neural network approaches and shows that the architecture that best fits the measured magnetic field behaviour, including the effects of hysteresis and eddy currents, is the nonlinear autoregressive exogenous neural network (NARX) model. This architecture aims to achieve a relative RMSE of the order of a few 100 ppm for complex magnetic field cycling, including arbitrary sequences of pseudo-random high field and low field cycles. The NARX-based architecture is compared with the state-of-the-art, showing better performance than the classical operator-based and differential models, and is tested on a reference quadrupole magnetic lens used for CERN particle beams, chosen as a case study. The training and test datasets are a representative example of real-world magnet operation; this makes the good result obtained very promising for future applications in this context.

Keywords: deep neural network, magnetic modelling, measurement and empirical software engineering, NARX

Procedia PDF Downloads 130
10621 A Secure Routing Algorithm for ‎Underwater Wireless Sensor Networks

Authors: Seyed Mahdi Jameii

Abstract:

Underwater wireless sensor networks have been attracting the interest of many ‎researchers lately, and the past three decades have beheld the rapid progress of ‎underwater acoustic communication. One of the major problems in underwater wireless ‎sensor networks is how to transfer data from the moving node to the base stations and ‎choose the optimized route for data transmission. Secure routing in underwater ‎wireless sensor network (UWCNs) is necessary for packet delivery. Some routing ‎protocols are proposed for underwater wireless sensor networks. However, a few ‎researches have been done on secure routing in underwater sensor networks. In this ‎article, a secure routing protocol is provided to resist against wormhole and sybil ‎attacks. The results indicated acceptable performance in terms of increasing the packet ‎delivery ratio with regards to the attacks, increasing network lifetime by creating ‎balance in the network energy consumption, high detection rates against the attacks, ‎and low-end to end delay.‎

Keywords: attacks, routing, security, underwater wireless sensor networks

Procedia PDF Downloads 418
10620 An Efficient Algorithm for Global Alignment of Protein-Protein Interaction Networks

Authors: Duc Dong Do, Ngoc Ha Tran, Thanh Hai Dang, Cao Cuong Dang, Xuan Huan Hoang

Abstract:

Global aligning two protein-protein interaction networks is an essentially important task in bioinformatics/computational biology field of study. It is a challenging and widely studied research topic in recent years. Accurately aligned networks allow us to identify functional modules of proteins and/ororthologous proteins from which unknown functions of a protein can be inferred. We here introduce a novel efficient heuristic global network alignment algorithm called FASTAn, including two phases: the first to construct an initial alignment and the second to improve such alignment by exerting a local optimization repeated procedure. The experimental results demonstrated that FASTAn outperformed the state-of-the-art global network alignment algorithm namely SPINAL in terms of both commonly used objective scores and the run-time.

Keywords: FASTAn, Heuristic algorithm, biological network alignment, protein-protein interaction networks

Procedia PDF Downloads 604
10619 An Investigation of Environmental Education Knowledge for Sustainable Development in High School Sectors in UK

Authors: Abolaji Mayowa Akinyele

Abstract:

The purpose of this study was to investigate student’s awareness, Knowledge and understanding of environmental issues for sustainable development. Findings revealed that; despite the positive attitude shown by students towards environmental education, a relatively low level of understanding of environmental concept was recorded in school settings regardless of efforts by government and other environmental agencies at creating awareness about environmental related issues. This brought about the investigation of students environmental education knowledge in high school settings. About 205 Students were randomly selected for data collection using validated instruments titled student’s knowledge and attitude questionnaire as well as student’s response to questions (interview) concerning global warming. T-test statistics, chi-square and simple percentage were the major statistical tools employed in data analysis. This study revealed that environment based-education (school curriculum) as well as efforts by government/environmental agencies (mass media) plays a major role in promoting students understanding, of environmental concepts, awareness of major environmental issues and positive attitude towards natural environment.

Keywords: environmental issues, sustainable development, students attitude, students knowledge

Procedia PDF Downloads 457
10618 Load Forecasting Using Neural Network Integrated with Economic Dispatch Problem

Authors: Mariyam Arif, Ye Liu, Israr Ul Haq, Ahsan Ashfaq

Abstract:

High cost of fossil fuels and intensifying installations of alternate energy generation sources are intimidating main challenges in power systems. Making accurate load forecasting an important and challenging task for optimal energy planning and management at both distribution and generation side. There are many techniques to forecast load but each technique comes with its own limitation and requires data to accurately predict the forecast load. Artificial Neural Network (ANN) is one such technique to efficiently forecast the load. Comparison between two different ranges of input datasets has been applied to dynamic ANN technique using MATLAB Neural Network Toolbox. It has been observed that selection of input data on training of a network has significant effects on forecasted results. Day-wise input data forecasted the load accurately as compared to year-wise input data. The forecasted load is then distributed among the six generators by using the linear programming to get the optimal point of generation. The algorithm is then verified by comparing the results of each generator with their respective generation limits.

Keywords: artificial neural networks, demand-side management, economic dispatch, linear programming, power generation dispatch

Procedia PDF Downloads 189
10617 Scheduling Tasks in Embedded Systems Based on NoC Architecture

Authors: D. Dorota

Abstract:

This paper presents a method to generate and schedule task in the architecture of embedded systems based on the simulated annealing. This method takes into account the attribute of divisibility of tasks. A proposal represents the process in the form of trees. Despite the fact that the architecture of Network-on-Chip (NoC) is an interesting alternative to a bus architecture based on multi-processors systems, it requires a lot of work that ensures the optimization of communication. This paper proposes an effective approach to generate dedicated NoC topology solving communication problems. Network NoC is generated taking into account the energy consumption and resource issues. Ultimately generated is minimal, dedicated NoC topology. The proposed solution is assumed to be a simple router design and the minimum number of lines.

Keywords: Network-on-Chip, NoC-based embedded systems, scheduling task in embedded systems, simulated annealing

Procedia PDF Downloads 377
10616 Investigation of Clustering Algorithms Used in Wireless Sensor Networks

Authors: Naim Karasekreter, Ugur Fidan, Fatih Basciftci

Abstract:

Wireless sensor networks are networks in which more than one sensor node is organized among themselves. The working principle is based on the transfer of the sensed data over the other nodes in the network to the central station. Wireless sensor networks concentrate on routing algorithms, energy efficiency and clustering algorithms. In the clustering method, the nodes in the network are divided into clusters using different parameters and the most suitable cluster head is selected from among them. The data to be sent to the center is sent per cluster, and the cluster head is transmitted to the center. With this method, the network traffic is reduced and the energy efficiency of the nodes is increased. In this study, clustering algorithms were examined in terms of clustering performances and cluster head selection characteristics to try to identify weak and strong sides. This work is supported by the Project 17.Kariyer.123 of Afyon Kocatepe University BAP Commission.

Keywords: wireless sensor networks (WSN), clustering algorithm, cluster head, clustering

Procedia PDF Downloads 513
10615 Effect of “Evidence Based Diabetes Management” Educational Sessions on Primary Care Physicians

Authors: Surjeet Bakshi, Surabhi Sharma

Abstract:

Objective: To assess the impact of educational sessions by reputed regional faculties on knowledge of primary care physicians on evidence based diabetes management methods and practice. Study Design: Retrospective pre-post intervention study. Methodology: Nine cities in Kerala from August to October, 2012 were selected for the study. 125 MBBS doctors participated in the study. 11 regional faculties provided six educational sessions throughout the period. Validated questionnaires were used to evaluate the knowledge of the participants on evidence based diabetes management methods before and after the intervention. Results: The mean score on pre-test was 8 and the mean score on post-test was 9. A paired t-test was conducted on participant’s pre- and post test score and the results were statistically significant (p<0.001). Conclusion: Even though the general attitude to and level of knowledge of diabetes management is good among the primary care physicians in India, there do exist some knowledge gaps which might influence their future practices when it comes to counselling and information on diabetes management methods. In the present study, the performance and awareness level of the participants have expressively improved among primary care physicians. There is a significant improvement in the test score and the training conducted. It seems that if such study programmes are included in the students study programme, it will give higher score in the knowledge and attitude towards diabetes management.

Keywords: diabetes, management, primary care physicians, evidence base, improvement score, knowledge

Procedia PDF Downloads 352
10614 Multivariate Analysis on Water Quality Attributes Using Master-Slave Neural Network Model

Authors: A. Clementking, C. Jothi Venkateswaran

Abstract:

Mathematical and computational functionalities such as descriptive mining, optimization, and predictions are espoused to resolve natural resource planning. The water quality prediction and its attributes influence determinations are adopted optimization techniques. The water properties are tainted while merging water resource one with another. This work aimed to predict influencing water resource distribution connectivity in accordance to water quality and sediment using an innovative proposed master-slave neural network back-propagation model. The experiment results are arrived through collecting water quality attributes, computation of water quality index, design and development of neural network model to determine water quality and sediment, master–slave back propagation neural network back-propagation model to determine variations on water quality and sediment attributes between the water resources and the recommendation for connectivity. The homogeneous and parallel biochemical reactions are influences water quality and sediment while distributing water from one location to another. Therefore, an innovative master-slave neural network model [M (9:9:2)::S(9:9:2)] designed and developed to predict the attribute variations. The result of training dataset given as an input to master model and its maximum weights are assigned as an input to the slave model to predict the water quality. The developed master-slave model is predicted physicochemical attributes weight variations for 85 % to 90% of water quality as a target values.The sediment level variations also predicated from 0.01 to 0.05% of each water quality percentage. The model produced the significant variations on physiochemical attribute weights. According to the predicated experimental weight variation on training data set, effective recommendations are made to connect different resources.

Keywords: master-slave back propagation neural network model(MSBPNNM), water quality analysis, multivariate analysis, environmental mining

Procedia PDF Downloads 477
10613 Rain Gauges Network Optimization in Southern Peninsular Malaysia

Authors: Mohd Khairul Bazli Mohd Aziz, Fadhilah Yusof, Zulkifli Yusop, Zalina Mohd Daud, Mohammad Afif Kasno

Abstract:

Recent developed rainfall network design techniques have been discussed and compared by many researchers worldwide due to the demand of acquiring higher levels of accuracy from collected data. In many studies, rain-gauge networks are designed to provide good estimation for areal rainfall and for flood modelling and prediction. In a certain study, even using lumped models for flood forecasting, a proper gauge network can significantly improve the results. Therefore existing rainfall network in Johor must be optimized and redesigned in order to meet the required level of accuracy preset by rainfall data users. The well-known geostatistics method (variance-reduction method) that is combined with simulated annealing was used as an algorithm of optimization in this study to obtain the optimal number and locations of the rain gauges. Rain gauge network structure is not only dependent on the station density; station location also plays an important role in determining whether information is acquired accurately. The existing network of 84 rain gauges in Johor is optimized and redesigned by using rainfall, humidity, solar radiation, temperature and wind speed data during monsoon season (November – February) for the period of 1975 – 2008. Three different semivariogram models which are Spherical, Gaussian and Exponential were used and their performances were also compared in this study. Cross validation technique was applied to compute the errors and the result showed that exponential model is the best semivariogram. It was found that the proposed method was satisfied by a network of 64 rain gauges with the minimum estimated variance and 20 of the existing ones were removed and relocated. An existing network may consist of redundant stations that may make little or no contribution to the network performance for providing quality data. Therefore, two different cases were considered in this study. The first case considered the removed stations that were optimally relocated into new locations to investigate their influence in the calculated estimated variance and the second case explored the possibility to relocate all 84 existing stations into new locations to determine the optimal position. The relocations of the stations in both cases have shown that the new optimal locations have managed to reduce the estimated variance and it has proven that locations played an important role in determining the optimal network.

Keywords: geostatistics, simulated annealing, semivariogram, optimization

Procedia PDF Downloads 302
10612 Survey Based Data Security Evaluation in Pakistan Financial Institutions against Malicious Attacks

Authors: Naveed Ghani, Samreen Javed

Abstract:

In today’s heterogeneous network environment, there is a growing demand for distrust clients to jointly execute secure network to prevent from malicious attacks as the defining task of propagating malicious code is to locate new targets to attack. Residual risk is always there no matter what solutions are implemented or whet so ever security methodology or standards being adapted. Security is the first and crucial phase in the field of Computer Science. The main aim of the Computer Security is gathering of information with secure network. No one need wonder what all that malware is trying to do: It's trying to steal money through data theft, bank transfers, stolen passwords, or swiped identities. From there, with the help of our survey we learn about the importance of white listing, antimalware programs, security patches, log files, honey pots, and more used in banks for financial data protection but there’s also a need of implementing the IPV6 tunneling with Crypto data transformation according to the requirements of new technology to prevent the organization from new Malware attacks and crafting of its own messages and sending them to the target. In this paper the writer has given the idea of implementing IPV6 Tunneling Secessions on private data transmission from financial organizations whose secrecy needed to be safeguarded.

Keywords: network worms, malware infection propagating malicious code, virus, security, VPN

Procedia PDF Downloads 358
10611 A Prediction Model for Dynamic Responses of Building from Earthquake Based on Evolutionary Learning

Authors: Kyu Jin Kim, Byung Kwan Oh, Hyo Seon Park

Abstract:

The seismic responses-based structural health monitoring system has been performed to prevent seismic damage. Structural seismic damage of building is caused by the instantaneous stress concentration which is related with dynamic characteristic of earthquake. Meanwhile, seismic response analysis to estimate the dynamic responses of building demands significantly high computational cost. To prevent the failure of structural members from the characteristic of the earthquake and the significantly high computational cost for seismic response analysis, this paper presents an artificial neural network (ANN) based prediction model for dynamic responses of building considering specific time length. Through the measured dynamic responses, input and output node of the ANN are formed by the length of specific time, and adopted for the training. In the model, evolutionary radial basis function neural network (ERBFNN), that radial basis function network (RBFN) is integrated with evolutionary optimization algorithm to find variables in RBF, is implemented. The effectiveness of the proposed model is verified through an analytical study applying responses from dynamic analysis for multi-degree of freedom system to training data in ERBFNN.

Keywords: structural health monitoring, dynamic response, artificial neural network, radial basis function network, genetic algorithm

Procedia PDF Downloads 304
10610 Mix Proportioning and Strength Prediction of High Performance Concrete Including Waste Using Artificial Neural Network

Authors: D. G. Badagha, C. D. Modhera, S. A. Vasanwala

Abstract:

There is a great challenge for civil engineering field to contribute in environment prevention by finding out alternatives of cement and natural aggregates. There is a problem of global warming due to cement utilization in concrete, so it is necessary to give sustainable solution to produce concrete containing waste. It is very difficult to produce designated grade of concrete containing different ingredient and water cement ratio including waste to achieve desired fresh and harden properties of concrete as per requirement and specifications. To achieve the desired grade of concrete, a number of trials have to be taken, and then after evaluating the different parameters at long time performance, the concrete can be finalized to use for different purposes. This research work is carried out to solve the problem of time, cost and serviceability in the field of construction. In this research work, artificial neural network introduced to fix proportion of concrete ingredient with 50% waste replacement for M20, M25, M30, M35, M40, M45, M50, M55 and M60 grades of concrete. By using the neural network, mix design of high performance concrete was finalized, and the main basic mechanical properties were predicted at 3 days, 7 days and 28 days. The predicted strength was compared with the actual experimental mix design and concrete cube strength after 3 days, 7 days and 28 days. This experimentally and neural network based mix design can be used practically in field to give cost effective, time saving, feasible and sustainable high performance concrete for different types of structures.

Keywords: artificial neural network, high performance concrete, rebound hammer, strength prediction

Procedia PDF Downloads 155
10609 Detecting Port Maritime Communities in Spain with Complex Network Analysis

Authors: Nicanor Garcia Alvarez, Belarmino Adenso-Diaz, Laura Calzada Infante

Abstract:

In recent years, researchers have shown an interest in modelling maritime traffic as a complex network. In this paper, we propose a bipartite weighted network to model maritime traffic and detect port maritime communities. The bipartite weighted network considers two different types of nodes. The first one represents Spanish ports, while the second one represents the countries with which there is major import/export activity. The flow among both types of nodes is modeled by weighting the volume of product transported. To illustrate the model, the data is segmented by each type of traffic. This will allow fine tuning and the creation of communities for each type of traffic and therefore finding similar ports for a specific type of traffic, which will provide decision-makers with tools to search for alliances or identify their competitors. The traffic with the greatest impact on the Spanish gross domestic product is selected, and the evolution of the communities formed by the most important ports and their differences between 2019 and 2009 will be analyzed. Finally, the set of communities formed by the ports of the Spanish port system will be inspected to determine global similarities between them, analyzing the sum of the membership of the different ports in communities formed for each type of traffic in particular.

Keywords: bipartite networks, competition, infomap, maritime traffic, port communities

Procedia PDF Downloads 148
10608 Domain-Specific Deep Neural Network Model for Classification of Abnormalities on Chest Radiographs

Authors: Nkechinyere Joy Olawuyi, Babajide Samuel Afolabi, Bola Ibitoye

Abstract:

This study collected a preprocessed dataset of chest radiographs and formulated a deep neural network model for detecting abnormalities. It also evaluated the performance of the formulated model and implemented a prototype of the formulated model. This was with the view to developing a deep neural network model to automatically classify abnormalities in chest radiographs. In order to achieve the overall purpose of this research, a large set of chest x-ray images were sourced for and collected from the CheXpert dataset, which is an online repository of annotated chest radiographs compiled by the Machine Learning Research Group, Stanford University. The chest radiographs were preprocessed into a format that can be fed into a deep neural network. The preprocessing techniques used were standardization and normalization. The classification problem was formulated as a multi-label binary classification model, which used convolutional neural network architecture to make a decision on whether an abnormality was present or not in the chest radiographs. The classification model was evaluated using specificity, sensitivity, and Area Under Curve (AUC) score as the parameter. A prototype of the classification model was implemented using Keras Open source deep learning framework in Python Programming Language. The AUC ROC curve of the model was able to classify Atelestasis, Support devices, Pleural effusion, Pneumonia, A normal CXR (no finding), Pneumothorax, and Consolidation. However, Lung opacity and Cardiomegaly had a probability of less than 0.5 and thus were classified as absent. Precision, recall, and F1 score values were 0.78; this implies that the number of False Positive and False Negative is the same, revealing some measure of label imbalance in the dataset. The study concluded that the developed model is sufficient to classify abnormalities present in chest radiographs into present or absent.

Keywords: transfer learning, convolutional neural network, radiograph, classification, multi-label

Procedia PDF Downloads 129
10607 Security in Resource Constraints Network Light Weight Encryption for Z-MAC

Authors: Mona Almansoori, Ahmed Mustafa, Ahmad Elshamy

Abstract:

Wireless sensor network was formed by a combination of nodes, systematically it transmitting the data to their base stations, this transmission data can be easily compromised if the limited processing power and the data consistency from these nodes are kept in mind; there is always a discussion to address the secure data transfer or transmission in actual time. This will present a mechanism to securely transmit the data over a chain of sensor nodes without compromising the throughput of the network by utilizing available battery resources available in the sensor node. Our methodology takes many different advantages of Z-MAC protocol for its efficiency, and it provides a unique key by sharing the mechanism using neighbor node MAC address. We present a light weighted data integrity layer which is embedded in the Z-MAC protocol to prove that our protocol performs well than Z-MAC when we introduce the different attack scenarios.

Keywords: hybrid MAC protocol, data integrity, lightweight encryption, neighbor based key sharing, sensor node dataprocessing, Z-MAC

Procedia PDF Downloads 144
10606 Traditional Practices of Conserving Biodiversity: A Case Study around Jim Corbett National Park, Uttarakhand, India

Authors: Rana Parween, Rob Marchant

Abstract:

With the continued loss of global biodiversity despite the application of modern conservation techniques, it has become crucial to investigate non-conventional methods. Accelerated destruction of ecosystems due to altered land use, climate change, cultural and social change, necessitates the exploration of society-biodiversity attitudes and links. While the loss of species and their extinction is a well-known and well-documented process that attracts much-needed attention from researchers, academics, government and non-governmental organizations, the loss of traditional ecological knowledge and practices is more insidious and goes unnoticed. The growing availability of 'indirect experiences' such as the internet and media are leading to a disaffection towards nature and the 'Extinction of Experience'. Exacerbated by the lack of documentation of traditional practices and skills, there is the possibility for the 'extinction' of traditional practices and skills before they are fully recognized and captured. India, as a mega-biodiverse country, is also known for its historical conservation strategies entwined in traditional beliefs. Indigenous communities hold skillsets, knowledge, and traditions that have accumulated over multiple generations and may play an important role in conserving biodiversity today. This study explores the differences in knowledge and attitudes towards conserving biodiversity, of three different stakeholder groups living around Jim Corbett National Park, based on their age, traditions, and association with the protected area. A triangulation designed multi-strategy investigation collected qualitative and quantitative data through a questionnaire survey of village elders, the general public, and forest officers. Following an inductive approach to analyzing qualitative data, the thematic content analysis was followed. All coding and analysis were completed using NVivo 11. Although the village elders and some general public had vast amounts of traditional knowledge, most of it was related to animal husbandry and the medicinal value of plants. Village elders were unfamiliar with the concept of the term ‘biodiversity’ albeit their way of life and attitudes ensured that they care for the ecosystem without having the scientific basis underpinning biodiversity conservation. Inherently, village elders were keen to conserve nature; the superimposition of governmental policies without any tangible benefit or consultation was seen as detrimental. Alienating villagers and consequently the village elders who are the reservoirs of traditional knowledge would not only be damaging to the social network of the area but would also disdain years of tried and tested techniques held by the elders. Forest officers advocated for biodiversity and conservation education for women and children. Women, across all groups, when questioned about nature conservation, showed more interest in learning and participation. Biodiversity not only has an ethical and cultural value, but also plays a role in ecosystem function and, thus, provides ecosystem services and supports livelihoods. Therefore, underpinning and using traditional knowledge and incorporating them into programs of biodiversity conservation should be explored with a sense of urgency.

Keywords: biological diversity, mega-biodiverse countries, traditional ecological knowledge, society-biodiversity links

Procedia PDF Downloads 105
10605 The Effects of Smoking Prevention Intervention on Smoking Knowledge, Attitudes and Anti-Smoking Self-Efficiency among Adolescent Students

Authors: Yi-Ying Lin, Su-Guo, Chia-Hao, Ming-Szu Hong

Abstract:

Objectives: Smoking is a common addictive behavior in teenagers. Long-term smoking is hazardous to health, causes family and social expenditure, and is an important topic that should not be overlooked by academia or the government. The aims of this study are to examine the effectiveness of these courses in terms of teenagers’ knowledge and attitudes towards the hazards of smoking and the effectiveness of their self-efficacy in rejecting smoking. Methods: This study adopted a pre-test post-test design and selected 7th, 8th, 10th, and 11th graders from two junior high schools. Total of 1073 valid questionnaires were collected. The self-completed questionnaire included background information, smoking status of relatives staying with the subject, attitudes of parents towards child smoking, knowledge and attitudes towards smoking, and anti-smoking self-efficacy. Results and clinical applications: Subjects in the experimental group underwent course interventions, which are 'smoking prevention courses,' in the semester. After course intervention, it was found that the intervention showed significant efficacy in terms of knowledge and self-efficacy in rejecting smoking in senior high school students but no efficacy in junior high school. We recommend that this course can be used in normal senior high schools. With regards to junior high schools, smoking prevention courses should be designed to be gamified, or combined with activities with both anti-smoking messages and entertainment at the same time, so that knowledge, attitudes, and self-efficacy can be subconsciously cultivated.

Keywords: adolescent students, smoking knowledge, attitudes, anti-smoking self-efficiency, smoking prevention intervention

Procedia PDF Downloads 124
10604 The Role of Virtual Geographic Environment (VGEs)

Authors: Min Chen, Hui Lin

Abstract:

VGEs are a kind of typical web- and computer-based geographic environment, with aims of merging geographic knowledge, computer technology, virtual reality technology, network technology, and geographic information technology, to provide a digital mirror of physical geographic environments to allow users to ‘feel it in person’ by a means for augmenting the senses and to ‘know it beyond reality’ through geographic phenomena simulation and collaborative geographic experiments. Many achievements have appeared in this field, but further evolution should be explored. With the exploration of the conception of VGEs, and some examples, this article illustrated the role of VGEs and their contribution to currently GIScience. Based on the above analysis, questions are proposed for discussing about the future way of VGEs.

Keywords: virtual geographic environments (VGEs), GIScience, virtual reality, geographic information systems

Procedia PDF Downloads 575
10603 Science of Social Work: Recognizing Its Existence as a Scientific Discipline by a Method Triangulation

Authors: Sandra Mendes

Abstract:

Social Work has encountered over time with multivariate requests in the field of its action, provisioning frameworks of knowledge and praxis. Over the years, we have observed a transformation of society and, consequently, of the public who deals with the social work practitioners. Both, training and profession have had need to adapt and readapt the ways of doing, bailing up theories to action, while action unfolds emancipation of new theories. The theoretical questioning of this subject lies on classical authors from social sciences, and contemporary authors of Social Work. In fact, both enhance, in the design of social work, an integration and social cohesion function, creating a culture of action and theory, attributing to its method a relevant function, which shall be promoter of social changes in various dimensions of both individual and collective life, as well as scientific knowledge. On the other hand, it is assumed that Social Work, through its professionalism and through the academy, is now closer to distinguish itself from other Social Sciences as an autonomous scientific field, being, however, in the center of power struggles. This paper seeks to fill the gap in social work literature about the study of the scientific field of this area of knowledge.

Keywords: field theory, knowledge, science, social work

Procedia PDF Downloads 355