Search results for: landscape connectivity structures
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5410

Search results for: landscape connectivity structures

3970 Artificial Habitat Mapping in Adriatic Sea

Authors: Annalisa Gaetani, Anna Nora Tassetti, Gianna Fabi

Abstract:

The hydroacoustic technology is an efficient tool to study the sea environment: the most recent advancement in artificial habitat mapping involves acoustic systems to investigate fish abundance, distribution and behavior in specific areas. Along with a detailed high-coverage bathymetric mapping of the seabed, the high-frequency Multibeam Echosounder (MBES) offers the potential of detecting fine-scale distribution of fish aggregation, combining its ability to detect at the same time the seafloor and the water column. Surveying fish schools distribution around artificial structures, MBES allows to evaluate how their presence modifies the biological natural habitat overtime in terms of fish attraction and abundance. In the last years, artificial habitat mapping experiences have been carried out by CNR-ISMAR in the Adriatic sea: fish assemblages aggregating at offshore gas platforms and artificial reefs have been systematically monitored employing different kinds of methodologies. This work focuses on two case studies: a gas extraction platform founded at 80 meters of depth in the central Adriatic sea, 30 miles far from the coast of Ancona, and the concrete and steel artificial reef of Senigallia, deployed by CNR-ISMAR about 1.2 miles offshore at a depth of 11.2 m . Relating the MBES data (metrical dimensions of fish assemblages, shape, depth, density etc.) with the results coming from other methodologies, such as experimental fishing surveys and underwater video camera, it has been possible to investigate the biological assemblage attracted by artificial structures hypothesizing which species populate the investigated area and their spatial dislocation from these artificial structures. Processing MBES bathymetric and water column data, 3D virtual scenes of the artificial habitats have been created, receiving an intuitive-looking depiction of their state and allowing overtime to evaluate their change in terms of dimensional characteristics and depth fish schools’ disposition. These MBES surveys play a leading part in the general multi-year programs carried out by CNR-ISMAR with the aim to assess potential biological changes linked to human activities on.

Keywords: artificial habitat mapping, fish assemblages, hydroacustic technology, multibeam echosounder

Procedia PDF Downloads 249
3969 Real-Time Fitness Monitoring with MediaPipe

Authors: Chandra Prayaga, Lakshmi Prayaga, Aaron Wade, Kyle Rank, Gopi Shankar Mallu, Sri Satya, Harsha Pola

Abstract:

In today's tech-driven world, where connectivity shapes our daily lives, maintaining physical and emotional health is crucial. Athletic trainers play a vital role in optimizing athletes' performance and preventing injuries. However, a shortage of trainers impacts the quality of care. This study introduces a vision-based exercise monitoring system leveraging Google's MediaPipe library for precise tracking of bicep curl exercises and simultaneous posture monitoring. We propose a three-stage methodology: landmark detection, side detection, and angle computation. Our system calculates angles at the elbow, wrist, neck, and torso to assess exercise form. Experimental results demonstrate the system's effectiveness in distinguishing between good and partial repetitions and evaluating body posture during exercises, providing real-time feedback for precise fitness monitoring.

Keywords: physical health, athletic trainers, fitness monitoring, technology driven solutions, Google’s MediaPipe, landmark detection, angle computation, real-time feedback

Procedia PDF Downloads 49
3968 Nations in Labour: Incorporating National Narratives in Sociological Models of Cultural Labour

Authors: Anna Lytvynova

Abstract:

This essay presents labour as a performatively national phenomenon from a cultural perspective. Considering Engels’ proposition of labour as the epicentre of development of social structures and communities, it theorizes the formation and sustainment of group identities through labour identities. Taking labour in the cultural sector as the starting point case study, the essay further enunciates such labour and labour identity as a form of engaged citizenship. In doing so, this piece hopes to arrive at a potential contemporary understanding of labour as having a central and dynamic role in cultural organization and citizenship. A parallel goal is to de-link sociological models of cultural labor from narratives of art and culture as something that stands separate from the 'real world' and the economy and exists in precarity. Combining discourse from cultural sociology, performance studies, and economics and grounding it in historical archive, the essay makes a primarily discursive theoretical contribution. Taking North American theatre organizations as the exemplifying starting point, this project positions cultural workers not solely as workers in a professional industry but as active citizen-subjects who are deeply involved in their society’s democratic processes. The resulting discourse can be used to shape more effective labour policies, as well as help art and cultural organizations find more effective organizational structures to engage the arts in the economic, political, and social spheres.

Keywords: arts labour, cultural sociology, national identity, performativity

Procedia PDF Downloads 116
3967 A Coupled Extended-Finite-Discrete Element Method: On the Different Contact Schemes between Continua and Discontinua

Authors: Shervin Khazaeli, Shahab Haj-zamani

Abstract:

Recently, advanced geotechnical engineering problems related to soil movement, particle loss, and modeling of local failure (i.e. discontinua) as well as modeling the in-contact structures (i.e. continua) are of the great interest among researchers. The aim of this research is to meet the requirements with respect to the modeling of the above-mentioned two different domains simultaneously. To this end, a coupled numerical method is introduced based on Discrete Element Method (DEM) and eXtended-Finite Element Method (X-FEM). In the coupled procedure, DEM is employed to capture the interactions and relative movements of soil particles as discontinua, while X-FEM is utilized to model in-contact structures as continua, which may consist of different types of discontinuities. For verification purposes, the new coupled approach is utilized to examine benchmark problems including different contacts between/within continua and discontinua. Results are validated by comparison with those of existing analytical and numerical solutions. This study proves that extended-finite-discrete element method can be used to robustly analyze not only contact problems, but also other types of discontinuities in continua such as (i) crack formations and propagations, (ii) voids and bimaterial interfaces, and (iii) combination of previous cases. In essence, the proposed method can be used vastly in advanced soil-structure interaction problems to investigate the micro and macro behaviour of the surrounding soil and the response of the embedded structure that contains discontinuities.

Keywords: contact problems, discrete element method, extended-finite element method, soil-structure interaction

Procedia PDF Downloads 483
3966 Digital Wellbeing: A Multinational Study and Global Index

Authors: Fahad Al Beyahi, Justin Thomas, Md Mamunur Rashid

Abstract:

Various definitions of digital well-being have emerged in recent years, most of which center on the impacts -beneficial and detrimental- of digital technology on health and well-being (psychological, social, and financial). Other definitions go further, emphasizing the attainment of balance, viewing digital well-being as wholly subjective, the individual’s perception of optimal balance between the benefits and ills associated with online connectivity. Based on this broad conceptualization of digital well-being, we undertook a global survey measuring various dimensions of this emerging construct. The survey was administered across 35 nations and 7 world regions, with 1000 participants within each territory (N= 35000). Along with attitudinal, behavioral, and sociodemographic variables, the survey included measures of depression, anxiety, problematic social media use, gaming disorder, and other relevant metrics. Coupled with nation-level policy audits, these data were used to create a multinational (global) digital well-being index. Nations are ranked based on various dimensions of digital well-being, and predictive models are used to identify resilience and risk factors for problem technology use. In this paper, we will discuss key findings from the survey and the index. This work can inform public policy and shape our responses to the emerging implications of lives increasingly lived online and interconnected with digital technology.

Keywords: technology, health, behavioral addiction, digital wellbeing

Procedia PDF Downloads 60
3965 Artificial Neural Network Modeling and Genetic Algorithm Based Optimization of Hydraulic Design Related to Seepage under Concrete Gravity Dams on Permeable Soils

Authors: Muqdad Al-Juboori, Bithin Datta

Abstract:

Hydraulic structures such as gravity dams are classified as essential structures, and have the vital role in providing strong and safe water resource management. Three major aspects must be considered to achieve an effective design of such a structure: 1) The building cost, 2) safety, and 3) accurate analysis of seepage characteristics. Due to the complexity and non-linearity relationships of the seepage process, many approximation theories have been developed; however, the application of these theories results in noticeable errors. The analytical solution, which includes the difficult conformal mapping procedure, could be applied for a simple and symmetrical problem only. Therefore, the objectives of this paper are to: 1) develop a surrogate model based on numerical simulated data using SEEPW software to approximately simulate seepage process related to a hydraulic structure, 2) develop and solve a linked simulation-optimization model based on the developed surrogate model to describe the seepage occurring under a concrete gravity dam, in order to obtain optimum and safe design at minimum cost. The result shows that the linked simulation-optimization model provides an efficient and optimum design of concrete gravity dams.

Keywords: artificial neural network, concrete gravity dam, genetic algorithm, seepage analysis

Procedia PDF Downloads 212
3964 Approximation of PE-MOCVD to ALD for TiN Concerning Resistivity and Chemical Composition

Authors: D. Geringswald, B. Hintze

Abstract:

The miniaturization of circuits is advancing. During chip manufacturing, structures are filled for example by metal organic chemical vapor deposition (MOCVD). Since this process reaches its limits in case of very high aspect ratios, the use of alternatives such as the atomic layer deposition (ALD) is possible, requiring the extension of existing coating systems. However, it is an unsolved question to what extent MOCVD can achieve results similar as an ALD process. In this context, this work addresses the characterization of a metal organic vapor deposition of titanium nitride. Based on the current state of the art, the film properties coating thickness, sheet resistance, resistivity, stress and chemical composition are considered. The used setting parameters are temperature, plasma gas ratio, plasma power, plasma treatment time, deposition time, deposition pressure, number of cycles and TDMAT flow. The derived process instructions for unstructured wafers and inside a structure with high aspect ratio include lowering the process temperature and increasing the number of cycles, the deposition and the plasma treatment time as well as the plasma gas ratio of hydrogen to nitrogen (H2:N2). In contrast to the current process configuration, the deposited titanium nitride (TiN) layer is more uniform inside the entire test structure. Consequently, this paper provides approaches to employ the MOCVD for structures with increasing aspect ratios.

Keywords: ALD, high aspect ratio, PE-MOCVD, TiN

Procedia PDF Downloads 287
3963 Nondestructive Evaluation of Hidden Delamination in Glass Fiber Composite Using Terahertz Spectroscopy

Authors: Chung-Hyeon Ryu, Do-Hyoung Kim, Hak-Sung Kim

Abstract:

As the use of the composites was increased, the detecting method of hidden damages which have an effect on performance of the composite was important. Terahertz (THz) spectroscopy was assessed as one of the new powerful nondestructive evaluation (NDE) techniques for fiber reinforced composite structures because it has many advantages which can overcome the limitations of conventional NDE techniques such as x-rays or ultrasound. The THz wave offers noninvasive, noncontact and nonionizing methods evaluating composite damages, also it gives a broad range of information about the material properties. In additions, it enables to detect the multiple-delaminations of various nonmetallic materials. In this study, the pulse type THz spectroscopy imaging system was devised and used for detecting and evaluating the hidden delamination in the glass fiber reinforced plastic (GFRP) composite laminates. The interaction between THz and the GFRP composite was analyzed respect to the type of delamination, including their thickness, size and numbers of overlaps among multiple-delaminations in through-thickness direction. Both of transmission and reflection configurations were used for evaluation of hidden delaminations and THz wave propagations through the delaminations were also discussed. From these results, various hidden delaminations inside of the GFRP composite were successfully detected using time-domain THz spectroscopy imaging system and also compared to the results of C-scan inspection. It is expected that THz NDE technique will be widely used to evaluate the reliability of composite structures.

Keywords: terahertz, delamination, glass fiber reinforced plastic composites, terahertz spectroscopy

Procedia PDF Downloads 575
3962 A Comprehensive Review on Structural Properties and Erection Benefits of Large Span Stressed-Arch Steel Truss Industrial Buildings

Authors: Anoush Saadatmehr

Abstract:

Design and build of large clear span structures have always been demanding in the construction industry targeting industrial and commercial buildings around the world. The function of these spectacular structures encompasses distinguished types of building such as aircraft and airship hangars, warehouses, bulk storage buildings, sports and recreation facilities. From an engineering point of view, there are various types of steel structure systems that are often adopted in large-span buildings like conventional trusses, space frames and cable-supported roofs. However, this paper intends to investigate and review an innovative light, economic and quickly erected large span steel structure renowned as “Stressed-Arch,” which has several advantages over the other common types of structures. This patented system integrates the use of cold-formed hollow section steel material with high-strength pre-stressing strands and concrete grout to establish an arch shape truss frame anywhere there is a requirement to construct a cost-effective column-free space for spans within the range of 60m to 180m. In this study and firstly, the main structural properties of the stressed-arch system and its components are discussed technically. These features include nonlinear behavior of truss chords during stress-erection, the effect of erection method on member’s compressive strength, the rigidity of pre-stressed trusses to overcome strict deflection criteria for cases with roof suspended cranes or specialized front doors and more importantly, the prominent lightness of steel structure. Then, the effects of utilizing pre-stressing strands to safeguard a smooth process of installation of main steel members and roof components and cladding are investigated. In conclusion, it is shown that the Stressed-Arch system not only provides an optimized light steel structure up to 30% lighter than its conventional competitors but also streamlines the process of building erection and minimizes the construction time while preventing the risks of working at height.

Keywords: large span structure, pre-stressed steel truss, stressed-arch building, stress-erection, steel structure

Procedia PDF Downloads 133
3961 Application of Ground-Penetrating Radar in Environmental Hazards

Authors: Kambiz Teimour Najad

Abstract:

The basic methodology of GPR involves the use of a transmitting antenna to send electromagnetic waves into the subsurface, which then bounce back to the surface and are detected by a receiving antenna. The transmitter and receiver antennas are typically placed on the ground surface and moved across the area of interest to create a profile of the subsurface. The GPR system consists of a control unit that powers the antennas and records the data, as well as a display unit that shows the results of the survey. The control unit sends a pulse of electromagnetic energy into the ground, which propagates through the soil or rock until it encounters a change in material or structure. When the electromagnetic wave encounters a buried object or structure, some of the energy is reflected back to the surface and detected by the receiving antenna. The GPR data is then processed using specialized software that analyzes the amplitude and travel time of the reflected waves. By interpreting the data, GPR can provide information on the depth, location, and nature of subsurface features and structures. GPR has several advantages over other geophysical survey methods, including its ability to provide high-resolution images of the subsurface and its non-invasive nature, which minimizes disruption to the site. However, the effectiveness of GPR depends on several factors, including the type of soil or rock, the depth of the features being investigated, and the frequency of the electromagnetic waves used. In environmental hazard assessments, GPR can be used to detect buried structures, such as underground storage tanks, pipelines, or utilities, which may pose a risk of contamination to the surrounding soil or groundwater. GPR can also be used to assess soil stability by identifying areas of subsurface voids or sinkholes, which can lead to the collapse of the surface. Additionally, GPR can be used to map the extent and movement of groundwater contamination, which is critical in designing effective remediation strategies. the methodology of GPR in environmental hazard assessments involves the use of electromagnetic waves to create high of the subsurface, which are then analyzed to provide information on the depth, location, and nature of subsurface features and structures. This information is critical in identifying and mitigating environmental hazards, and the non-invasive nature of GPR makes it a valuable tool in this field.

Keywords: GPR, hazard, landslide, rock fall, contamination

Procedia PDF Downloads 65
3960 Effect of Mineral Admixtures on Transport Properties of SCCs Composites: Influence of Mechanical Damage

Authors: Davood Niknezhad, Siham Kamali-Bernard

Abstract:

Concrete durability is one of the most important considerations in the design of new structures in aggressive environments. It is now common knowledge that the transport properties of a concrete, i.e; permeability and chloride diffusion coefficient are important indicators of its durability. The development of microcracking in concrete structures leads to significant permeability and to durability problems as a result. The main objective of the study presented in this paper is to investigate the influence of mineral admixtures and impact of compressive cracks by mechanical uniaxial compression up to 80% of the ultimate strength on transport properties of self-compacting concrete (SCC) manufactured with the eco-materials (metakaolin, fly ash, slag HF). The chloride resistance and binding capacity of the different SCCs produced with the different admixtures in damaged and undamaged state are measured using a chloride migration test accelerated by an external applied electrical field. Intrinsic permeability is measured using the helium gas and one permeameter at constant load. Klinkenberg approach is used for the determination of the intrinsic permeability. Based on the findings of this study, the use of mineral admixtures increases the resistance of SCC to chloride ingress and reduces their permeability. From the impact of mechanical damage, we show that the Gas permeability is more sensitive of concrete damaged than chloride diffusion. A correlation is obtained between the intrinsic permeability and chloride migration coefficient according to the damage variable for the four studied mixtures.

Keywords: SCC, concrete durability, transport properties, gas permeability, chloride diffusion, mechanical damage, mineral admixtures

Procedia PDF Downloads 213
3959 Aspects on the Problems of Road Asset Management and Maintenance in Albania

Authors: Diana Bardhi

Abstract:

Road safety is an essential part of the economic and social development of any industrialized country. Decisions to maintain and improve the reliability, functionality of infrastructure structures can only be achieved through integrated road life cycle planning and management. There has always been a tendency to review road maintenance strategies, but there is still no serious and reliable administration due to not only insufficient funds but also problems in the proper reorganization of this system. The safety and performance of the road system depend on the ongoing activity of road maintenance management. For it to be effective, it is necessary to intervene before the degradation has caused irreparable damage or damage with a high economic cost of repairs. Investments in road infrastructure during 2006-2014 show that the life of these projects presents problems related to the maintenance and management of life cycle performance in a wide range of constituent elements. Maintenance planning includes various problems that depend on the degree of degradation of asphalt layers, the degree of damage to road structures (bridges, tunnels, culverts, and the economic planning of resources for their repair). The purpose of this study is first to provide a brief overview of the problems in the field of maintenance and life cycle management of road infrastructure investments, proposing ways to reorganize the sector of administration and maintenance of ongoing roads and secondly testing and evaluating the work and nature of standards of different types of road infrastructure projects, through a methodology consisting of a) development, b) data collection, and c) analysis.

Keywords: infrastructure, maintenance, depreciation, efficiency

Procedia PDF Downloads 139
3958 Stability Analysis of Rock Tunnel Subjected to Internal Blast Loading

Authors: Mohammad Zaid, Md. Rehan Sadique

Abstract:

Underground structures are an integral part of urban infrastructures. Tunnels are being used for the transportation of humans and goods from distance to distance. Terrorist attacks on underground structures such as tunnels have resulted in the improvement of design methodologies of tunnels. The design of underground tunnels must include anti-terror design parameters. The study has been carried out to analyse the rock tunnel when subjected to internal blast loading. The finite element analysis has been carried out for 30m by 30m of the cross-section of the tunnel and 35m length of extrusion of the rock tunnel model. The effect of tunnel diameter and overburden depth of tunnel has been studied under internal blast loading. Four different diameters of tunnel considered are 5m, 6m, 7m, and 8m, and four different overburden depth of tunnel considered are 5m, 7.5m, 10m, and 12.5m. The mohr-coulomb constitutive material model has been considered for the Quartzite rock. A concrete damage plasticity model has been adopted for concrete tunnel lining. For the trinitrotoluene (TNT) Jones-Wilkens-Lee (JWL) material model has been considered. Coupled-Eulerian-Lagrangian (CEL) approach for blast analysis has been considered in the present study. The present study concludes that a shallow tunnel having smaller diameter needs more attention in comparison to blast resistant design of deep tunnel having a larger diameter. Further, in the case of shallow tunnels, more bulging has been observed, and a more substantial zone of rock has been affected by internal blast loading.

Keywords: finite element method, blast, rock, tunnel, CEL, JWL

Procedia PDF Downloads 130
3957 Internet, Fake News, and Democracy: The Case of Kosovo

Authors: Agrinë Baraku

Abstract:

This paper focuses on the convergence of the internet, fake news, and democracy. This paper will examine the convergence of these concepts, the tenets of democracy which are affected by the ever-increasing exposure to fake news, and whether the impact strengthens or can further weaken countries with fragile democracies. To demonstrate the convergence and the impact and to further the discussion about this topic, the case of Kosovo is explored. Its position in the Western Balkans makes it even more susceptible to the pressure stemming from geopolitical interests, which intersect with the generation of fake news by different international actors. Domestically, through data generated by Kantar (Index) Kosova Longitudinal Study on Media Measurement Survey (MMS), which focused on media viewership, the trend among Kosovar citizens is traced and then inserted into a bigger landscape, which is compounded by tenuous circumstances and challenges that Kosovo faces. Attention will be paid to what this can tell about where Kosovo currently is and the possibilities of what can be done regarding the phenomenon that is taking place.

Keywords: democracy, disinformation, internet, social media, fake news

Procedia PDF Downloads 77
3956 Towards Sustainable Concrete: Maturity Method to Evaluate the Effect of Curing Conditions on the Strength Development in Concrete Structures under Kuwait Environmental Conditions

Authors: F. Al-Fahad, J. Chakkamalayath, A. Al-Aibani

Abstract:

Conventional methods of determination of concrete strength under controlled laboratory conditions will not accurately represent the actual strength of concrete developed under site curing conditions. This difference in strength measurement will be more in the extreme environment in Kuwait as it is characterized by hot marine environment with normal temperature in summer exceeding 50°C accompanied by dry wind in desert areas and salt laden wind on marine and on shore areas. Therefore, it is required to have test methods to measure the in-place properties of concrete for quality assurance and for the development of durable concrete structures. The maturity method, which defines the strength of a given concrete mix as a function of its age and temperature history, is an approach for quality control for the production of sustainable and durable concrete structures. The unique harsh environmental conditions in Kuwait make it impractical to adopt experiences and empirical equations developed from the maturity methods in other countries. Concrete curing, especially in the early age plays an important role in developing and improving the strength of the structure. This paper investigates the use of maturity method to assess the effectiveness of three different types of curing methods on the compressive and flexural strength development of one high strength concrete mix of 60 MPa produced with silica fume. This maturity approach was used to predict accurately, the concrete compressive and flexural strength at later ages under different curing conditions. Maturity curves were developed for compressive and flexure strengths for a commonly used concrete mix in Kuwait, which was cured using three different curing conditions, including water curing, external spray coating and the use of internal curing compound during concrete mixing. It was observed that the maturity curve developed for the same mix depends on the type of curing conditions. It can be used to predict the concrete strength under different exposure and curing conditions. This study showed that concrete curing with external spray curing method cannot be recommended to use as it failed to aid concrete in reaching accepted values of strength, especially for flexural strength. Using internal curing compound lead to accepted levels of strength when compared with water cuing. Utilization of the developed maturity curves will help contactors and engineers to determine the in-place concrete strength at any time, and under different curing conditions. This will help in deciding the appropriate time to remove the formwork. The reduction in construction time and cost has positive impacts towards sustainable construction.

Keywords: curing, durability, maturity, strength

Procedia PDF Downloads 292
3955 Multi-Scale Damage Modelling for Microstructure Dependent Short Fiber Reinforced Composite Structure Design

Authors: Joseph Fitoussi, Mohammadali Shirinbayan, Abbas Tcharkhtchi

Abstract:

Due to material flow during processing, short fiber reinforced composites structures obtained by injection or compression molding generally present strong spatial microstructure variation. On the other hand, quasi-static, dynamic, and fatigue behavior of these materials are highly dependent on microstructure parameters such as fiber orientation distribution. Indeed, because of complex damage mechanisms, SFRC structures design is a key challenge for safety and reliability. In this paper, we propose a micromechanical model allowing prediction of damage behavior of real structures as a function of microstructure spatial distribution. To this aim, a statistical damage criterion including strain rate and fatigue effect at the local scale is introduced into a Mori and Tanaka model. A critical local damage state is identified, allowing fatigue life prediction. Moreover, the multi-scale model is coupled with an experimental intrinsic link between damage under monotonic loading and fatigue life in order to build an abacus giving Tsai-Wu failure criterion parameters as a function of microstructure and targeted fatigue life. On the other hand, the micromechanical damage model gives access to the evolution of the anisotropic stiffness tensor of SFRC submitted to complex thermomechanical loading, including quasi-static, dynamic, and cyclic loading with temperature and amplitude variations. Then, the latter is used to fill out microstructure dependent material cards in finite element analysis for design optimization in the case of complex loading history. The proposed methodology is illustrated in the case of a real automotive component made of sheet molding compound (PSA 3008 tailgate). The obtained results emphasize how the proposed micromechanical methodology opens a new path for the automotive industry to lighten vehicle bodies and thereby save energy and reduce gas emission.

Keywords: short fiber reinforced composite, structural design, damage, micromechanical modelling, fatigue, strain rate effect

Procedia PDF Downloads 91
3954 Corrosion Resistance Evaluation of Reinforcing Bars: A Comparative Study of Fusion Bonded Epoxy Coated, Cement Polymer Composite Coated and Dual Zinc Epoxy Coated Rebar for Application in Reinforced Concrete Structures

Authors: Harshit Agrawal, Salman Muhammad

Abstract:

Degradation to reinforced concrete (RC), primarily due to corrosion of embedded reinforcement, has been a major cause of concern worldwide. Among several ways to control corrosion, the use of coated reinforcement has gained significant interest in field applications. However, the choice of proper coating material and the effect of damage over coating are yet to be addressed for effective application of coated reinforcements. The present study aims to investigate and compare the performance of three different types of coated reinforcements —Fusion-Bonded Epoxy Coating (FBEC), Cement Polymer Composite Coating (CPCC), and Dual Zinc-Epoxy Coating (DZEC) —in concrete structures. The aim is to assess their corrosion resistance, durability, and overall effectiveness as coated reinforcement materials both in undamaged and simulated damaged conditions. Through accelerated corrosion tests, electrochemical analysis, and exposure to aggressive marine environments, the study evaluates the long-term performance of each coating system. This research serves as a crucial guide for engineers and construction professionals in selecting the most suitable corrosion protection for reinforced concrete, thereby enhancing the durability and sustainability of infrastructure.

Keywords: corrosion, reinforced concrete, coated reinforcement, seawater exposure, electrochemical analysis, service life, corrosion prevention

Procedia PDF Downloads 61
3953 Embedment Design Concept of Signature Tower in Chennai

Authors: M. Gobinath, S. Balaji

Abstract:

Assumptions in model inputs: Grade of concrete=40 N/mm2 (for slab), Grade of concrete=40 N/mm2 (for shear wall), Grade of Structural steel (plate girder)=350 N/mm2 (yield strength), Ultimate strength of structural steel=490 N/mm2, Grade of rebar=500 N/mm2 (yield strength), Applied Load=1716 kN (un-factored). Following assumptions are made for the mathematical modelling of RCC with steel embedment: (1) The bond between the structural steel and concrete is neglected. (2) The stiffener is provided with shear studs to transfer the shear force. Hence nodal connectivity is established between solid nodes (concrete) and shell elements (stiffener) at those locations. (3) As the end reinforcements transfer either tension/compression, it is modeled as line element and connected to solid nodes. (4) In order to capture the bearing of bottom flange on to the concrete, the line element of plan size of solid equal to the cross section of line elements is connected between solid and shell elements below for bottom flange and above for top flange. (5) As the concrete cannot resist tension at the interface (i.e., between structural steel and RCC), the tensile stiffness is assigned as zero and only compressive stiffness is enabled to take. Hence, non-linear static analysis option is invoked.

Keywords: structure, construction, signature tower, embedment design concept

Procedia PDF Downloads 284
3952 Changing the Landscape of Fungal Genomics: New Trends

Authors: Igor V. Grigoriev

Abstract:

Understanding of biological processes encoded in fungi is instrumental in addressing future food, feed, and energy demands of the growing human population. Genomics is a powerful and quickly evolving tool to understand these processes. The Fungal Genomics Program of the US Department of Energy Joint Genome Institute (JGI) partners with researchers around the world to explore fungi in several large scale genomics projects, changing the fungal genomics landscape. The key trends of these changes include: (i) rapidly increasing scale of sequencing and analysis, (ii) developing approaches to go beyond culturable fungi and explore fungal ‘dark matter,’ or unculturables, and (iii) functional genomics and multi-omics data integration. Power of comparative genomics has been recently demonstrated in several JGI projects targeting mycorrhizae, plant pathogens, wood decay fungi, and sugar fermenting yeasts. The largest JGI project ‘1000 Fungal Genomes’ aims at exploring the diversity across the Fungal Tree of Life in order to better understand fungal evolution and to build a catalogue of genes, enzymes, and pathways for biotechnological applications. At this point, at least 65% of over 700 known families have one or more reference genomes sequenced, enabling metagenomics studies of microbial communities and their interactions with plants. For many of the remaining families no representative species are available from culture collections. To sequence genomes of unculturable fungi two approaches have been developed: (a) sequencing DNA from fruiting bodies of ‘macro’ and (b) single cell genomics using fungal spores. The latter has been tested using zoospores from the early diverging fungi and resulted in several near-complete genomes from underexplored branches of the Fungal Tree, including the first genomes of Zoopagomycotina. Genome sequence serves as a reference for transcriptomics studies, the first step towards functional genomics. In the JGI fungal mini-ENCODE project transcriptomes of the model fungus Neurospora crassa grown on a spectrum of carbon sources have been collected to build regulatory gene networks. Epigenomics is another tool to understand gene regulation and recently introduced single molecule sequencing platforms not only provide better genome assemblies but can also detect DNA modifications. For example, 6mC methylome was surveyed across many diverse fungi and the highest among Eukaryota levels of 6mC methylation has been reported. Finally, data production at such scale requires data integration to enable efficient data analysis. Over 700 fungal genomes and other -omes have been integrated in JGI MycoCosm portal and equipped with comparative genomics tools to enable researchers addressing a broad spectrum of biological questions and applications for bioenergy and biotechnology.

Keywords: fungal genomics, single cell genomics, DNA methylation, comparative genomics

Procedia PDF Downloads 190
3951 Instance Segmentation of Wildfire Smoke Plumes using Mask-RCNN

Authors: Jamison Duckworth, Shankarachary Ragi

Abstract:

Detection and segmentation of wildfire smoke plumes from remote sensing imagery are being pursued as a solution for early fire detection and response. Smoke plume detection can be automated and made robust by the application of artificial intelligence methods. Specifically, in this study, the deep learning approach Mask Region-based Convolutional Neural Network (RCNN) is being proposed to learn smoke patterns across different spectral bands. This method is proposed to separate the smoke regions from the background and return masks placed over the smoke plumes. Multispectral data was acquired using NASA’s Earthdata and WorldView and services and satellite imagery. Due to the use of multispectral bands along with the three visual bands, we show that Mask R-CNN can be applied to distinguish smoke plumes from clouds and other landscape features that resemble smoke.

Keywords: deep learning, mask-RCNN, smoke plumes, spectral bands

Procedia PDF Downloads 107
3950 Reducing Friction Associated with Commercial Use of Biomimetics While Increasing the Potential for Using Eco Materials and Design in Industry

Authors: John P. Ulhøi

Abstract:

Firms are faced with pressure to stay innovative and entrepreneurial while at the same time leaving lighter ecological footprints. Traditionally inspiration for new product development (NPD) has come from the creative in-house staff and from the marketplace. Often NPD offered by this approach has proven to be (far from) optimal for its purpose or highly (resource and energy) efficient. More recently, a bio-inspired NPD approach has surfaced under the banner of biomimetics. Biomimetics refers to inspiration from and translations of designs, systems, processes, and or specific properties that exist in nature. The principles and structures working in nature have evolved over a long period of time enable them to be optimized for the purpose and resource and energy-efficient. These characteristics reflect the raison d'être behind the field of biomimetics. While biological expertise is required to understand and explain such natural and biological principles and structures, engineers are needed to translate biological design and processes into synthetic applications. It can, therefore, hardly be surprising, biomimetics long has gained a solid foothold in both biology and engineering. The commercial adoption of biomimetic applications in new production development (NDP) in industry, however, does not quite reflect a similar growth. Differently put, this situation suggests that something is missing in the biomimetic-NPD-equation, thus acting as a brake towards the wider commercial application of biomimetics and thus the use of eco-materials and design in the industry. This paper closes some of that gap. Before concluding, avenues for future research and implications for practice will be briefly sketched out.

Keywords: biomimetics, eco-materials, NPD, commercialization

Procedia PDF Downloads 146
3949 Numerical and Experimental Investigation of Airflow Inside Car Cabin

Authors: Mokhtar Djeddou, Amine Mehel, Georges Fokoua, Anne Tanière, Patrick Chevrier

Abstract:

Commuters' exposure to air pollution, particularly to particle matter, inside vehicles is a significant health issue. Assessing particles concentrations and characterizing their distribution is an important first step to understand and propose solutions to improve car cabin air quality. It is known that particles dynamics is intimately driven by particles-turbulence interactions. In order to analyze and model pollutants distribution inside the car the cabin, it is crucialto examine first the single-phase flow topology and turbulence characteristics. Within this context, Computational Fluid Dynamics (CFD) simulations were conducted to model airflow inside a full-scale car cabin using Reynolds Averaged Navier-Stokes (RANS)approach combined with the first order Realizable k- εmodel to close the RANS equations. To validate the numerical model, a campaign of velocity field measurements at different locations in the front and back of the car cabin has been carried out using hot-wire anemometry technique. Comparison between numerical and experimental results shows a good agreement of velocity profiles. Additionally, visualization of streamlines shows the formation of jet flow developing out of the dashboard air vents and the formation of large vortex structures, particularly in the back seats compartment. These vortex structures could play a key role in the accumulation and clustering of particles in a turbulent flow

Keywords: car cabin, CFD, hot wire anemometry, vortical flow

Procedia PDF Downloads 267
3948 Potential of the Bri and the Indo-Pacific in South Asia: A Comparative Case Study

Authors: Nahian Salsabeel, Faria Leera

Abstract:

—“Whoever controls the Indian Ocean, dominates Asia. This ocean is the key to the seven seas. In the 21st century, the destiny of the world will be decided on its waters” -Alfred Mahan South Asia is increasingly becoming a hub for international politics. Numerous ventures are taking place in the strategic region. Of them, the most prominent is the Belt and Road Initiative (BRI). Originating from the concept of ancient Silk Route, the Chinese Xi Jin Ping regime looks to reestablish the vast connectivity project to connect the world through infrastructure and trade. On the other hand, the US, teamed up with India, Australia and Japan, thereby forming the Quad, have launched their own foreign policy, the Indo-Pacific Strategy. The ambitious 21st century initiative for the development of maritime trade, security and governance focuses critical importance to the Indo-Pacific region, especially to South Asia. Against the backdrop of contemporary political scenario, both the Quad and China airs to establish their own footprint across the region through respective mega projects, the Indo-Pacific Strategy and the BRI. This research employs a comparative case study research method, using a secondary research design. The paper looks at the variety of opportunities and challenges posed by the BRI and the Indo Pacific, and gives the comparative study on both ends.

Keywords: BRI, Foreign Policy, Indo-Pacific, South Asia

Procedia PDF Downloads 143
3947 Cities Under Pressure: Unraveling Urban Resilience Challenges

Authors: Sherine S. Aly, Fahd A. Hemeida, Mohamed A. Elshamy

Abstract:

In the face of rapid urbanization and the myriad challenges posed by climate change, population growth, and socio-economic disparities, fostering urban resilience has become paramount. This abstract offers a comprehensive overview of the study on "Urban Resilience Challenges," exploring the background, methodologies, major findings, and concluding insights. The paper unveils a spectrum of challenges encompassing environmental stressors and deep-seated socio-economic issues, such as unequal access to resources and opportunities. Emphasizing their interconnected nature, the study underscores the imperative for holistic and integrated approaches to urban resilience, recognizing the intricate web of factors shaping the urban landscape. Urbanization has witnessed an unprecedented surge, transforming cities into dynamic and complex entities. With this growth, however, comes an array of challenges that threaten the sustainability and resilience of urban environments. This study seeks to unravel the multifaceted urban resilience challenges, exploring their origins and implications for contemporary cities. Cities serve as hubs of economic, social, and cultural activities, attracting diverse populations seeking opportunities and a higher quality of life. However, the urban fabric is increasingly strained by climate-related events, infrastructure vulnerabilities, and social inequalities. Understanding the nuances of these challenges is crucial for developing strategies that enhance urban resilience and ensure the longevity of cities as vibrant and adaptive entities. This paper endeavors to discern strategic guidelines for enhancing urban resilience amidst the dynamic challenges posed by rapid urbanization. The study aims to distill actionable insights that can inform strategic approaches. Guiding the formulation of effective strategies to fortify cities against multifaceted pressures. The study employs a multifaceted approach to dissect urban resilience challenges. A qualitative method will be employed, including comprehensive literature reviews and data analysis of urban vulnerabilities that provided valuable insights into the lived experiences of resilience challenges in diverse urban settings. In conclusion, this study underscores the urgency of addressing urban resilience challenges to ensure the sustained vitality of cities worldwide. The interconnected nature of these challenges necessitates a paradigm shift in urban planning and governance. By adopting holistic strategies that integrate environmental, social, and economic considerations, cities can navigate the complexities of the 21st century. The findings provide a roadmap for policymakers, planners, and communities to collaboratively forge resilient urban futures that withstand the challenges of an ever-evolving urban landscape.

Keywords: resilient principles, risk management, sustainable cities, urban resilience

Procedia PDF Downloads 43
3946 Work Related Outcomes of Perceived Authentic Leadership: Moderating Role of Organizational Structures

Authors: Aisha Zubair, Anila Kamal

Abstract:

Leadership styles and practices greatly influence the organizational effectiveness and productivity. It also plays an important role in employees’ experiences of positive emotions at workplace and creative work behaviors. Authentic leadership as a newly emerging concept has been found as a significant predictor of various desirable work related outcomes. However, leadership practices and its work related outcomes, to a great extent, are determined by the very nature of the organizational structures (tall and flat). Tall organizations are characterized by multiple hierarchical layers with predominant vertical communication patterns, and narrow span of control; while flat organizations are featured by few layers of management employing both horizontal and vertical communication styles, and wide span of control. Therefore, the present study was undertaken to determine the work related outcomes of perceived authentic leadership; that is work related flow and creative work behavior among employees of flat and tall organizations. Moreover, it was also intended to determine the moderating role of organizational structure (flat and tall) in the relationship between perceived authentic leadership with work related flow and creative work behavior. In this regard, two types of companies have been considered; that is, banks as a form of tall organizational structure with multiple hierarchical structures while software companies have been considered as flat organizations with minimal layers of management. Respondents (N = 1180) were full time regular employees of marketing departments of banks (600) and software companies (580) including both men and women with age range of 22-52 years (M = 33.24; SD = 7.81). Confirmatory Factor Analysis yielded factor structures of measures of work related flow and creative work behavior in accordance to the theoretical models. However, model of authentic leadership exhibited variation in terms of two items which were not included in the final measure of the perceived authentic leadership. Results showed that perceived authentic leadership was positively associated with work related flow and creative work behavior. Likewise, work related flow was positively aligned with creative work behavior. Furthermore, type of organizational structure significantly moderated the relationship of perceived authentic leadership with work related flow and creative work behavior. Results of independent sample t-test showed that employees working in flat organization reflected better perceptions of authentic leadership; higher work related flow and elevated levels of creative work behavior as compared to those working in tall organizations. It was also found that employees with extended job experience and more job duration in the same organization displayed better perceptions of authentic leadership, reported more work related flow and augmented levels of creative work behavior. Findings of the present study distinctively highlighted the similarities as well as differences in the interactions of major constructs which function differentially in the context of tall (banks) and flat (software companies) organizations. Implications of the present study for employees and management as well as future recommendations were also discussed.

Keywords: creative work behavior, organizational structure, perceived authentic leadership, work related flow

Procedia PDF Downloads 377
3945 Optimization of a Hybrid PV-Diesel Minigrid System: A Case Study of Vimtim-Mubi, Nigeria

Authors: Julius Agaka Yusufu, Tsutomu Dei, Hanif Ibrahim Awal

Abstract:

This study undertakes the development of an optimal PV-diesel hybrid power system tailored to the specific energy landscape of Vimtim Mubi, Nigeria, utilizing real-world wind speed, solar radiation, and diesel cost data. Employing HOMER simulation, the research meticulously assesses the technical and financial viability of this hybrid configuration. Additionally, a rigorous performance comparison is conducted between the PV-diesel system and the conventional grid-connected alternative, offering crucial insights into the potential advantages and economic feasibility of adopting hybrid renewable energy solutions in regions grappling with energy access and reliability challenges, with implications for sustainable electrification efforts in similar communities worldwide.

Keywords: Vimtim-Nigeria, Homer, renewable energy, PV-diesel hybrid system

Procedia PDF Downloads 67
3944 Effect of Fill Material Density under Structures on Ground Motion Characteristics Due to Earthquake

Authors: Ahmed T. Farid, Khaled Z. Soliman

Abstract:

Due to limited areas and excessive cost of land for projects, backfilling process has become necessary. Also, backfilling will be done to overcome the un-leveling depths or raising levels of site construction, especially near the sea region. Therefore, backfilling soil materials used under the foundation of structures should be investigated regarding its effect on ground motion characteristics, especially at regions subjected to earthquakes. In this research, 60-meter thickness of sandy fill material was used above a fixed 240-meter of natural clayey soil underlying by rock formation to predict the modified ground motion characteristics effect at the foundation level. Comparison between the effect of using three different situations of fill material compaction on the recorded earthquake is studied, i.e. peak ground acceleration, time history, and spectra acceleration values. The three different densities of the compacted fill material used in the study were very loose, medium dense and very dense sand deposits, respectively. Shake computer program was used to perform this study. Strong earthquake records, with Peak Ground Acceleration (PGA) of 0.35 g, were used in the analysis. It was found that, higher compaction of fill material thickness has a significant effect on eliminating the earthquake ground motion properties at surface layer of fill material, near foundation level. It is recommended to consider the fill material characteristics in the design of foundations subjected to seismic motions. Future studies should be analyzed for different fill and natural soil deposits for different seismic conditions.

Keywords: acceleration, backfill, earthquake, soil, PGA

Procedia PDF Downloads 363
3943 Denoising Transient Electromagnetic Data

Authors: Lingerew Nebere Kassie, Ping-Yu Chang, Hsin-Hua Huang, , Chaw-Son Chen

Abstract:

Transient electromagnetic (TEM) data plays a crucial role in hydrogeological and environmental applications, providing valuable insights into geological structures and resistivity variations. However, the presence of noise often hinders the interpretation and reliability of these data. Our study addresses this issue by utilizing a FASTSNAP system for the TEM survey, which operates at different modes (low, medium, and high) with continuous adjustments to discretization, gain, and current. We employ a denoising approach that processes the raw data obtained from each acquisition mode to improve signal quality and enhance data reliability. We use a signal-averaging technique for each mode, increasing the signal-to-noise ratio. Additionally, we utilize wavelet transform to suppress noise further while preserving the integrity of the underlying signals. This approach significantly improves the data quality, notably suppressing severe noise at late times. The resulting denoised data exhibits a substantially improved signal-to-noise ratio, leading to increased accuracy in parameter estimation. By effectively denoising TEM data, our study contributes to a more reliable interpretation and analysis of underground structures. Moreover, the proposed denoising approach can be seamlessly integrated into existing ground-based TEM data processing workflows, facilitating the extraction of meaningful information from noisy measurements and enhancing the overall quality and reliability of the acquired data.

Keywords: data quality, signal averaging, transient electromagnetic, wavelet transform

Procedia PDF Downloads 73
3942 Study of Land Use Land Cover Change of Bhimbetka with Temporal Satellite Data and Information Systems

Authors: Pranita Shivankar, Devashree Hardas, Prabodhachandra Deshmukh, Arun Suryavanshi

Abstract:

Bhimbetka Rock Shelters is the UNESCO World Heritage Site located about 45 kilometers south of Bhopal in the state of Madhya Pradesh, India. Rapid changes in land use land cover (LULC) adversely affect the environment. In recent past, significant changes are found in the cultural landscape over a period of time. The objective of the paper was to study the changes in land use land cover (LULC) of Bhimbetka and its peripheral region. For this purpose, the supervised classification was carried out by using satellite images of Landsat and IRS LISS III for the year 2000 and 2013. Use of remote sensing in combination with geographic information system is one of the effective information technology tools to generate land use land cover (LULC) change information.

Keywords: IRS LISS III, Landsat, LULC, UNESCO, World Heritage Site

Procedia PDF Downloads 341
3941 The Usefulness and Future of Hearing Aids Technologies and Their Impact on Hearing

Authors: Amirreza Razzaghipour Sorkhab

Abstract:

Hearing loss is one of the greatest common chronic health situations of older people. Hearing aids are the common treatment, and they recover the quality of life in older adults. Even so, comparatively few older adults with simple, mild to moderate, adult-onset, sensorineural hearing loss use hearing aids. It shouldn’t be expected that more expensive hearing aids always produce better outcomes. Given the importance of quality pledge, approaches of quantifying hearing aid fitting achievement are needed. Studies showed an important reduction in handicap following 3 weeks of hearing aid use, signifying the feasibility of using the Hearing Hindrance Inventory for the Elderly as an outcome measure for hearing aid success after a brief interval of hearing aid use. The results showed important development of the quality of life after three months of using a hearing aid in all members and improvement of their most important problems, i.e., the communication and exchange of data. Hearing loss can impair the conversation of information and so decreases the quality of life. Hearing aids have progressivemeaningfully over the past decade, chiefly due to the growing of digital technology. The next decade should see an even greater number of innovations to hearing aid technology. Development in digital hearing aids will be driven by investigate advances in the next fields such as wireless technology, hearing science, and cognitive scienceMoreover, emerging trends such as connectivity and individuation will also drive new technology. We hope that the advancement of technology will be enough to meet the needs of people with hearing aids.

Keywords: hearing loss, hearing aid, hearing aid technology, health

Procedia PDF Downloads 86