Search results for: granulated activated carbon
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3593

Search results for: granulated activated carbon

2153 [Keynote Talk]: Morphological Analysis of Continuous Graphene Oxide Fibers Incorporated with Carbon Nanotube and MnCl₂

Authors: Nuray Ucar, Pelin Altay, Ilkay Ozsev Yuksek

Abstract:

Graphene oxide fibers have recently received increasing attention due to their excellent properties such as high specific surface area, high mechanical strength, good thermal properties and high electrical conductivity. They have shown notable potential in various applications including batteries, sensors, filtration and separation and wearable electronics. Carbon nanotubes (CNTs) have unique structural, mechanical, and electrical properties and can be used together with graphene oxide fibers for several application areas such as lithium ion batteries, wearable electronics, etc. Metals salts that can be converted into metal ions and metal oxide can be also used for several application areas such as battery, purification natural gas, filtration, absorption. This study investigates the effects of CNT and metal complex compounds (MnCl₂, metal salts) on the morphological structure of graphene oxide fibers. The graphene oxide dispersion was manufactured by modified Hummers method, and continuous graphene oxide fibers were produced with wet spinning. The CNT and MnCl₂ were incorporated into the coagulation baths during wet spinning process. Produced composite continuous fibers were analyzed with SEM, SEM-EDS and AFM microscopies and as spun fiber counts were measured.

Keywords: continuous graphene oxide fiber, Hummers' method, CNT, MnCl₂

Procedia PDF Downloads 157
2152 Transition Metal Carbodiimide vs. Spinel Matrices for Photocatalytic Water Oxidation

Authors: Karla Lienau, Rafael Müller, René Moré, Debora Ressnig, Dan Cook, Richard Walton, Greta R. Patzke

Abstract:

The increasing demand for renewable energy sources and storable fuels underscores the high potential of artificial photosynthesis. The four electron transfer process of water oxidation remains the bottleneck of water splitting, so that special emphasis is placed on the development of economic, stable and efficient water oxidation catalysts (WOCs). Our investigations introduced cobalt carbodiimide CoNCN and its transition metal analogues as WOC types, and further studies are focused on the interaction of different transition metals in the convenient all-nitrogen/carbon matrix. This provides further insights into the nature of the ‘true catalyst’ for cobalt centers in this non-oxide environment. Water oxidation activity is evaluated with complementary methods, namely photocatalytically using a Ru-dye sensitized standard setup as well as electrocatalytically, via immobilization of the WOCs on glassy carbon electrodes. To further explore the tuning potential of transition metal combinations, complementary investigations were carried out in oxidic spinel WOC matrices with more versatile host options than the carbodiimide framework. The influence of the preparative history on the WOC performance was evaluated with different synthetic methods (e.g. hydrothermally or microwave assisted). Moreover, the growth mechanism of nanoscale Co3O4-spinel as a benchmark WOC was investigated with in-situ PXRD techniques.

Keywords: carbodiimide, photocatalysis, spinels, water oxidation

Procedia PDF Downloads 270
2151 An Electrochemical Study on Ethanol Oxidation with Pt/Pd Composite Electrodes in Sodium Hydroxide Solution

Authors: Yu-Chen Luo, Wan-Tzu Yen, I-Ping Liu, Po-Hsuan Yeh, Yuh-Lang Lee

Abstract:

The use of a Pt electrode leads to high catalytic efficiency in the ethanol electro-oxidation. However, the carbon monoxide (CO) released in the reaction will poison the Pt surfaces, lowering the electrocatalytic activity. In this study, composite electrodes are prepared to overcome the poisoning issue, and the related electro-oxidation behaviors are studied by surface-enhanced infrared absorption spectroscopy (SEIRAS) and cyclic voltammetry (CV). An electroless plating method is utilized to deposit Pt catalytic layers on the Pd film-coated FTO substrates. According to the SEIRAS spectra, the carbon dioxide signal of the Pt/Pd composite electrode is larger than that of the Pt one, whereas the CO signal of the composite electrode is relatively smaller. This result suggests that the studied Pt/Pd electrode has a better ability against CO poisoning. The CV analyses are conducted in alkaline environments, and current densities related to the ethanol oxidation in the forward scan (If) and to the CO poisoning in the backward scan (Ib) are measured. A higher ratio of If to Ib (If/Ib) usually represents a better ability against the poisoning effect. The If/Ib values are 2.53 and 2.07 for the Pt and Pt/Pd electrodes, respectively, which is possibly attributed to the increasing ability of CO adsorption of Pt electrode. Despite the lower If/Ib, the Pt/Pd composite electrode shows a higher ethanol oxidation performance in the alkaline system than the Pt does. Furthermore, its stability is also superior.

Keywords: cyclic voltammogram, electroless deposition, ethanol electro-oxidation, surface-enhanced infrared absorption spectroscopy

Procedia PDF Downloads 105
2150 A Low-Cost Dye Solar Cells Based on Ordinary Glass as Substrates

Authors: Sangmo Jon, Ganghyok Kim, Kwanghyok Jong, Ilnam Jo, Hyangsun Kim, Kukhyon Pae, GyeChol Sin

Abstract:

The back contact dye solar cells (BCDSCs), in which the transparent conductive oxide (TCO) is omitted, have the potential to use intact low-cost general substrates such as glass, metal foil, and papers. Herein, we introduce a facile manufacturing method of a Ti back contact electrode for the BCDSCs. We found that the polylinkers such as poly(butyl titanate) have a strong binding property to make Ti particles connect with one another. A porous Ti film, which consists of Ti particles of ≤10㎛ size connected by a small amount of polylinkers, has an excellent low sheet resistance of 10 ohm sq⁻¹ for an efficient electron collection for DSCs. This Ti back contact electrode can be prepared by using a facile printing method under normal ambient conditions. Conjugating the new back contact electrode technology with the traditional monolithic structure using the carbon counter electrode, we fabricated all TCO-less DSCs. These four-layer structured DSCs consist of a dye-adsorbed nanocrystalline TiO₂ film on a glass substrate, a porous Ti back contact layer, a ZrO₂ spacer layer, and a carbon counter electrode in a layered structure. Under AM 1.5G and 100mWcm⁻² simulated sunlight illumination, the four-layer structured DSCs with N719 dyes and I⁻/I₃⁻ redox electrolytes achieved PCEs up to 5.21%.

Keywords: dye solar cells, TCO-less, back contact, printing, porous Ti film

Procedia PDF Downloads 56
2149 Multifunctional Janus Microbots for Intracellular Delivery of Therapeutic Agents

Authors: Shilpee Jain, Sachin Latiyan, Kaushik Suneet

Abstract:

Unlike traditional robots, medical microbots are not only smaller in size, but they also possess various unique properties, for example, biocompatibility, stability in the biological fluids, navigation opposite to the bloodstream, wireless control over locomotion, etc. The idea behind their usage in the medical field was to build a minimally invasive method for addressing the post-operative complications, including longer recovery time, infection eruption and pain. Herein, the present study demonstrates the fabrication of dual nature magneto-conducting Fe3O4 magnetic nanoparticles (MNPs) and SU8 derived carbon-based Janus microbots for the efficient intracellular delivery of biomolecules. The low aspect ratio with feature size 2-5 μm microbots were fabricated by using a photolithography technique. These microbots were pyrolyzed at 900°C, which converts SU8 into amorphous carbon. The pyrolyzed microbots have dual properties, i.e., the half part is magneto-conducting and another half is only conducting for sufficing the therapeutic payloads efficiently with the application of external electric/magnetic field stimulations. For the efficient intracellular delivery of the microbots, the size and aspect ratio plays a significant role. However, on a smaller scale, the proper control over movement is difficult to achieve. The dual nature of Janus microbots allowed to control its maneuverability in the complex fluids using external electric as well as the magnetic field. Interestingly, Janus microbots move faster with the application of an external electric field (44 µm/s) as compared to the magnetic field (18 µm/s) application. Furthermore, these Janus microbots exhibit auto-fluorescence behavior that will help to track their pathway during navigation. Typically, the use of MNPs in the microdevices enhances the tendency to agglomerate. However, the incorporation of Fe₃O₄ MNPs in the pyrolyzed carbon reduces the chances of agglomeration of the microbots. The biocompatibility of the medical microbots, which is the essential property of any biosystems, was determined in vitro using HeLa cells. The microbots were found to compatible with HeLa cells. Additionally, the intracellular uptake of microbots was higher in the presence of an external electric field as compared to without electric field stimulation. In summary, the cytocompatible Janus microbots were fabricated successfully. They are stable in the biological fluids, wireless controllable navigation with the help of a few Guess external magnetic fields, their movement can be tracked because of autofluorescence behavior, they are less susceptible to agglomeration and higher cellular uptake could be achieved with the application of the external electric field. Thus, these carriers could offer a versatile platform to suffice the therapeutic payloads under wireless actuation.

Keywords: amorphous carbon, electric/magnetic stimulations, Janus microbots, magnetic nanoparticles, minimally invasive procedures

Procedia PDF Downloads 107
2148 Assessment of the Performance of Fly Ash Based Geo-Polymer Concrete under Sulphate and Acid Attack

Authors: Talakokula Visalakshi

Abstract:

Concrete is the most commonly used construction material across the globe, its usage is second only to water. It is prepared using ordinary Portland cement whose production contributes to 5-8% of total carbon emission in the world. On the other hand the fly ash by product from the power plants is produced in huge quantities is termed as waste and disposed in landfills. In order to address the above issues mentioned, it is essential that other forms of binding material must be developed in place of cement to make concrete. The geo polymer concrete is one such alternative developed by Davidovits in 1980’s. Geopolymer do not form calcium-silicate hydrates for matrix formation and strength but undergo polycondensation of silica and alumina precursors to attain structural strength. Its setting mechanism depends upon polymerization rather than hydration. As a result it is able to achieve its strength in 3-5 days whereas concrete requires about a month to do the same. The objective of this research is to assess the performance of geopolymer concrete under sulphate and acid attack. The assessment is done based on the experiments conducted on geopolymer concrete. The expected outcomes include that if geopolymer concrete is more durable than normal concrete, then it could be a competitive replacement option of concrete and can lead to significant reduction of carbon foot print and have a positive impact on the environment. Fly ash based geopolymer concrete offers an opportunity to completely remove the cement content from concrete thereby making the concrete a greener and future construction material.

Keywords: fly ash, geo polymer, geopolymer concrete, construction material

Procedia PDF Downloads 477
2147 An Investigation to Study the Moisture Dependency of Ground Enhancement Compound

Authors: Arunima Shukla, Vikas Almadi, Devesh Jaiswal, Sunil Saini, Bhusan S. Patil

Abstract:

Lightning protection consists of three main parts; mainly air termination system, down conductor, and earth termination system. Earth termination system is the most important part as earth is the sink and source of charges. Therefore, even when the charges are captured and delivered to the ground, and an easy path is not provided to the charges, earth termination system would lead to problems. Soil has significantly different resistivities ranging from 10 Ωm for wet organic soil to 10000 Ωm for bedrock. Different methods have been discussed and used conventionally such as deep-ground-well method and altering the length of the rod. Those methods are not considered economical. Therefore, it was a general practice to use charcoal along with salt to reduce the soil resistivity. Bentonite is worldwide acceptable material, that had led our interest towards study of bentonite at first. It was concluded that bentonite is a clay which is non-corrosive, environment friendly. Whereas bentonite is suitable only when there is moisture present in the soil, as in the absence of moisture, cracks will appear on the surface which will provide an open passage to the air, resulting into increase in the resistivity. Furthermore, bentonite without moisture does not have enough bonding property, moisture retention, conductivity, and non-leachability. Therefore, bentonite was used along with the other backfill material to overcome the dependency of bentonite on moisture. Different experiments were performed to get the best ratio of bentonite and carbon backfill. It was concluded that properties will highly depend on the quantity of bentonite and carbon-based backfill material.

Keywords: backfill material, bentonite, grounding material, low resistivity

Procedia PDF Downloads 136
2146 Deep Eutectic Solvent/ Polyimide Blended Membranes for Anaerobic Digestion Gas Separation

Authors: Glemarie C. Hermosa, Sheng-Jie You, Chien Chih Hu

Abstract:

Efficient separation technologies are required for the removal of carbon dioxide from natural gas streams. Membrane-based natural gas separation has emerged as one of the fastest growing technologies, due to the compactness, higher energy efficiency and economic advantages which can be reaped. The removal of Carbon dioxide from gas streams using membrane technology will also give the advantage like environmental friendly process compared to the other technologies used in gas separation. In this study, Polyimide membranes, which are mostly used in the separation of gases, are blended with a new kind of solvent: Deep Eutectic Solvents or simply DES. The three types of DES are used are choline chloride based mixed with three different hydrogen bond donors: Lactic acid, N-methylurea and Urea. The blending of the DESs to Polyimide gave out high permeability performance. The Gas Separation performance for all the membranes involving CO2/CH4 showed low performance while for CO2/N2 surpassed the performance of some studies. Among the three types of DES used the solvent Choline Chloride/Lactic acid exhibited the highest performance for both Gas Separation applications. The values are 10.5 for CO2/CH4 selectivity and 60.5 for CO2/N2. The separation results for CO2/CH4 may be due to the viscosity of the DESs affecting the morphology of the fabricated membrane thus also impacts the performance. DES/blended Polyimide membranes fabricated are novel and have the potential of a low-cost and environmental friendly application for gas separation.

Keywords: deep eutectic solvents, gas separation, polyimide blends, polyimide membranes

Procedia PDF Downloads 291
2145 Condition Assessment and Diagnosis for Aging Drinking Water Pipeline According to Scientific and Reasonable Methods

Authors: Dohwan Kim, Dongchoon Ryou, Pyungjong Yoo

Abstract:

In public water facilities, drinking water distribution systems have played an important role along with water purification systems. The water distribution network is one of the most expensive components of water supply infrastructure systems. To improve the reliability for the drinking rate of tap water, advanced water treatment processes such as granular activated carbon and membrane filtration were used by water service providers in Korea. But, distrust of the people for tap water are still. Therefore, accurate diagnosis and condition assessment for water pipelines are required to supply the clean water. The internal corrosion of water pipe has increased as time passed. Also, the cross-sectional areas in pipe are reduced by the rust, deposits and tubercles. It is the water supply ability decreases as the increase of hydraulic pump capacity is required to supply an amount of water, such as the initial condition. If not, the poor area of water supply will be occurred by the decrease of water pressure. In order to solve these problems, water managers and engineers should be always checked for the current status of the water pipe, such as water leakage and damage of pipe. If problems occur, it should be able to respond rapidly and make an accurate estimate. In Korea, replacement and rehabilitation of aging drinking water pipes are carried out based on the circumstances of simply buried years. So, water distribution system management may not consider the entire water pipeline network. The long-term design and upgrading of a water distribution network should address economic, social, environmental, health, hydraulic, and other technical issues. This is a multi-objective problem with a high level of complexity. In this study, the thickness of the old water pipes, corrosion levels of the inner and outer surface for water pipes, basic data research (i.e. pipe types, buried years, accident record, embedded environment, etc.), specific resistance of soil, ultimate tensile strength and elongation of metal pipes, samples characteristics, and chemical composition analysis were performed about aging drinking water pipes. Samples of water pipes used in this study were cement mortar lining ductile cast iron pipe (CML-DCIP, diameter 100mm) and epoxy lining steel pipe (diameter 65 and 50mm). Buried years of CML-DCIP and epoxy lining steel pipe were respectively 32 and 23 years. The area of embedded environment was marine reclamation zone since 1940’s. The result of this study was that CML-DCIP needed replacement and epoxy lining steel pipe was still useful.

Keywords: drinking water distribution system, water supply, replacement, rehabilitation, water pipe

Procedia PDF Downloads 244
2144 Effect of TERGITOL NP-9 and PEG-10 Oleyl Phosphate as Surfactant and Corrosion Inhibitor on Tribo-Corrosion Performance of Carbon Steel in Emulsion-Based Drilling Fluids

Authors: Mohammadjavad Palimi, D. Y. Li, E. Kuru

Abstract:

Emulsion-based drilling fluids containing mineral oil are commonly used for drilling operations, which generate a lubricating film to prevent direct contact between moving metal parts, thus reducing friction, wear, and corrosion. For long-lasting lubrication, the thin lubricating film formed on the metal surface should possess good anti-wear and anti-corrosion capabilities. This study aims to investigate the effects of two additives, TERGITOL NP-9 and PEG-10 oleyl phosphate, acting as surfactant and corrosion inhibitor, respectively, on the tribo-corrosion behavior of 1018 carbon steel immersed in 5% KCl solution at room temperature. A pin-on-disc tribometer attached to an electrochemical system was used to investigate the corrosive wear of the steel immersed in emulsion-based fluids containing the surfactant and corrosion inhibitor. The wear track, surface chemistry and composition of the protective film formed on the steel surface were analyzed with an optical profilometer, SEM, and SEM-EDX. Results of the study demonstrate that the performance of the emulsion-based drilling fluids was significantly improved by the corrosion inhibitor by a remarkable reduction in corrosion, coefficient of friction (COF) and wear.

Keywords: corrosion inhibitor, emulsion-based drilling fluid, tribo-corrosion, friction, wear

Procedia PDF Downloads 54
2143 Blue Finance: A Systematical Review of the Academic Literature on Investment Streams for Marine Conservation

Authors: David Broussard

Abstract:

This review article delves into the realm of marine conservation finance, addressing the inadequacies in current financial streams from the private sector and the underutilization of existing financing mechanisms. The study emphasizes the emerging field of “blue finance”, which contributes to economic growth, improved livelihoods, and marine ecosystem health. The financial burden of marine conservation projects typically falls on philanthropists and governments, contrary to the polluter-pays principle. However, the private sector’s increasing commitment to NetZero and growing environmental and social responsibility goals prompts the need for alternative funding sources for marine conservation initiatives like marine protected areas. The article explores the potential of utilizing several financing mechanisms like carbon credits and other forms of payment for ecosystem services in the marine context, providing a solution to the lack of private funding for marine conservation. The methodology employed involves a systematic and quantitative approach, combining traditional review methods and elements of meta-analysis. A comprehensive search of the years 2000 - 2023, using relevant keywords on the Scopus platform, resulted in a review of 252 articles. The temporal evolution of blue finance studies reveals a significant increase in annual articles from 2010 to 2022, with notable peaks in 2011 and 2022. Marine Policy, Ecosystem Services, and Frontiers in Marine Science are prominent journals in this field. While the majority of articles focus on payment for ecosystem services, there is a growing awareness of the need for holistic approaches in conservation finance. Utilizing bibliometric techniques, the article showcases the dominant share of payment for ecosystem services in the literature with a focus on blue carbon. The classification of articles based on various criteria, including financing mechanisms and conservation types, aids in categorizing and understanding the diversity of research objectives and perspectives in this complex field of marine conservation finance.

Keywords: biodiversity offsets, carbon credits, ecosystem services, impact investment, payment for ecosystem services

Procedia PDF Downloads 58
2142 Bis-Azlactone Based Biodegradable Poly(Ester Amide)s: Design, Synthesis and Study

Authors: Kobauri Sophio, Kantaria Tengiz, Tugushi David, Puiggali Jordi, Katsarava Ramaz

Abstract:

Biodegradable biomaterials (BB) are of high interest for numerous applications in modern medicine as resorbable surgical materials and drug delivery systems. This kind of materials can be cleared from the body after the fulfillment of their function that excludes a surgical intervention for their removal. One of the most promising BBare amino acids based biodegradable poly(ester amide)s (PEAs) which are composed of naturally occurring (α-amino acids) and non-toxic building blocks such as fatty diols and dicarboxylic acids. Key bis-nucleophilic monomers for synthesizing the PEAs are diamine-diesters-di-p-toluenesulfonic acid salts of bis-(α-amino acid)-alkylenediesters (TAADs) which form the PEAs after step-growth polymerization (polycondensation) with bis-electrophilic counter-partners - activated diesters of dicarboxylic acids. The PEAs combine all advantages of the 'parent polymers' – polyesters (PEs) and polyamides (PAs): Ability of biodegradation (PEs), a high affinity with tissues and a wide range of desired mechanical properties (PAs). The scopes of applications of thePEAs can substantially be expanded by their functionalization, e.g. through the incorporation of hydrophobic fragments into the polymeric backbones. Hydrophobically modified PEAs can form non-covalent adducts with various compounds that make them attractive as drug carriers. For hydrophobic modification of the PEAs, we selected so-called 'Azlactone Method' based on the application of p-phenylene-bis-oxazolinons (bis-azlactones, BALs) as active bis-electrophilic monomers in step-growth polymerization with TAADs. Interaction of BALs with TAADs resulted in the PEAs with low MWs (Mw2,800-19,600 Da) and poor material properties. The high-molecular-weight PEAs (Mw up to 100,000) with desirable material properties were synthesized after replacement of a part of BALs with activated diester - di-p-nitrophenylsebacate, or a part of TAAD with alkylenediamine – 1,6-hexamethylenediamine. The new hydrophobically modified PEAs were characterized by FTIR, NMR, GPC, and DSC. It was shown that after the hydrophobic modification the PEAs retain the biodegradability (in vitro study catalyzed by α-chymptrypsin and lipase), and are of interest for constructing resorbable surgical and pharmaceutical devices including drug delivering containers such as microspheres. The new PEAs are insoluble in hydrophobic organic solvents such as chloroform or dichloromethane (swell only) that allowed elaborating a new technology of fabricating microspheres.

Keywords: amino acids, biodegradable polymers, bis-azlactones, microspheres

Procedia PDF Downloads 164
2141 Shear Behaviour of RC Deep Beams with Openings Strengthened with Carbon Fiber Reinforced Polymer

Authors: Mannal Tariq

Abstract:

Construction industry is making progress at a high pace. The trend of the world is getting more biased towards the high rise buildings. Deep beams are one of the most common elements in modern construction having small span to depth ratio. Deep beams are mostly used as transfer girders. This experimental study consists of 16 reinforced concrete (RC) deep beams. These beams were divided into two groups; A and B. Groups A and B consist of eight beams each, having 381 mm (15 in) and 457 mm (18 in) depth respectively. Each group was further subdivided into four sub groups each consisting of two identical beams. Each subgroup was comprised of solid/control beam (without opening), opening above neutral axis (NA), at NA and below NA. Except for control beams, all beams with openings were strengthened with carbon fibre reinforced polymer (CFRP) vertical strips. These eight groups differ from each other based on depth and location of openings. For testing sake, all beams have been loaded with two symmetrical point loads. All beams have been designed based on strut and tie model concept. The outcome of experimental investigation elaborates the difference in the shear behaviour of deep beams based on depth and location of circular openings variation. 457 mm (18 in) deep beam with openings above NA show the highest strength and 381 mm (15 in) deep beam with openings below NA show the least strength. CFRP sheets played a vital role in increasing the shear capacity of beams.

Keywords: CFRP, deep beams, openings in deep beams, strut and tie modal, shear behaviour

Procedia PDF Downloads 286
2140 Assessing the Effect of Waste-based Geopolymer on Asphalt Binders

Authors: Amani A. Saleh, Maram M. Saudy, Mohamed N. AbouZeid

Abstract:

Asphalt cement concrete is a very commonly used material in the construction of roads. It has many advantages, such as being easy to use as well as providing high user satisfaction in terms of comfortability and safety on the road. However, there are some problems that come with asphalt cement concrete, such as its high carbon footprint, which makes it environmentally unfriendly. In addition, pavements require frequent maintenance, which could be very costly and uneconomic. The aim of this research is to study the effect of mixing waste-based geopolymers with asphalt binders. Geopolymer mixes were prepared by combining alumino-silicate sources such as fly ash, silica fumes, and metakaolin with alkali activators. The purpose of mixing geopolymers with the asphalt binder is to enhance the rheological and microstructural properties of asphalt. This was done through two phases, where the first phase was developing an optimum mix design of the geopolymer additive itself. The following phase was testing the geopolymer-modified asphalt binder after the addition of the optimum geopolymer mix design to it. The testing of the modified binder is performed according to the Superpave testing procedures, which include the dynamic shear rheometer to measure parameters such as rutting and fatigue cracking, and the rotational viscometer to measure workability. In addition, the microstructural properties of the modified binder is studied using the environmental scanning electron microscopy test (ESEM). In the testing phase, the aim is to observe whether the addition of different geopolymer percentages to the asphalt binder will enhance the properties of the binder and yield desirable results. Furthermore, the tests on the geopolymer-modified binder were carried out at fixed time intervals, therefore, the curing time was the main parameter being tested in this research. It was observed that the addition of geopolymers to asphalt binder has shown an increased performance of asphalt binder with time. It is worth mentioning that carbon emissions are expected to be reduced since geopolymers are environmentally friendly materials that minimize carbon emissions and lead to a more sustainable environment. Additionally, the use of industrial by-products such as fly ash and silica fumes is beneficial in the sense that they are recycled into producing geopolymers instead of being accumulated in landfills and therefore wasting space.

Keywords: geopolymer, rutting, superpave, fatigue cracking, sustainability, waste

Procedia PDF Downloads 114
2139 Isolation, Selection and Identification of Bacteria for Bioaugmentation of Paper Mills White Water

Authors: Nada Verdel, Tomaz Rijavec, Albin Pintar, Ales Lapanje

Abstract:

Objectives: White water circuits of woodfree paper mills contain suspended, dissolved, and colloidal particles, such as cellulose, starch, paper sizings, and dyes. By closing the white water circuits, these particles start to accumulate and affect the production. Due to high amount of organic matter that scavenge radicals and adsorbs onto catalyst surfaces, treatment of white water with photocatalysis is inappropriate. The most suitable approach should be bioaugmentation-assisted bioremediation. Accordingly, objectives were: - to isolate bacteria capable of degrading organic compounds used for the papermaking process - to select the most active bacteria for bioaugmentation. Status: The state-of-the-art of bioaugmentation of pulp and paper mill effluents is mostly based on biodegradation of lignin. Whereas in white water circuits of woodfree paper mills only papermaking compounds are present. As far as one can tell from the literature, the study on degradation activities of bacteria for all possible compounds of the papermaking process is a novelty. Methodology: The main parameters of the selected white water were systematically analyzed during a period of two months. Bacteria were isolated on selective media with particular carbon source. Organic substances used as carbon source either enter white water circuits as base paper or as recycled broke. The screening of bacterial activities for starch, cellulose, latex, polyvinyl alcohol, alkyl ketene dimers, and resin acids was followed by addition of lugol. Degraders of polycyclic aromatic dyes were selected by cometabolism tests; cometabolism is simultaneous biodegradation of two compounds, in which the degradation of the second compound depends on the presence of the first. The obtained strains were identified by 16S rRNA sequencing. Findings: 335 autochthonous strains were isolated on plates with selected carbon source. The isolated strains were selected according to degradation of the particular carbon source. The ultimate degraders of cationic starch, cellulose, and sizings are Pseudomonas sp. NV-CE12-CF and Aeromonas sp. NV-RES19-BTP. The most active strains capable of degrading azo dyes are Aeromonas sp. NV-RES19-BTP and Sphingomonas sp. NV-B14-CF. Klebsiella sp. NV-Y14A-BTP degrade polycyclic aromatic direct blue 15 and also yellow dye, Agromyces sp. NV-RED15A-BF and Cellulosimicrobium sp. NV-A4-BF are specialists for whitener and Aeromonas sp. NV-RES19-BTP is general degrader of all compounds. To the white water adapted bacteria were isolated and selected according to their degradation activities for particular organic substances. Mostly isolated bacteria are specialized to lower the competition in the microbial community. Degraders of readily-biodegradable compounds do not degrade recalcitrant polycyclic aromatic dyes and vice versa. General degraders are rare.

Keywords: bioaugmentation, biodegradation of azo dyes, cometabolism, smart wastewater treatment technologies

Procedia PDF Downloads 187
2138 Enhancement in Digester Efficiency and Numerical Analysis for Optimal Design Parameters of Biogas Plant Using Design of Experiment Approach

Authors: Rajneesh, Priyanka Singh

Abstract:

Biomass resources have been one of the main energy sources for mankind since the dawn of civilization. There is a vast scope to convert these energy sources into biogas which is a clean, low carbon technology for efficient management and conversion of fermentable organic wastes into a cheap and versatile fuel and bio/organic manure. Thus, in order to enhance the performance of anaerobic digester, an optimizing analysis of resultant parameters (organic dry matter (oDM) content, methane percentage, and biogas yield) has been done for a plug flow anaerobic digester having mesophilic conditions (20-40°C) with the wet fermentation process. Based on the analysis, correlations for oDM, methane percentage, and biogas yield are derived using multiple regression analysis. A statistical model is developed to correlate the operating variables using the design of experiment approach by selecting central composite design (CCD) of a response surface methodology. Results shown in the paper indicates that as the operating temperature increases the efficiency of digester gets improved provided that the pH and hydraulic retention time (HRT) remains constant. Working in an optimized range of carbon-nitrogen ratio for the plug flow digester, the output parameters show a positive change with the variation of dry matter content (DM).

Keywords: biogas, digester efficiency, design of experiment, plug flow digester

Procedia PDF Downloads 360
2137 Vehicular Emission Estimation of Islamabad by Using Copert-5 Model

Authors: Muhammad Jahanzaib, Muhammad Z. A. Khan, Junaid Khayyam

Abstract:

Islamabad is the capital of Pakistan with the population of 1.365 million people and with a vehicular fleet size of 0.75 million. The vehicular fleet size is growing annually by the rate of 11%. Vehicular emissions are major source of Black carbon (BC). In developing countries like Pakistan, most of the vehicles consume conventional fuels like Petrol, Diesel, and CNG. These fuels are the major emitters of pollutants like CO, CO2, NOx, CH4, VOCs, and particulate matter (PM10). Carbon dioxide and methane are the leading contributor to the global warming with a global share of 9-26% and 4-9% respectively. NOx is the precursor of nitrates which ultimately form aerosols that are noxious to human health. In this study, COPERT (Computer program to Calculate Emissions from Road Transport) was used for vehicular emission estimation in Islamabad. COPERT is a windows based program which is developed for the calculation of emissions from the road transport sector. The emissions were calculated for the year of 2016 include pollutants like CO, NOx, VOC, and PM and energy consumption. The different variable was input to the model for emission estimation including meteorological parameters, average vehicular trip length and respective time duration, fleet configuration, activity data, degradation factor, and fuel effect. The estimated emissions for CO, CH4, CO2, NOx, and PM10 were found to be 9814.2, 44.9, 279196.7, 3744.2 and 304.5 tons respectively.

Keywords: COPERT Model, emission estimation, PM10, vehicular emission

Procedia PDF Downloads 244
2136 Characterization of Carbon/Polyamide 6,6 (C/PA66) Composite Material for Dry and Wet Conditions

Authors: Tariq Bashir, Muhammad Waseem Tahir, Ulf Stigh, Behnaz Baghaie, Mikael Skrifvars

Abstract:

Absorption of moisture may cause many problems in a composite material, such as delamination, degradation of the strength and increase in the weight. For small coupons, the increase in weight may be negligible, however, for large structures increase in weight due to moisture absorption may be quite significant. Polyamides (PA6, PA66) absorb more moisture as compared to other thermoplastics. There are many parameters which affect the moisture absorption of the composite material for example temperature, pressure, type of matrix and fibers, thickness of the material and relative humidity (RH) etc. So, it is utmost important to investigate the impact of moisture on PA66 based composites which can be done by characterizing the mechanical properties of composite materials both for dry and wet conditions. In this study, laminates of C/PA66 composite are manufactured by first heating the commingled material in conventional oven at a temperature of 220 °C followed by pressing in a manual hot press for 20 minutes with preheated platen at 220 °C. To observe the moisture absorption of the composite, coupons of the material were placed in a climate chamber at five different conditions 0, 25, 50, 75 and 100% RH for 24 hours. Five specimens were used for each condition. These coupons were weighed before placing in the climate chamber and just after removing from the chamber to observe the moisture absorption of the material. The mechanical characterization such as tensile strength, flexural modulus, impact strength and DMTA of C/PA66 material are performed at 0, 50 and 100 % RH. The work is going on for the testing of the material and results will be presented in full paper.

Keywords: Carbon/Polyamide 66 composites, structural composites, mechanical characterizations, wet and dry conditions

Procedia PDF Downloads 223
2135 Analysis of Coal Tar Compositions Produced from Sub-Bituminous Kalimantan Coal Tar

Authors: Dewi Selvia Fardhyanti, Astrilia Damayanti

Abstract:

Coal tar is a liquid by-product of coal pyrolysis processes. This liquid oil mixture contains various kind of useful compounds such as benzoic aromatic compounds and phenolic compounds. These compounds are widely used as raw material for insecticides, dyes, medicines, perfumes, coloring matters, and many others. The coal tar was collected by pyrolysis process of coal obtained from PT Kaltim Prima Coal and Arutmin-Kalimantan. The experiments typically occurred at the atmospheric pressure in a laboratory furnace at temperatures ranging from 300 to 550oC with a heating rate of 10oC/min and a holding time of 1 hour at the pyrolysis temperature. Nitrogen gas has been used to obtain the inert condition and to carry the gaseous pyrolysis products. The pyrolysis transformed organic materials into gaseous components, small quantities of liquid, and a solid residue (coke) containing fixed amount of carbon and ash. The composition of gas which is produced from the pyrolysis is carbon monoxide, hydrogen, methane, and other hydrocarbon compounds. The gas was condensed and the liquid containing oil/tar and water was obtained. The Gas Chromatography-Mass Spectroscopy (GC-MS) was used to analyze the coal tar components. The obtained coal tar has the viscosity of 3.12 cp, the density of 2.78 g/cm3, the calorific value of 11,048.44 cal/g, and the molecular weight of 222.67. The analysis result showed that the coal tar contained more than 78 chemical compounds such as benzene, cresol, phenol, xylene, naphtalene, etc. The total phenolic compounds contained in coal tar is 33.25% (PT KPC) and 17.58% (Arutmin-Kalimantan). The total naphtalene compounds contained in coal tar is 14.15% (PT KPC) and 17.13% (Arutmin-Kalimantan).

Keywords: coal tar, pyrolysis, gas chromatography-mass spectroscopy

Procedia PDF Downloads 311
2134 Kinetic Evaluation of Biodegradability of Paint Shop Wastewater of a Bus Production Factory

Authors: Didem Güven, Oytun Hanhan, Elif Ceren Aksoy, Emine Ubay Çokgör

Abstract:

This paper presents a biological treatability study ofpaintshopwastewaterof a bus factory by an anoxic/aerobic sequencing batch reactor.A lab scale 14L SBR system was implementedto investigate carbon and nitrogen removal performance frompaint shop waste streams combined with domestic and process wastewater of a bus production factory in Istanbul (Turkey).The wastewater collected from decanters of the paint boots and pre-treatmentplant was usedforthefeeding of SBR. The reactor was operated with a total hydraulic retention time of 24 hrs, and a total sludge age of 18.7 days. Initially the efficiency and stability of the reactor were studied when fed with main wastewater stream to simulate the current wastewater treatment plant. Removal efficiency of 57% nitrogen and 90% COD were obtained. Once the paint shop wastewater was introduced to mainstream feeding with a ratio of 1:5, nitrification completely, carbon removal were partially inhibited. SBR system was successful to handle even at very high COD concentrations of paint shop wastewater after feeding of 2 months, with an average effluent COD of 100 mg/L. For the determination of kinetic parameters, respirometric analysis was also conducted with/without paint shop wastewater addition. Model simulation indicated lower maximum specific growth and hydrolysis rates when paint shop wastewater was mixed with the mainstream wastewater of the factory.

Keywords: biological treatability, nitrogen removal, paint shop wastewater, sequencing batch reactor

Procedia PDF Downloads 281
2133 Establishing a Microbial Co-Culture for Production of Cellulases Using Banana (Musa Paradisiaca) Pseudostem

Authors: Mulanga Luscious Mulaudzi, Ignatious Ncube

Abstract:

In nature, enzymatic degradation of lignocellulose is more efficient compared to in vivo bioprocessing. Thus, a co-culture should enable production of more efficient enzyme preparations that would mimic the natural decomposition of lignocellulose. The aim of the study was to establish a microbial co-culture for the production of highly active cellulase preparations. The objectives were to determine the use of a variety of culture media to isolate cellulose degrading microorganisms from decomposing banana pseudo stem and to optimize production of cellulase by co-cultures of microorganisms producing high levels of cellulose. Screening of fungal isolates was done on carboxylmethylcellulose agar plates which were stained with Congo red to show hydrolytic activity of the isolates. Co-culture and mixed culture of these microorganisms were cultured using Mendel salts with Avicel as the carbon source. Cultures were incubated at 30 °C with shaking at 200 rpm for 240 hrs. Enzyme activity assays were performed to determine endoglycosidase and β-glucosidase. Mixed culture of fungi-dead bacterial cells showed to be the best co-culture/ mixed culture to produce higher levels of cellulase activity in submerged fermentations (SmF) using Avicel™ as a carbon source. The study concludes use microorganism 5A in co-cultures is highly recommended in order to produce high amounts of β-glucosidases, no matter the combination used.

Keywords: avicel, co-culture, submerged fermentation, pseudostem

Procedia PDF Downloads 110
2132 Molecular Characterization of Arginine Sensing Response in Unravelling Host-Pathogen Interactions in Leishmania

Authors: Evanka Madan, Madhu Puri, Dan Zilberstein, Rohini Muthuswami, Rentala Madhubala

Abstract:

The extensive interaction between the host and pathogen metabolic networks decidedly shapes the outcome of infection. Utilization of arginine by the host and pathogen is critical for determining the outcome of pathogenic infection. Infections with L. donovani, an intracellular parasite, will lead to an extensive competition of arginine between the host and the parasite donovani infection. One of the major amino acid (AA) sensing signaling pathways in mammalian cells are the mammalian target of rapamycin complex I (mTORC1) pathway. mTORC1, as a sensor of nutrient, controls numerous metabolic pathways. Arginine is critical for mTORC1 activation. SLC38A9 is the arginine sensor for the mTORC1, being activated during arginine sufficiency. L. donovani transport arginine via a high-affinity transporter (LdAAP3) that is rapidly up-regulated by arginine deficiency response (ADR) in intracellular amastigotes. This study, to author’s best knowledge, investigates the interaction between two arginine sensing systems that act in the same compartment, the lysosome. One is important for macrophage defense, and the other is essential for pathogen virulence. We hypothesize that the latter modulates lysosome arginine to prevent host defense response. The work presented here identifies an upstream regulatory role of LdAAP3 in regulating the expression of SLC38A9-mTORC1 pathway, and consequently, their function in L. donovani infected THP-1 cells cultured in 0.1 mM and 1.5 mM arginine. It was found that in physiological levels of arginine (0.1 mM), infecting THP-1 with Leishmania leads to increased levels of SLC38A9 and mTORC1 via an increase in the expression of RagA. However, the reversal was observed with LdAAP3 mutants, reflecting the positive regulatory role of LdAAP3 on the host SLC38A9. At the molecular level, upon infection, mTORC1 and RagA were found to be activated at the surface of phagolysosomes which was found to form a complex with phagolysosomal localized SLC38A9. To reveal the relevance of SLC38A9 under physiological levels of arginine, endogenous SLC38A9 was depleted and a substantial reduction in the expression of host mTORC1, its downstream active substrate, p-P70S6K1 and parasite LdAAP3, was observed, thereby showing that silencing SLC38A9 suppresses ADR. In brief, to author’s best knowledge, these results reveal an upstream regulatory role of LdAAP3 in manipulating SLC38A9 arginine sensing in host macrophages. Our study indicates that intra-macrophage survival of L. donovani depends on the availability and transport of extracellular arginine. An understanding of the sensing pathway of both parasite and host will open a new perspective on the molecular mechanism of host-parasite interaction and consequently, as a treatment for Leishmaniasis.

Keywords: arginine sensing, LdAAP3, L. donovani, mTORC1, SLC38A9, THP-1

Procedia PDF Downloads 104
2131 Thermo-Oxidative Degradation of Esterified Starch (with Lauric Acid) -Plastic Composite Assembled with Pro-Oxidants and Elastomers

Authors: R. M. S. Sachini Amararathne

Abstract:

This research is striving to develop a thermo degradable starch plastic compound/ masterbatch for industrial packaging applications. A native corn starch-modified with an esterification reaction of lauric acid is melt blent with an unsaturated elastomer (styrene-butadiene-rubber/styrene-butadiene-styrene). A trace amount of metal salt is added into the internal mixer to study the effect of pro-oxidants in a thermo oxidative environment. Then the granulated polymer composite which is consisted with 80-86% of polyolefin (LLDP/LDPE/PP) as the pivotal agent; is extruded with processing aids, antioxidants and some other additives in a co-rotating twin-screw extruder. The pelletized composite is subjected to compression molding/ Injection molding or blown film extrusion processes to acquire the samples/specimen for tests. The degradation process is explicated by analyzing the results of fourier transform infrared spectroscopy (FTIR) measurements, thermo oxidative aging studies (placing the dumb-bell specimen in an air oven at 70 °C for four weeks of exposure.) governed by tensile and impact strength test reports. Furthermore, the samples were elicited into manifold outdoors to inspect the degradation process. This industrial process is implemented to reduce the volume of fossil-based garbage by achieving the biodegradability and compostability in the natural cycle. Hence the research leads to manufacturing a degradable plastic packaging compound which is now available in the Sri Lankan market.

Keywords: blown film extrusion, compression moulding, polyolefin, pro-oxidant, styrene-butadine-rubber, styrene-butadiene-styrene, thermo oxidative aging, unsaturated elastomer

Procedia PDF Downloads 84
2130 Evaluation of Sugarcane Straw Derived Biochar for the Remediation of Chromium and Nickel Contaminated Soil

Authors: Selam M. Tefera

Abstract:

Soil constitutes a crucial component of rural and urban environments. This fact is making role of heavy and trace elements in the soil system an issue of global concern. Heavy metals constitute an ill-defined group of inorganic chemical hazards, whose main source is anthropogenic activities mainly related to fabrications. This accumulation of heavy metals soils can prove toxic to the environment. The application of biochar to soil is one way of immobilizing these contaminants through sorption by exploiting the high surface area of this material among its other essential properties. This research examined the ability of sugar cane straw, an organic waste material from sugar farm, derived biochar and ash to remediate soil contaminated with heavy metals mainly Chromium and Zinc from the effluent of electroplating industry. Biochar was produced by varying the temperature from 300 °C to 500 °C and ash at 700 °C. The highest yield (50%) was obtained at the lowest temperature (300 °C). The proximate analysis showed ash content of 42.8%, ultimate analysis with carbon content of 67.18%, the Hydrogen to Carbon ratio of 0.54 and the results from FTIR analysis disclosed the organic nature of biochar. Methylene blue absorption indicated its fine surface area and pore structure, which increases with severity of temperature. Biochar was mixed with soil with at a ration varying from 4% w/w to 10% w/w of soil, and the response variables were determined at a time interval of 150 days, 180 days, and 210 days. As for ash (10% w/w), the characterization was performed at incubation time of 210 days. The results of pH indicated that biochar (9.24) had a notable liming capacity of acidic soil (4.8) by increasing it to 6.89 whereas ash increased it to 7.5. The immobilization capacity of biochar was found to effected mostly by the highest production temperature (500 °C), which was 75.5% for chromium and 80.5% for nickel. In addition, ash was shown to possess an outstanding immobilization capacity of 95.5% and 90.5% for Chromium and Nickel, respectively. All in all, the results from these methods showed that biochar produced from this specific biomass possesses the typical functional groups that enable it to store carbon, the appropriate pH that could remediate acidic soil, a fine amount of macro and micro nutrients that would aid plant growth.

Keywords: biochar, biomass, heavy metal immobalization, soil remediation

Procedia PDF Downloads 131
2129 The Effect of Rice Husk Ash on the Mechanical and Durability Properties of Concrete

Authors: Binyamien Rasoul

Abstract:

Portland cement is one of the most widely used construction materials in the world today; however, manufacture of ordinary Portland cement (OPC) emission significant amount of CO2 resulting environmental impact. On the other hand, rice husk ash (RHA), which is produce as by product material is generally considered to be an environmental issue as a waste material. This material (RHA) consists of non-crystalline silicon dioxide with high specific surface area and high pozzolanic reactivity. These RHA properties can demonstrate a significant influence in improving the mechanical and durability properties of mortar and concrete. Furthermore, rice husk ash can provide a cost effective and give concrete more sustainability. In this paper, chemical composition, reactive silica and fineness effect was assessed by examining five different types of RHA. Mortars and concrete specimens were molded with 5% to 50% of ash, replacing the Portland cement, and measured their compressive and tensile strength behavior. Beyond it, another two parameters had been considered: the durability of concrete blended RHA, and effect of temperature on the transformed of amorphous structure to crystalline form. To obtain the rice husk ash properties, these different types were subjected to X-Ray fluorescence to determine the chemical composition, while pozzolanic activity obtained by using X-Ray diffraction test. On the other hand, finesses and specific surface area were obtained by used Malvern Mastersizer 2000 test. The measured parameters properties of fresh mortar and concrete obtained by used flow table and slump test. While, for hardened mortar and concrete the compressive and tensile strength determined pulse the chloride ions penetration for concrete using NT Build 492 (Nord Test) – non-steady state migration test (RMT Test). The obtained test results indicated that RHA can be used as a cement replacement material in concrete with considerable proportion up to 50% percentages without compromising concrete strength. The use of RHA in the concrete as blending materials improved the different characteristics of the concrete product. The paper concludes that to exhibits a good compressive strength of OPC mortar or concrete with increase RHA replacement ratio rice husk ash should be consist of high silica content with high pozzolanic activity. Furthermore, with high amount of carbon content (12%) could be improve the strength of concrete when the silica structure is totally amorphous. As well RHA with high amount of crystalline form (25%) can be used as cement replacement when the silica content over 90%. The workability and strength of concrete increased by used of superplasticizer and it depends on the silica structure and carbon content. This study therefore is an investigation of the effect of partially replacing Ordinary Portland cement (OPC) with Rice hush Ash (RHA) on the mechanical properties and durability of concrete. This paper gives satisfactory results to use RHA in sustainable construction in order to reduce the carbon footprint associated with cement industry.

Keywords: OPC, ordinary Portland cement, RHA rice husk ash, W/B water to binder ratio, CO2, carbon dioxide

Procedia PDF Downloads 179
2128 Novel Method of In-Situ Tracking of Mechanical Changes in Composite Electrodes during Charging-Discharging by QCM-D

Authors: M. D. Levi, Netanel Shpigel, Sergey Sigalov, Gregory Salitra, Leonid Daikhin, Doron Aurbach

Abstract:

We have developed an in-situ method for tracking ions adsorption into composite nanoporous carbon electrodes based on quartz-crystal microbalance (QCM). In these first papers QCM was used as a simple gravimetric probe of compositional changes in carbon porous composite electrodes during their charging since variation of the electrode potential did not change significantly width of the resonance. In contrast, when we passed from nanoporous carbons to a composite Li-ion battery material such as LiFePO4 olivine, the change in the resonance width was comparable with change of the resonance frequency (polymeric binder PVdF was shown to be completely rigid when used in aqueous solutions). We have provided a quantitative hydrodynamic admittance model of ion-insertion processes into electrode host accompanied by intercalation-induced dimensional changes of electrode particles, and hence the entire electrode coating. The change in electrode deformation and the related porosity modify hydrodynamic solid-liquid interactions tracked by QCM with dissipation monitoring. Using admittance modeling, we are able to evaluate the changes of effective thickness and permeability/porosity of composite electrode caused by applied potential and as a function of cycle number. This unique non-destructive technique may have great advantage in early diagnostics of cycling life durability of batteries and supercapacitors.

Keywords: Li-ion batteries, particles deformations, QCM-D, viscoelasticity

Procedia PDF Downloads 426
2127 Fabrication of Gold Nanoparticles Self-Assembled Functionalized Improved Graphene on Carbon Paste Electrode for Electrochemical Determination of Levodopa in the Presence of Ascorbic Acid

Authors: Mohammad Ali Karimi, Hossein Tavallali, Abdolhamid Hatefi-Mehrjardi

Abstract:

In this study, an electrochemical sensor based on gold nanoparticles (AuNPs) functionalized improved graphene (AuNPs-IGE) was fabricated for selective determination of L-dopa in the presence of ascorbic acid by a novel self-assembly method. The AuNP IGE modified carbon paste electrode (AuNPs-IGE/CPE) utilized for investigation of the electrochemical behavior of L-dopa in phosphate buffer solution. Compared to bare CPE, AuNPs-IGE/CPE shows novel properties towards the electrochemical redox of levodopa (L-dopa) in phosphate buffer solution at pH 4.0. The oxidation potential of L-dopa shows a significant decrease at the AuNPs-IGE/CPE. The oxidation current of L-dopa is higher than that of the unmodified CPE. AuNPs-IG/CPE shows excellent electrocatalytic activity for the oxidation of ascorbic acid (AA). Using differential pulse voltammetry (DPV) method, the oxidation current is well linear with L-dopa concentration in the range of 0.4–50 µmol L-1, with a detection limit of about 1.41 nmol L-1 (S/N = 3). Therefore, it was applied to measure L-dopa from real samples that recoveries are 94.6-106.2%. The proposed electrode can also effectively avoid the interference of ascorbic acid, making the proposed sensor suitable for the accurate determination of L-dopa in both pharmaceutical preparations and human body fluids.

Keywords: gold nanoparticles, improved graphene, L-dopa, self-assembly

Procedia PDF Downloads 207
2126 Stretchable and Flexible Thermoelectric Polymer Composites for Self-Powered Volatile Organic Compound Vapors Detection

Authors: Petr Slobodian, Pavel Riha, Jiri Matyas, Robert Olejnik, Nuri Karakurt

Abstract:

Thermoelectric devices generate an electrical current when there is a temperature gradient between the hot and cold junctions of two dissimilar conductive materials typically n-type and p-type semiconductors. Consequently, also the polymeric semiconductors composed of polymeric matrix filled by different forms of carbon nanotubes with proper structural hierarchy can have thermoelectric properties which temperature difference transfer into electricity. In spite of lower thermoelectric efficiency of polymeric thermoelectrics in terms of the figure of merit, the properties as stretchability, flexibility, lightweight, low thermal conductivity, easy processing, and low manufacturing cost are advantages in many technological and ecological applications. Polyethylene-octene copolymer based highly elastic composites filled with multi-walled carbon nanotubes (MWCTs) were prepared by sonication of nanotube dispersion in a copolymer solution followed by their precipitation pouring into non-solvent. The electronic properties of MWCNTs were moderated by different treatment techniques such as chemical oxidation, decoration by Ag clusters or addition of low molecular dopants. In this concept, for example, the amounts of oxygenated functional groups attached on MWCNT surface by HNO₃ oxidation increase p-type charge carriers. p-type of charge carriers can be further increased by doping with molecules of triphenylphosphine. For partial altering p-type MWCNTs into less p-type ones, Ag nanoparticles were deposited on MWCNT surface and then doped with 7,7,8,8-tetracyanoquino-dimethane. Both types of MWCNTs with the highest difference in generated thermoelectric power were combined to manufacture polymeric based thermoelectric module generating thermoelectric voltage when the temperature difference is applied between hot and cold ends of the module. Moreover, it was found that the generated voltage by the thermoelectric module at constant temperature gradient was significantly affected when exposed to vapors of different volatile organic compounds representing then a self-powered thermoelectric sensor for chemical vapor detection.

Keywords: carbon nanotubes, polymer composites, thermoelectric materials, self-powered gas sensor

Procedia PDF Downloads 137
2125 Indirect Solar Desalination: Value Engineering and Cost Benefit Analysis

Authors: Grace Rachid, Mutasem El Fadel, Mahmoud Al Hindi, Ibrahim Jamali, Daniel Abdel Nour

Abstract:

This study examines the feasibility of indirect solar desalination in oil producing countries in the Middle East and North Africa (MENA) region. It relies on value engineering (VE) and cost-benefit with sensitivity analyses to identify optimal coupling configurations of desalination and solar energy technologies. A comparative return on investment was assessed as a function of water costs for varied plant capacities (25,000 to 75,000 m3/day), project lifetimes (15 to 25 years), and discount rates (5 to 15%) taking into consideration water and energy subsidies, land cost as well as environmental externalities in the form of carbon credit related to greenhouse gas (GHG) emissions reduction. The results showed reverse osmosis (RO) coupled with photovoltaic technologies (PVs) as the most promising configuration, robust across different prices for Brent oil, discount rates, as well as different project lifetimes. Environmental externalities and subsidies analysis revealed that a 16% reduction in existing subsidy on water tariffs would ensure economic viability. Additionally, while land costs affect investment attractiveness, the viability of RO coupled with PV remains possible for a land purchase cost < $ 80/m2 or a lease rate < $1/m2/yr. Beyond those rates, further subsidy lifting is required.

Keywords: solar energy, desalination, value engineering, CBA, carbon credit, subsidies

Procedia PDF Downloads 560
2124 A Fundamental Study on the Anchor Performance of Non-Surface Treated Multi CFRP Tendons

Authors: Woo-tai Jung, Jong-sup Park, Jae-yoon Kang, Moon-seoung Keum

Abstract:

CFRP (Carbon Fiber Reinforced Polymer) is mainly used as reinforcing material for degraded structures owing to its advantages including its non-corrodibility, high strength, and lightweight properties. Recently, dedicated studies focused not only on its simple bonding but also on its tensioning. The tension necessary for prestressing requires the anchoring of multi-CFRP tendons with high capacity and the surface treatment of the CFRP tendons may also constitute an important issue according to the type of anchor. The wedge type, swage type or bonded type anchor can be used to anchor the CFRP tendon. The bonded type anchor presents the disadvantage to lengthen the length of the anchor due to the low bond strength of the CFRP tendon without surface treatment. This study intends to overcome this drawback through the application of a method enlarging the bond area at the end of the CFRP tendon. This method enlarges the bond area by splitting the end of the CFRP tendon along its length and can be applied when CFRP is produced by pultrusion. The application of this method shows that the mono-CFRP tendon and 3-multi CFRP tendon secured the anchor performance corresponding to the tensile performance of the CFRP tendon and that the 7-multi tendon secured anchor performance corresponding to 90% of the tensile strength due to the occurrence of buckling in the steel tube anchorage.

Keywords: carbon fiber reinforced polymer (CFRP), tendon, anchor, tensile property, bond strength

Procedia PDF Downloads 233