Search results for: computer anxiety
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3277

Search results for: computer anxiety

1837 The Relationship between Self-Injurious Behavior and Manner of Death

Authors: Sait Ozsoy, Hacer Yasar Teke, Mustafa Dalgic, Cetin Ketenci, Ertugrul Gok, Kenan Karbeyaz, Azem Irez, Mesut Akyol

Abstract:

Self-mutilating behavior or self-injury behavior (SIB) is defined as: intentional harm to one’s body without intends to commit suicide”. SIB cases are commonly seen in psychiatry and forensic medicine practices. Despite variety of SIB methods, cuts in the skin is the most common (70-97%) injury in this group of patients. Subjects with SIB have one or more other comorbidities which include depression, anxiety, depersonalization, and feeling of worthlessness, borderline personality disorder, antisocial behaviors, and histrionic personality. These individuals feel a high level of hostility towards themselves and their surroundings. Researches have also revealed a strong relationship between antisocial personality disorder, criminal behavior, and SIB. This study has retrospectively evaluated 6,599 autopsy cases performed at forensic medicine institutes of six major cities (Ankara, Izmir, Diyarbakir, Erzurum, Trabzon, Eskisehir) of Turkey in 2013. The study group consisted of all cases with SIB findings (psychopathic cuts, cigarette burns, scars, and etc.). The relationship between causes of death in the study group (SIB subjects) and the control group was investigated. The control group was created from subjects without signs of SIB. Mann-Whitney U test was used for age variables and Chi-square test for categorical variables. Multinomial logistic regression analysis was used in order to analyze group differences in respect to manner of death (natural, accident, homicide, suicide) and analysis of risk factors associated with each group was determined by the Binomial logistic regression analysis. This study used SPSS statistics 15.0 for all its statistical and calculation needs. The statistical significance was p <0.05. There was no significant difference between accidental and natural death among the groups (p=0.737). Also there was a unit increase in number of cuts in psychopathic group while number of accidental death decreased (95% CI: 0.941-0.993) by 0.967 times (p=0.015). In contrast, there was a significant difference between suicidal and natural death (p<0.001), and also between homicidal and natural death (p=0.025). SIB is often seen with borderline and antisocial personality disorder but may be associated with many psychiatric illnesses. Studies have shown a relationship between antisocial personality disorders with criminal behavior and SIB with suicidal behavior. In our study, rate of suicide, murder and intoxication was higher compared to the control group. It could be concluded that SIB can be used as a predictor of possibility of one’s harm to him/herself and other people.

Keywords: autopsy, cause of death, forensic science, self-injury behaviour

Procedia PDF Downloads 510
1836 Dyadic Effect of Emotional Focused Psycho Educational Intervention on Spousal Emotional Abuse and Marital Satisfaction among Elderly Couples

Authors: Maryam Hazrati, Tengku Aizan Hamid, Rahimah Ibrahim, Siti Aishah Hassan, Farkhondeh Sharif, Zahra Bagheri

Abstract:

Background: Emotional abuse is the most common type of spousal abuse. In a long-term marriage which lasts several decades, the couple will be faced with greater vulnerability due to illness, disability, and dependence. Emotional abuse can have a devastating impact on victims, leading to low self-esteem, depression, anxiety, and post-traumatic stress disorder. Research Aim: The aim of this study was to investigate the effects of an emotional-focused psychoeducational intervention (EFPEI) on emotional abuse and marital satisfaction among older adults couples and also to examine the dyadic effects of each partner’s emotional abuse behaviors (EAB) on his/her marital satisfaction (MS) in Shiraz-Iran. Methodology: The study was a randomized controlled trial (RCT). A total of 57 eligible couples were randomly assigned to either the experimental group or the control group. The experimental group received EFPEI, which consisted of 12 sessions, each lasting 90 minutes. The control group did not receive any intervention. Data were collected using demographic questionnaire, Multidimensional Measure of Emotional Abuse (MMEAQ), and Marital Satisfaction Questionnaire for Older People (MSQFOP). The data was analyzed using a variety of statistical methods, including repeated measures ANOVA, path analysis, and correlational analyses. Findings: The results of the study showed that the EFPEI was effective in reducing emotional abuse and increasing marital satisfaction among older adults couples. Specifically, the mean scores for emotional abuse and marital satisfaction were significantly lower in the experimental group than in the control group at the end of the intervention. These effects were maintained at a 3-month follow-up. Moreover, the dyadic analysis revealed that husbands’ EAB had no significant effects on his own marital satisfaction but a significant negative partner effect, while wives’ EAB had significant negative actor and partner effects. Conclusion: The findings of this study provide support for the use of EFPEI as an effective intervention for decreasing emotional abuse and improving marital dissatisfaction among older adults. EFPEI is a short-term, evidence-based intervention that can be delivered by trained professionals. The intervention focuses on helping couples to improve their communication skills, resolve conflict, and build a stronger emotional connection.

Keywords: spouse abuse, emotion, aged, satisfaction, dyadic effect

Procedia PDF Downloads 84
1835 Lexical Semantic Analysis to Support Ontology Modeling of Maintenance Activities– Case Study of Offshore Riser Integrity

Authors: Vahid Ebrahimipour

Abstract:

Word representation and context meaning of text-based documents play an essential role in knowledge modeling. Business procedures written in natural language are meant to store technical and engineering information, management decision and operation experience during the production system life cycle. Context meaning representation is highly dependent upon word sense, lexical relativity, and sematic features of the argument. This paper proposes a method for lexical semantic analysis and context meaning representation of maintenance activity in a mass production system. Our approach constructs a straightforward lexical semantic approach to analyze facilitates semantic and syntactic features of context structure of maintenance report to facilitate translation, interpretation, and conversion of human-readable interpretation into computer-readable representation and understandable with less heterogeneity and ambiguity. The methodology will enable users to obtain a representation format that maximizes shareability and accessibility for multi-purpose usage. It provides a contextualized structure to obtain a generic context model that can be utilized during the system life cycle. At first, it employs a co-occurrence-based clustering framework to recognize a group of highly frequent contextual features that correspond to a maintenance report text. Then the keywords are identified for syntactic and semantic extraction analysis. The analysis exercises causality-driven logic of keywords’ senses to divulge the structural and meaning dependency relationships between the words in a context. The output is a word contextualized representation of maintenance activity accommodating computer-based representation and inference using OWL/RDF.

Keywords: lexical semantic analysis, metadata modeling, contextual meaning extraction, ontology modeling, knowledge representation

Procedia PDF Downloads 105
1834 Comparative Study of Static and Dynamic Representations of the Family Structure and Its Clinical Utility

Authors: Marietta Kékes Szabó

Abstract:

The patterns of personality (mal)function and the individuals’ psychosocial environment influence the healthy status collectively and may lie in the background of psychosomatic disorders. Although the patients with their diversified symptoms usually do not have any organic problems, the experienced complaint, the fear of serious illness and the lack of social support often lead to increased anxiety and further enigmatic symptoms. The role of the family system and its atmosphere seem to be very important in this process. More studies explored the characteristics of dysfunctional family organization: inflexible family structure, hidden conflicts that are not spoken about by the family members during their daily interactions, undefined role boundaries, neglect or overprotection of the children by the parents and coalition between generations. However, questionnaires that are used to measure the properties of the family system are able to explore only its unit and cannot pay attention to the dyadic interactions, while the representation of the family structure by a figure placing test gives us a new perspective to better understand the organization of the (sub)system(s). Furthermore, its dynamic form opens new perspectives to explore the family members’ joint representations, which gives us the opportunity to know more about the flexibility of cohesion and hierarchy of the given family system. In this way, the communication among the family members can be also examined. The aim of my study was to collect a great number of information about the organization of psychosomatic families. In our research we used Gehring’s Family System Test (FAST) both in static and dynamic forms to mobilize the family members’ mental representations about their family and to get data in connection with their individual representations as well as cooperation. There were four families in our study, all of them with a young adult person. Two families with healthy participants and two families with asthmatic patient(s) were involved in our research. The family members’ behavior that could be observed during the dynamic situation was recorded on video for further data analysis with Noldus Observer XT 8.0 program software. In accordance with the previous studies, our results show that the family structure of the families with at least one psychosomatic patient is more rigid than it was found in the control group and the certain (typical, ideal, and conflict) dynamic representations reflected mainly the most dominant family member’s individual concept. The behavior analysis also confirmed the intensified role of the dominant person(s) in the family life, thereby influencing the family decisions, the place of the other family members, as well as the atmosphere of the interactions, which could also be grasped well by the applied methods. However, further research is needed to learn more about the phenomenon that can open the door for new therapeutic approaches.

Keywords: psychosomatic families, family structure, family system test (FAST), static and dynamic representations, behavior analysis

Procedia PDF Downloads 391
1833 The Relationship between Violence against Women in the Family and Common Mental Disorders in Urban Informal Settlements of Mumbai, India: A Cross-Sectional Study

Authors: Abigail Bentley, Audrey Prost, Nayreen Daruwalla, Apoorwa Gupta, David Osrin

Abstract:

BACKGROUND: Intimate partner violence (IPV) can impact a woman’s physical, reproductive and mental health, including common mental disorders such as anxiety and depression. However, people other than an intimate partner may also perpetrate violence against women in the family, particularly in India. This study aims to investigate the relationship between experiences of violence perpetrated by the husband and other members of the wider household and symptoms of common mental disorders in women residing in informal settlement (slum) areas of Mumbai. METHODS: Experiences of violence were assessed through a detailed cross-sectional survey of 598 women, including questions about specific acts of emotional, economic, physical and sexual violence across different time points in the woman’s life and the main perpetrator of each act. Symptoms of common mental disorders were assessed using the 12-item General Health Questionnaire (GHQ-12). The GHQ-12 scores were divided into four groups and the relationship between experiences of each type of violence in the last 12 months and GHQ-12 score group was analyzed using ordinal logistic regression, adjusted for the woman’s age and clustering. RESULTS: 482 (81%) women consented to interview. On average, they were 28.5 years old, had completed 7 years of education and had been married 9 years. 88% were Muslim and 47% lived in joint and 53% in nuclear families. 44% of women had experienced at least one act of violence in their lifetime (33% emotional, 22% economic, 23% physical, 12% sexual). 7% had a high GHQ-12 score (6 or above). For violence experiences in the last 12 months, the odds of being in the highest GHQ-12 score group versus the lower groups combined were 13.1 for emotional violence, 6.5 for economic, 5.7 for physical and 6.3 for sexual (p<0.001 for all outcomes). DISCUSSION: The high level of violence reported across the lifetime could be due to the detailed assessment of violent acts at multiple time points and the inclusion of perpetrators within the family other than the husband. Each type of violence was associated with greater odds of a higher GHQ-12 score and therefore more symptoms of common mental disorders. Emotional violence was far more strongly associated with symptoms of common mental disorders than physical or sexual violence. However, it is not possible to attribute causal directionality to the association. Further work to investigate the relationship between differing severity of violence experiences and women’s mental health and the components of emotional violence that make it so strongly associated with symptoms of common mental disorders would be beneficial.

Keywords: common mental disorders, family violence, India, informal settlements, mental health, violence against women

Procedia PDF Downloads 359
1832 Parallel Multisplitting Methods for Differential Systems

Authors: Malika El Kyal, Ahmed Machmoum

Abstract:

We prove the superlinear convergence of asynchronous multi-splitting methods applied to differential equations. This study is based on the technique of nested sets. It permits to specify kind of the convergence in the asynchronous mode.The main characteristic of an asynchronous mode is that the local algorithm not have to wait at predetermined messages to become available. We allow some processors to communicate more frequently than others, and we allow the communication delays to be substantial and unpredictable. Note that synchronous algorithms in the computer science sense are particular cases of our formulation of asynchronous one.

Keywords: parallel methods, asynchronous mode, multisplitting, ODE

Procedia PDF Downloads 526
1831 High Performance Computing and Big Data Analytics

Authors: Branci Sarra, Branci Saadia

Abstract:

Because of the multiplied data growth, many computer science tools have been developed to process and analyze these Big Data. High-performance computing architectures have been designed to meet the treatment needs of Big Data (view transaction processing standpoint, strategic, and tactical analytics). The purpose of this article is to provide a historical and global perspective on the recent trend of high-performance computing architectures especially what has a relation with Analytics and Data Mining.

Keywords: high performance computing, HPC, big data, data analysis

Procedia PDF Downloads 520
1830 Scheduling Residential Daily Energy Consumption Using Bi-criteria Optimization Methods

Authors: Li-hsing Shih, Tzu-hsun Yen

Abstract:

Because of the long-term commitment to net zero carbon emission, utility companies include more renewable energy supply, which generates electricity with time and weather restrictions. This leads to time-of-use electricity pricing to reflect the actual cost of energy supply. From an end-user point of view, better residential energy management is needed to incorporate the time-of-use prices and assist end users in scheduling their daily use of electricity. This study uses bi-criteria optimization methods to schedule daily energy consumption by minimizing the electricity cost and maximizing the comfort of end users. Different from most previous research, this study schedules users’ activities rather than household appliances to have better measures of users’ comfort/satisfaction. The relation between each activity and the use of different appliances could be defined by users. The comfort level is at the highest when the time and duration of an activity completely meet the user’s expectation, and the comfort level decreases when the time and duration do not meet expectations. A questionnaire survey was conducted to collect data for establishing regression models that describe users’ comfort levels when the execution time and duration of activities are different from user expectations. Six regression models representing the comfort levels for six types of activities were established using the responses to the questionnaire survey. A computer program is developed to evaluate electricity cost and the comfort level for each feasible schedule and then find the non-dominated schedules. The Epsilon constraint method is used to find the optimal schedule out of the non-dominated schedules. A hypothetical case is presented to demonstrate the effectiveness of the proposed approach and the computer program. Using the program, users can obtain the optimal schedule of daily energy consumption by inputting the intended time and duration of activities and the given time-of-use electricity prices.

Keywords: bi-criteria optimization, energy consumption, time-of-use price, scheduling

Procedia PDF Downloads 60
1829 Image Based Landing Solutions for Large Passenger Aircraft

Authors: Thierry Sammour Sawaya, Heikki Deschacht

Abstract:

In commercial aircraft operations, almost half of the accidents happen during approach or landing phases. Automatic guidance and automatic landings have proven to bring significant safety value added for this challenging landing phase. This is why Airbus and ScioTeq have decided to work together to explore the capability of image-based landing solutions as additional landing aids to further expand the possibility to perform automatic approach and landing to runways where the current guiding systems are either not fitted or not optimum. Current systems for automated landing often depend on radio signals provided by airport ground infrastructure on the airport or satellite coverage. In addition, these radio signals may not always be available with the integrity and performance required for safe automatic landing. Being independent from these radio signals would widen the operations possibilities and increase the number of automated landings. Airbus and ScioTeq are joining their expertise in the field of Computer Vision in the European Program called Clean Sky 2 Large Passenger Aircraft, in which they are leading the IMBALS (IMage BAsed Landing Solutions) project. The ultimate goal of this project is to demonstrate, develop, validate and verify a certifiable automatic landing system guiding an airplane during the approach and landing phases based on an onboard camera system capturing images, enabling automatic landing independent from radio signals and without precision instrument for landing. In the frame of this project, ScioTeq is responsible for the development of the Image Processing Platform (IPP), while Airbus is responsible for defining the functional and system requirements as well as the testing and integration of the developed equipment in a Large Passenger Aircraft representative environment. The aim of this paper will be to describe the system as well as the associated methods and tools developed for validation and verification.

Keywords: aircraft landing system, aircraft safety, autoland, avionic system, computer vision, image processing

Procedia PDF Downloads 101
1828 Development of a Computer Aided Diagnosis Tool for Brain Tumor Extraction and Classification

Authors: Fathi Kallel, Abdulelah Alabd Uljabbar, Abdulrahman Aldukhail, Abdulaziz Alomran

Abstract:

The brain is an important organ in our body since it is responsible about the majority actions such as vision, memory, etc. However, different diseases such as Alzheimer and tumors could affect the brain and conduct to a partial or full disorder. Regular diagnosis are necessary as a preventive measure and could help doctors to early detect a possible trouble and therefore taking the appropriate treatment, especially in the case of brain tumors. Different imaging modalities are proposed for diagnosis of brain tumor. The powerful and most used modality is the Magnetic Resonance Imaging (MRI). MRI images are analyzed by doctor in order to locate eventual tumor in the brain and describe the appropriate and needed treatment. Diverse image processing methods are also proposed for helping doctors in identifying and analyzing the tumor. In fact, a large Computer Aided Diagnostic (CAD) tools including developed image processing algorithms are proposed and exploited by doctors as a second opinion to analyze and identify the brain tumors. In this paper, we proposed a new advanced CAD for brain tumor identification, classification and feature extraction. Our proposed CAD includes three main parts. Firstly, we load the brain MRI. Secondly, a robust technique for brain tumor extraction is proposed. This technique is based on both Discrete Wavelet Transform (DWT) and Principal Component Analysis (PCA). DWT is characterized by its multiresolution analytic property, that’s why it was applied on MRI images with different decomposition levels for feature extraction. Nevertheless, this technique suffers from a main drawback since it necessitates a huge storage and is computationally expensive. To decrease the dimensions of the feature vector and the computing time, PCA technique is considered. In the last stage, according to different extracted features, the brain tumor is classified into either benign or malignant tumor using Support Vector Machine (SVM) algorithm. A CAD tool for brain tumor detection and classification, including all above-mentioned stages, is designed and developed using MATLAB guide user interface.

Keywords: MRI, brain tumor, CAD, feature extraction, DWT, PCA, classification, SVM

Procedia PDF Downloads 250
1827 Seashore Debris Detection System Using Deep Learning and Histogram of Gradients-Extractor Based Instance Segmentation Model

Authors: Anshika Kankane, Dongshik Kang

Abstract:

Marine debris has a significant influence on coastal environments, damaging biodiversity, and causing loss and damage to marine and ocean sector. A functional cost-effective and automatic approach has been used to look up at this problem. Computer vision combined with a deep learning-based model is being proposed to identify and categorize marine debris of seven kinds on different beach locations of Japan. This research compares state-of-the-art deep learning models with a suggested model architecture that is utilized as a feature extractor for debris categorization. The model is being proposed to detect seven categories of litter using a manually constructed debris dataset, with the help of Mask R-CNN for instance segmentation and a shape matching network called HOGShape, which can then be cleaned on time by clean-up organizations using warning notifications of the system. The manually constructed dataset for this system is created by annotating the images taken by fixed KaKaXi camera using CVAT annotation tool with seven kinds of category labels. A pre-trained HOG feature extractor on LIBSVM is being used along with multiple templates matching on HOG maps of images and HOG maps of templates to improve the predicted masked images obtained via Mask R-CNN training. This system intends to timely alert the cleanup organizations with the warning notifications using live recorded beach debris data. The suggested network results in the improvement of misclassified debris masks of debris objects with different illuminations, shapes, viewpoints and litter with occlusions which have vague visibility.

Keywords: computer vision, debris, deep learning, fixed live camera images, histogram of gradients feature extractor, instance segmentation, manually annotated dataset, multiple template matching

Procedia PDF Downloads 107
1826 An Exploratory Study on the Effect of a Fermented Dairy Product on Self-Reported Gut Complaints in US Recreational Athletes

Authors: Kersch-Counet C., Fransen K. H. S., Broyd M., Nyakayiru J. D. O. A., Schoemaker M. H., Mallee L. F., Bovee-Oudenhoven I. M. J.

Abstract:

Background: Around one third of people, including athletes, suffer from feelings of gut discomfort. Fermentation of dairy is a process that has been associated with products that can improve gut health. However, insight in (potential) health benefits of most fermented foods is limited to chemical analyses and in-vitro models. Objective: The aim of this open-label, single-arm explorative trial was to investigate in a real life setting the effect of consumption of a fermented whey product for 3 weeks on self-perceived physical and mental wellbeing and digestive issues in 150 US recreational athletes (20-50 years of age) with self-reported gut complaints at enrolment. Methods: Participants living at the West-Coast of the US received for 3 weeks a daily powder of 15 g of BiotisTM Fermentis to be mixed in water using a supplied shaker. Weekly questionnaires were conducted by MMR research to study the effect on physical/mental health issues and self-perceived gut complaints. Non-parametric tests (e.g., Friedman test) were used to assess statistical differences over time while the Kruskal-Wallis and Wilcoxon signed-rank tests were used for sub-groups analysis. Results: Bloating, stress and anxiety were the top 3 issues of the US recreational athletes. Satisfaction of physical wellbeing increased significantly throughout the 3-weeks of fermented whey product consumption (p<0.0005). Combined digestive issues decreased significantly after 2- and 3-weeks of product consumption, with bloating showing a significant reduction (p<0.05). There was a trend that self-reported stress levels reduced after 3 weeks and participants said to significantly feel more active, energetic, and vital (p<0.05). Subgroup analysis showed that gender and habitual protein supplement consumption were associated with specific health issues and modulated the response to the fermented dairy product. Conclusion: Daily consumption of the fermented BiotisTM Fermentis product is associated with a reduction in self-perceived gastrointestinal symptoms and improved overall wellbeing and mood state in US recreational athletes. This large nutrition and health consumer study brings valuable insights in self-reported gut complaints of recreational athletes in the US and their response to a fermented dairy product. A controlled clinical trial in a targeted population is recommended to scientifically substantiate the product effect as observed in this explorative study.

Keywords: real-life study, digestive health, fermented whey, sports

Procedia PDF Downloads 269
1825 Technological Affordances of a Mobile Fitness Application- A Role of Escapism and Social Outcome Expectation

Authors: Inje Cho

Abstract:

The leading health risks threatening the world today are associated with a modern lifestyle characterized by sedentary behavior, stress, anxiety, and an obesogenic food environment. To counter this alarming trend, the Centers for Disease Control and Prevention have proffered Physical Activity guidelines to bolster physical engagement. Concurrently, the burgeon of smartphones and mobile applications has witnessed a proliferation of fitness applications aimed at invigorating exercise adherence and real-time activity monitoring. Grounded in the Uses and gratification theory, this study delves into the technological affordances of mobile fitness applications, discerning the mediating influences of escapism and social outcome expectations on attitudes and exercise intention. The theory explains how individuals employ distinct communication mediums to satiate their exigencies and desires. Technological affordances manifest as attributes of emerging technologies that galvanize personal engagement in physical activities. Several features of mobile fitness applications include affordances for goal setting, virtual rewards, peer support, and exercise information. Escapism, denoting the inclination to disengage from normal routines, has emerged as a salient motivator for the consumption of new media. This study postulates that individual’s perceptions technological affordances within mobile fitness applications, can affect escapism and social outcome expectations, potentially influencing attitude, and behavior formation. Thus, the integrated model has been developed to empirically examine the interrelationships between technological affordances, escapism, social outcome expectations, and exercise intention. Structural Equation Modelling serves as the methodological tool, and a cohort of 400 Fitbit users shall be enlisted from the Prolific, data collection platform. A sequence of multivariate data analyses will scrutinize both the measurement and hypothesized structural models. By delving into the effects of mobile fitness applications, this study contributes to the growing of new media studies in sport management. Moreover, the novel integration of the uses and gratification theory, technological affordances, via the prism of escapism, illustrates the dynamics that underlies mobile fitness user’s attitudes and behavioral intentions. Therefore, the findings from this study contribute to theoretical understanding and provide pragmatic insights to developers and practitioners in optimizing the impact of mobile fitness applications.

Keywords: technological affordances, uses and gratification, mobile fitness apps, escapism, physical activity

Procedia PDF Downloads 80
1824 Reinforcement Learning For Agile CNC Manufacturing: Optimizing Configurations And Sequencing

Authors: Huan Ting Liao

Abstract:

In a typical manufacturing environment, computer numerical control (CNC) machining is essential for automating production through precise computer-controlled tool operations, significantly enhancing efficiency and ensuring consistent product quality. However, traditional CNC production lines often rely on manual loading and unloading, limiting operational efficiency and scalability. Although automated loading systems have been developed, they frequently lack sufficient intelligence and configuration efficiency, requiring extensive setup adjustments for different products and impacting overall productivity. This research addresses the job shop scheduling problem (JSSP) in CNC machining environments, aiming to minimize total completion time (makespan) and maximize CNC machine utilization. We propose a novel approach using reinforcement learning (RL), specifically the Q-learning algorithm, to optimize scheduling decisions. The study simulates the JSSP, incorporating robotic arm operations, machine processing times, and work order demand allocation to determine optimal processing sequences. The Q-learning algorithm enhances machine utilization by dynamically balancing workloads across CNC machines, adapting to varying job demands and machine states. This approach offers robust solutions for complex manufacturing environments by automating decision-making processes for job assignments. Additionally, we evaluate various layout configurations to identify the most efficient setup. By integrating RL-based scheduling optimization with layout analysis, this research aims to provide a comprehensive solution for improving manufacturing efficiency and productivity in CNC-based job shops. The proposed method's adaptability and automation potential promise significant advancements in tackling dynamic manufacturing challenges.

Keywords: job shop scheduling problem, reinforcement learning, operations sequence, layout optimization, q-learning

Procedia PDF Downloads 24
1823 Unveiling Comorbidities in Irritable Bowel Syndrome: A UK BioBank Study utilizing Supervised Machine Learning

Authors: Uswah Ahmad Khan, Muhammad Moazam Fraz, Humayoon Shafique Satti, Qasim Aziz

Abstract:

Approximately 10-14% of the global population experiences a functional disorder known as irritable bowel syndrome (IBS). The disorder is defined by persistent abdominal pain and an irregular bowel pattern. IBS significantly impairs work productivity and disrupts patients' daily lives and activities. Although IBS is widespread, there is still an incomplete understanding of its underlying pathophysiology. This study aims to help characterize the phenotype of IBS patients by differentiating the comorbidities found in IBS patients from those in non-IBS patients using machine learning algorithms. In this study, we extracted samples coding for IBS from the UK BioBank cohort and randomly selected patients without a code for IBS to create a total sample size of 18,000. We selected the codes for comorbidities of these cases from 2 years before and after their IBS diagnosis and compared them to the comorbidities in the non-IBS cohort. Machine learning models, including Decision Trees, Gradient Boosting, Support Vector Machine (SVM), AdaBoost, Logistic Regression, and XGBoost, were employed to assess their accuracy in predicting IBS. The most accurate model was then chosen to identify the features associated with IBS. In our case, we used XGBoost feature importance as a feature selection method. We applied different models to the top 10% of features, which numbered 50. Gradient Boosting, Logistic Regression and XGBoost algorithms yielded a diagnosis of IBS with an optimal accuracy of 71.08%, 71.427%, and 71.53%, respectively. Among the comorbidities most closely associated with IBS included gut diseases (Haemorrhoids, diverticular diseases), atopic conditions(asthma), and psychiatric comorbidities (depressive episodes or disorder, anxiety). This finding emphasizes the need for a comprehensive approach when evaluating the phenotype of IBS, suggesting the possibility of identifying new subsets of IBS rather than relying solely on the conventional classification based on stool type. Additionally, our study demonstrates the potential of machine learning algorithms in predicting the development of IBS based on comorbidities, which may enhance diagnosis and facilitate better management of modifiable risk factors for IBS. Further research is necessary to confirm our findings and establish cause and effect. Alternative feature selection methods and even larger and more diverse datasets may lead to more accurate classification models. Despite these limitations, our findings highlight the effectiveness of Logistic Regression and XGBoost in predicting IBS diagnosis.

Keywords: comorbidities, disease association, irritable bowel syndrome (IBS), predictive analytics

Procedia PDF Downloads 119
1822 Ethical Issues around Online Marketing to Children

Authors: Chris Preston

Abstract:

As we devise ever more sophisticated methods of on-line marketing, devising systems that are able to reach into the everyday lives of consumers, we are confronted by a generation of children who face unprecedented intervention by commercial organisations into young minds, via electronic devices, and whether by computer, tablet or phone, such children have been somehow reduced to the status of their devices, with little regard for their well being as individuals. This discussion paper seeks to draw attention to such practice and questions the ethics of digital marketing methods.

Keywords: online marketing to children, online research of children, online targeting of children, consumer rights, ethics

Procedia PDF Downloads 393
1821 Resisting Adversarial Assaults: A Model-Agnostic Autoencoder Solution

Authors: Massimo Miccoli, Luca Marangoni, Alberto Aniello Scaringi, Alessandro Marceddu, Alessandro Amicone

Abstract:

The susceptibility of deep neural networks (DNNs) to adversarial manipulations is a recognized challenge within the computer vision domain. Adversarial examples, crafted by adding subtle yet malicious alterations to benign images, exploit this vulnerability. Various defense strategies have been proposed to safeguard DNNs against such attacks, stemming from diverse research hypotheses. Building upon prior work, our approach involves the utilization of autoencoder models. Autoencoders, a type of neural network, are trained to learn representations of training data and reconstruct inputs from these representations, typically minimizing reconstruction errors like mean squared error (MSE). Our autoencoder was trained on a dataset of benign examples; learning features specific to them. Consequently, when presented with significantly perturbed adversarial examples, the autoencoder exhibited high reconstruction errors. The architecture of the autoencoder was tailored to the dimensions of the images under evaluation. We considered various image sizes, constructing models differently for 256x256 and 512x512 images. Moreover, the choice of the computer vision model is crucial, as most adversarial attacks are designed with specific AI structures in mind. To mitigate this, we proposed a method to replace image-specific dimensions with a structure independent of both dimensions and neural network models, thereby enhancing robustness. Our multi-modal autoencoder reconstructs the spectral representation of images across the red-green-blue (RGB) color channels. To validate our approach, we conducted experiments using diverse datasets and subjected them to adversarial attacks using models such as ResNet50 and ViT_L_16 from the torch vision library. The autoencoder extracted features used in a classification model, resulting in an MSE (RGB) of 0.014, a classification accuracy of 97.33%, and a precision of 99%.

Keywords: adversarial attacks, malicious images detector, binary classifier, multimodal transformer autoencoder

Procedia PDF Downloads 113
1820 Relevance of Technology on Education

Authors: Felicia K. Oluwalola

Abstract:

This paper examines the relevance of technology on education. It identified the concept of technology on education, bringing real-world learning to the classroom situation, examples of where technology can be used. This study established the fact that technology facilitates students learning compared with traditional method of teaching. It was recommended that the teachers should use technology to supplement, not replace, other instructional modes. It should be used in conjunction with hands-on labs and activities that also address the concepts targeted by the technology. Also, technology should be students centered and not teachers centered.

Keywords: computer, simulation, classroom teaching, education

Procedia PDF Downloads 451
1819 Factors Affecting Physical Activity among University Students of Different Fields of Study

Authors: Robert Dutkiewicz, Monika Szpringer, Mariola Wojciechowska

Abstract:

Physical activity is one of the factors greatly influencing healthy lifestyle. The recent research into physical activity of the Polish society reveals that contribution of physical culture to healthy lifestyle is insufficient. Students, regardless of age, spend most of free-time in front of a TV or computer. The research attempted to identify the level of physical activity and healthy lifestyle among students of medical sciences and other students doing their teaching degrees. The findings of physical activity research conducted in 2014, which covered 364 students of medical sciences and future teachers from the University of Jan Kochanowski in Kielce were analysed. The research involved the method of diagnostic survey based on a questionnaire. It attempted to establish to what extent such factors as the field of studies, the place of residence and BMI affect students’ physical activity. Empirical material was analysed by means of SPSS/PC, the leading statistical software. The field of study significantly influences physical activity of the respondents. The students of physiotherapy and public health tend to be more physically active than students of biology and geography: 46.8% students of geography and 51.8 % biology students seldom take up physical activity. Obesity and overweight are currently serious problems of university students: 6.6% of them are obese and 19% overweight. It is alarming that these students are not willing to find ways to be more physically active. Most of the obese and overweight respondents study biology or geography and live in a rural area. Unequal chances in terms of youth physical culture are determined by the differences between rural and urban environments. Young people living in rural areas are less physically active, particularly in terms of the frequency and the amount of time devoted to physical activity. This is caused by poor infrastructure to perform physical activity, the lack of or limited number of sports clubs and centres. It is thought-provoking that most of the students claim that they do not have enough time to do sports or other activities, but at the same time they spend a lot of time at a computer or watching TV.

Keywords: BMI, healthy lifestyle, sports activity, students

Procedia PDF Downloads 499
1818 Brain-Computer Interfaces That Use Electroencephalography

Authors: Arda Ozkurt, Ozlem Bozkurt

Abstract:

Brain-computer interfaces (BCIs) are devices that output commands by interpreting the data collected from the brain. Electroencephalography (EEG) is a non-invasive method to measure the brain's electrical activity. Since it was invented by Hans Berger in 1929, it has led to many neurological discoveries and has become one of the essential components of non-invasive measuring methods. Despite the fact that it has a low spatial resolution -meaning it is able to detect when a group of neurons fires at the same time-, it is a non-invasive method, making it easy to use without possessing any risks. In EEG, electrodes are placed on the scalp, and the voltage difference between a minimum of two electrodes is recorded, which is then used to accomplish the intended task. The recordings of EEGs include, but are not limited to, the currents along dendrites from synapses to the soma, the action potentials along the axons connecting neurons, and the currents through the synaptic clefts connecting axons with dendrites. However, there are some sources of noise that may affect the reliability of the EEG signals as it is a non-invasive method. For instance, the noise from the EEG equipment, the leads, and the signals coming from the subject -such as the activity of the heart or muscle movements- affect the signals detected by the electrodes of the EEG. However, new techniques have been developed to differentiate between those signals and the intended ones. Furthermore, an EEG device is not enough to analyze the data from the brain to be used by the BCI implication. Because the EEG signal is very complex, to analyze it, artificial intelligence algorithms are required. These algorithms convert complex data into meaningful and useful information for neuroscientists to use the data to design BCI devices. Even though for neurological diseases which require highly precise data, invasive BCIs are needed; non-invasive BCIs - such as EEGs - are used in many cases to help disabled people's lives or even to ease people's lives by helping them with basic tasks. For example, EEG is used to detect before a seizure occurs in epilepsy patients, which can then prevent the seizure with the help of a BCI device. Overall, EEG is a commonly used non-invasive BCI technique that has helped develop BCIs and will continue to be used to detect data to ease people's lives as more BCI techniques will be developed in the future.

Keywords: BCI, EEG, non-invasive, spatial resolution

Procedia PDF Downloads 71
1817 Computer Based Identification of Possible Molecular Targets for Induction of Drug Resistance Reversion in Multidrug Resistant Mycobacterium Tuberculosis

Authors: Oleg Reva, Ilya Korotetskiy, Marina Lankina, Murat Kulmanov, Aleksandr Ilin

Abstract:

Molecular docking approaches are widely used for design of new antibiotics and modeling of antibacterial activities of numerous ligands which bind specifically to active centers of indispensable enzymes and/or key signaling proteins of pathogens. Widespread drug resistance among pathogenic microorganisms calls for development of new antibiotics specifically targeting important metabolic and information pathways. A generally recognized problem is that almost all molecular targets have been identified already and it is getting more and more difficult to design innovative antibacterial compounds to combat the drug resistance. A promising way to overcome the drug resistance problem is an induction of reversion of drug resistance by supplementary medicines to improve the efficacy of the conventional antibiotics. In contrast to well established computer-based drug design, modeling of drug resistance reversion still is in its infancy. In this work, we proposed an approach to identification of compensatory genetic variants reducing the fitness cost associated with the acquisition of drug resistance by pathogenic bacteria. The approach was based on an analysis of the population genetic of Mycobacterium tuberculosis and on results of experimental modeling of the drug resistance reversion induced by a new anti-tuberculosis drug FS-1. The latter drug is an iodine-containing nanomolecular complex that passed clinical trials and was admitted as a new medicine against MDR-TB in Kazakhstan. Isolates of M. tuberculosis obtained on different stages of the clinical trials and also from laboratory animals infected with MDR-TB strain were characterized by antibiotic resistance, and their genomes were sequenced by the paired-end Illumina HiSeq 2000 technology. A steady increase in sensitivity to conventional anti-tuberculosis antibiotics in series of isolated treated with FS-1 was registered despite the fact that the canonical drug resistance mutations identified in the genomes of these isolates remained intact. It was hypothesized that the drug resistance phenotype in M. tuberculosis requires an adjustment of activities of many genes to compensate the fitness cost of the drug resistance mutations. FS-1 cased an aggravation of the fitness cost and removal of the drug-resistant variants of M. tuberculosis from the population. This process caused a significant increase in genetic heterogeneity of the Mtb population that was not observed in the positive and negative controls (infected laboratory animals left untreated and treated solely with the antibiotics). A large-scale search for linkage disequilibrium associations between the drug resistance mutations and genetic variants in other genomic loci allowed identification of target proteins, which could be influenced by supplementary drugs to increase the fitness cost of the drug resistance and deprive the drug-resistant bacterial variants of their competitiveness in the population. The approach will be used to improve the efficacy of FS-1 and also for computer-based design of new drugs to combat drug-resistant infections.

Keywords: complete genome sequencing, computational modeling, drug resistance reversion, Mycobacterium tuberculosis

Procedia PDF Downloads 263
1816 Application of Optical Method for Calcul of Deformed Object Samples

Authors: R. Daira

Abstract:

The electronic speckle interferometry technique used to measure the deformations of scatterers process is based on the subtraction of interference patterns. A speckle image is first recorded before deformation of the object in the RAM of a computer, after a second deflection. The square of the difference between two images showing correlation fringes observable in real time directly on monitor. The interpretation these fringes to determine the deformation. In this paper, we present experimental results of deformation out of the plane of two samples in aluminum, electronic boards and stainless steel.

Keywords: optical method, holography, interferometry, deformation

Procedia PDF Downloads 404
1815 Mathematical Toolbox for editing Equations and Geometrical Diagrams and Graphs

Authors: Ayola D. N. Jayamaha, Gihan V. Dias, Surangika Ranathunga

Abstract:

Currently there are lot of educational tools designed for mathematics. Open source software such as GeoGebra and Octave are bulky in their architectural structure. In addition, there is MathLab software, which facilitates much more than what we ask for. Many of the computer aided online grading and assessment tools require integrating editors to their software. However, there are not exist suitable editors that cater for all their needs in editing equations and geometrical diagrams and graphs. Some of the existing software for editing equations is Alfred’s Equation Editor, Codecogs, DragMath, Maple, MathDox, MathJax, MathMagic, MathFlow, Math-o-mir, Microsoft Equation Editor, MiraiMath, OpenOffice, WIRIS Editor and MyScript. Some of them are commercial, open source, supports handwriting recognition, mobile apps, renders MathML/LaTeX, Flash / Web based and javascript display engines. Some of the diagram editors are GeoKone.NET, Tabulae, Cinderella 1.4, MyScript, Dia, Draw2D touch, Gliffy, GeoGebra, Flowchart, Jgraph, JointJS, J painter Online diagram editor and 2D sketcher. All these software are open source except for MyScript and can be used for editing mathematical diagrams. However, they do not fully cater the needs of a typical computer aided assessment tool or Educational Platform for Mathematics. This solution provides a Web based, lightweight, easy to implement and integrate solution of an html5 canvas that renders on all of the modern web browsers. The scope of the project is an editor that covers equations and mathematical diagrams and drawings on the O/L Mathematical Exam Papers in Sri Lanka. Using the tool the students can enter any equation to the system which can be on an online remote learning platform. The users can also create and edit geometrical drawings, graphs and do geometrical constructions that require only Compass and Ruler from the Editing Interface provided by the Software. The special feature of this software is the geometrical constructions. It allows the users to create geometrical constructions such as angle bisectors, perpendicular lines, angles of 600 and perpendicular bisectors. The tool correctly imitates the functioning of rulers and compasses to create the required geometrical construction. Therefore, the users are able to do geometrical drawings on the computer successfully and we have a digital format of the geometrical drawing for further processing. Secondly, we can create and edit Venn Diagrams, color them and label them. In addition, the students can draw probability tree diagrams and compound probability outcome grids. They can label and mark regions within the grids. Thirdly, students can draw graphs (1st order and 2nd order). They can mark points on a graph paper and the system connects the dots to draw the graph. Further students are able to draw standard shapes such as circles and rectangles by selecting points on a grid or entering the parametric values.

Keywords: geometrical drawings, html5 canvas, mathematical equations, toolbox

Procedia PDF Downloads 377
1814 The Effects of Collaborative Videogame Play on Flow Experience and Mood

Authors: Eva Nolan, Timothy Mcnichols

Abstract:

Gamers spend over 3 billion hours collectively playing video games a week, which is arguably not nearly enough time to indulge in the many benefits gaming has to offer. Much of the previous research on video gaming is centered on the effects of playing violent video games and the negative impacts they have on the individual. However, there is a dearth of research in the area of non-violent video games, specifically the emotional and cognitive benefits playing non-violent games can offer individuals. Current research in the area of video game play suggests there are many benefits to playing for an individual, such as decreasing symptoms of depression, decreasing stress, increasing positive emotions, inducing relaxation, decreasing anxiety, and particularly improving mood. One suggestion as to why video games may offer such benefits is that they possess ideal characteristics to create and maintain flow experiences, which in turn, is the subjective experience where an individual obtains a heightened and improved state of mind while they are engaged in a task where a balance of challenge and skill is found. Many video games offer a platform for collaborative gameplay, which can enhance the emotional experience of gaming through the feeling of social support and social inclusion. The present study was designed to examine the effects of collaborative gameplay and flow experience on participants’ perceived mood. To investigate this phenomenon, an in-between subjects design involving forty participants were randomly divided into two groups where they engaged in solo or collaborative gameplay. Each group represented an even number of frequent gamers and non-frequent gamers. Each participant played ‘The Lego Movie Videogame’ on the Playstation 4 console. The participant’s levels of flow experience and perceived mood were measured by the Flow State Scale (FSS) and the Positive and Negative Affect Schedule (PANAS). The following research hypotheses were investigated: (i.) participants in the collaborative gameplay condition will experience higher levels of flow experience and higher levels of mood than those in the solo gameplay condition; (ii.) participants who are frequent gamers will experience higher levels of flow experience and higher levels of mood than non-frequent gamers; and (iii.) there will be a significant positive relationship between flow experience and mood. If the estimated findings are supported, this suggests that engaging in collaborative gameplay can be beneficial for an individual’s mood and that experiencing a state of flow can also enhance an individual’s mood. Hence, collaborative gaming can be beneficial to promote positive emotions (higher levels of mood) through engaging an individual’s flow state.

Keywords: collaborative gameplay, flow experience, mood, games, positive emotions

Procedia PDF Downloads 335
1813 Clustering and Modelling Electricity Conductors from 3D Point Clouds in Complex Real-World Environments

Authors: Rahul Paul, Peter Mctaggart, Luke Skinner

Abstract:

Maintaining public safety and network reliability are the core objectives of all electricity distributors globally. For many electricity distributors, managing vegetation clearances from their above ground assets (poles and conductors) is the most important and costly risk mitigation control employed to meet these objectives. Light Detection And Ranging (LiDAR) is widely used by utilities as a cost-effective method to inspect their spatially-distributed assets at scale, often captured using high powered LiDAR scanners attached to fixed wing or rotary aircraft. The resulting 3D point cloud model is used by these utilities to perform engineering grade measurements that guide the prioritisation of vegetation cutting programs. Advances in computer vision and machine-learning approaches are increasingly applied to increase automation and reduce inspection costs and time; however, real-world LiDAR capture variables (e.g., aircraft speed and height) create complexity, noise, and missing data, reducing the effectiveness of these approaches. This paper proposes a method for identifying each conductor from LiDAR data via clustering methods that can precisely reconstruct conductors in complex real-world configurations in the presence of high levels of noise. It proposes 3D catenary models for individual clusters fitted to the captured LiDAR data points using a least square method. An iterative learning process is used to identify potential conductor models between pole pairs. The proposed method identifies the optimum parameters of the catenary function and then fits the LiDAR points to reconstruct the conductors.

Keywords: point cloud, LİDAR data, machine learning, computer vision, catenary curve, vegetation management, utility industry

Procedia PDF Downloads 99
1812 Emotion Motives Predict the Mood States of Depression and Happiness

Authors: Paul E. Jose

Abstract:

A new self-report measure named the General Emotion Regulation Measure (GERM) assesses four key goals for experiencing broad valenced groups of emotions: 1) trying to experience positive emotions (e.g., joy, pride, liking a person); 2) trying to avoid experiencing positive emotions; 3) trying to experience negative emotions (e.g., anger, anxiety, contempt); and 4) trying to avoid experiencing negative emotions. Although individual differences in GERM motives have been identified, evidence of validity with common mood outcomes is lacking. In the present study, whether GERM motives predict self-reported subjective happiness and depressive symptoms (CES-D) was tested with a community sample of 833 young adults. It was predicted that the GERM motive of trying to experience positive emotions would positively predict subjective happiness, and analogously trying to experience negative emotions would predict depressive symptoms. An initial path model was constructed in which the four GERM motives predicted both subjective happiness and depressive symptoms. The fully saturated model included three non-significant paths, which were subsequently pruned, and a good fitting model was obtained (CFI = 1.00; RMR = .007). Two GERM motives significantly predicted subjective happiness: 1) trying to experience positive emotions ( = .38, p < .001) and 2) trying to avoid experiencing positive emotions ( = -.48, p <.001). Thus, individuals who reported high levels of trying to experience positive emotions reported high levels of happiness, and individuals who reported low levels of trying to avoid experiencing positive emotions also reported high levels of happiness. Three GERM motives significantly predicted depressive symptoms: 1) trying to avoid experiencing positive emotions ( = .20, p <.001); 2) trying to experience negative emotions ( = .15, p <.001); and 3) trying to experience positive emotions (= -.07, p <.001). In agreement with predictions, trying to experience positive emotions was positively associated with subjective happiness and trying to experience negative emotions was positively associated with depressive symptoms. In essence, these two valenced mood states seem to be sustained by trying to experience similarly valenced emotions. However, the three other significant paths in the model indicated that emotional motives play a complicated role in supporting both positive and negative mood states. For subjective happiness, the GERM motive of not trying to avoid positive emotions, i.e., not avoiding happiness, was also a strong predictor of happiness. Thus, people who report being the happiest are those individuals who not only strive to experience positive emotions but also are not ambivalent about them. The pattern for depressive symptoms was more nuanced. Individuals who reported higher depressive symptoms also reported higher levels of avoiding positive emotions and trying to experience negative emotions. The strongest predictor for depressed mood was avoiding positive emotions, which would suggest that happiness aversion or fear of happiness is an important motive for dysphoric people. Future work should determine whether these patterns of association are similar among clinically depressed people, and longitudinal data are needed to determine temporal relationships between motives and mood states.

Keywords: emotions motives, depression, subjective happiness, path model

Procedia PDF Downloads 203
1811 Using Eye-Tracking Technology to Understand Consumers’ Comprehension of Multimedia Health Information

Authors: Samiullah Paracha, Sania Jehanzeb, M. H. Gharanai, A. R. Ahmadi, H.Sokout, Toshiro Takahara

Abstract:

The purpose of this study is to examine how health consumers utilize pictures when developing an understanding of multimedia health documents, and whether attentional processes, measured by eye-tracking, relate to differences in health-related cognitive resources and passage comprehension. To investigate these issues, we will present health-related text-picture passages to elders and collect eye movement data to measure readers’ looking behaviors.

Keywords: multimedia, eye-tracking, consumer health informatics, human-computer interaction

Procedia PDF Downloads 339
1810 Trauma inside and Out: A Descriptive Cross-Sectional Study of Family, Community and Psychological Wellbeing amongst Pediatric Victims of Interpersonal Violence

Authors: Mary Bernardin, Margie Batek, Joseph Moen, David Schnadower

Abstract:

Background: Exposure to violence not only has negative psychological impact on children but is a risk factor for children becoming recurrent victims of violence. However, little is known regarding the degree to which child victims of violence are exposed to trauma at home and in their community, or its association with specific psychological diagnoses. Objective: The aims of this study were to perform in-depth characterizations of family, community and psychological wellness amongst pediatric victims of interpersonal violence. Methods: As standard of care at the Saint Louis Children’s Hospital pediatric emergency department (ED), social workers perform in-depth interviews with all children presenting due to violent interpersonal encounters. In this retrospective cross-sectional study, we collected data from social work interviews on family structure, exposure to violence in the community and the home, as well as history of psychological diagnoses amongst children ages 8-19 years who presented to the ED for injuries related to interpersonal violence from 2014-2017. Results: A total of 407 patients presenting to the ED for an interpersonal violent encounter were analyzed. The average age of studied youths was 14.7 years (SD 2.5). Youths were 97.5% African American ethnicity and 66.6% male. 67.8% described their home having a nonnuclear family structure, 50% of which reported living with a single mother. Of the 21% who reported having incarcerated family members, 56.3% reported their father being incarcerated, 15% reported their mother being incarcerated, and 12.5% reported multiple family members being incarcerated. 11.3% reported witnessing domestic violence in their home. 12.8% of youths reported some form of child abuse. The type of child abuse was not specified in 29.3% of cases, but physical abuse (32.8%) followed by sexual abuse (22.4%) were the most commonly reported. 14.5% had history of placement in foster care and/or adoption. 64% reported having witnessed violence in their community. 30.2% reported having lost friends or family due to violence, and of those, 26.4% reported the loss of a cousin, 18.9% the loss of a friend, 16% the loss of their father, and 12.3% the loss of their brother due to violence. Of the 22.4% youths with psychiatric diagnose(s), 48.4% had multiple diagnoses, the most common of which were ADD/ADHD (62.6%), followed by depression (31.9%), bipolar disorder (27.5%) and anxiety (15.4%). Conclusions: A remarkable proportion of children presenting to EDs due to interpersonal violence have a history of exposure to instability and violence in their homes and communities. Additionally, psychological diagnoses are frequent among pediatric victims of violence. More research is needed to better understand the association between trauma exposure, psychological health and violent victimization amongst children.

Keywords: community violence, emergency department, pediatric interpersonal violence, pediatric trauma, psychological effects of trauma

Procedia PDF Downloads 236
1809 Freudian Psychoanalysis Towards an Ethics of Finitude

Authors: Katya E. Manalastas

Abstract:

This thesis is a dialogue with Freud about vulnerability and any forms of transience we encounter in life. This study argues that Freud’s Ethics of Finitude, which is framed within the psychoanalytic context, is a critical theory about how human beings fail to become what they are because of their attachment to their illusions—to their visions of perfection and immortality. Freud’s Ethics of Finitude positions itself between our detachment to ideals and recognition of our own death through our loved one. His texts portray the predicament of the finite individual who suffers from feelings of guilt and anxiety because of his failure to live up to the demands of his idealistic civilized society. The civilized society has overestimated men’s susceptibility to culture. It imposes excessive sublimation, conformity to rigid moral ideals, and instinctive repression to manage human aggression. However, by doing this, civilization becomes a main source of men’s suffering. The lack of instinctive freedom will result in a community of tamed but unhappy people. Civilization has also constructed theories and measures to rule out death and pain from the realities of life. Therefore, a man lives his life repressing his instincts and ignorant of his own mortality. For Freud, war and neurosis are just few of the consequences of a civilization that imprisons the individual from cultural hypocrisy instead of giving more play to truthfulness. The occurrence of Great War destroyed our pride in the attainments of civilization and let loose the hostile impulses within us which we thought had been totally eradicated by means of instinctive repression and sublimation. War destroyed most of the things that we had loved and showed us the impermanence of all the things that we had deemed perfect and everlasting. This chaotic event also revealed the damaging impact of our attachment to past values that no longer bind us; our futile attempts to escape suffering; and our refusal to confront the painfulness of loss and mourning. With this given backdrop, this study launches Freud’s Ethics of Finitude—which culminates not in the submission of an individual to the unquestioned authority nor in the blind optimism and love for illusory happiness but in the pedagogy of mourning which brings forth the authentic education of man towards the truth about himself. His Ethics of Finitude is a form of labor in and through which the individual steps out of the realm of illusions and ideals that hinder him to confront his imperfections and accept the difficulties of existence. Through his analysis of the Great War, Freud seeks to awaken in us our ability to evaluate the way we see ourselves and to live our lives with death in mind. His Ethics of Finitude leads us to the fulfillment of our first duty as a living being, which is to endure life. We can only endure life if we are prepared to die and let go.

Keywords: critical theory, ethics of finitude, psychoanalysis, Sigmund Freud

Procedia PDF Downloads 86
1808 Exploring the Applications of Neural Networks in the Adaptive Learning Environment

Authors: Baladitya Swaika, Rahul Khatry

Abstract:

Computer Adaptive Tests (CATs) is one of the most efficient ways for testing the cognitive abilities of students. CATs are based on Item Response Theory (IRT) which is based on item selection and ability estimation using statistical methods of maximum information selection/selection from posterior and maximum-likelihood (ML)/maximum a posteriori (MAP) estimators respectively. This study aims at combining both classical and Bayesian approaches to IRT to create a dataset which is then fed to a neural network which automates the process of ability estimation and then comparing it to traditional CAT models designed using IRT. This study uses python as the base coding language, pymc for statistical modelling of the IRT and scikit-learn for neural network implementations. On creation of the model and on comparison, it is found that the Neural Network based model performs 7-10% worse than the IRT model for score estimations. Although performing poorly, compared to the IRT model, the neural network model can be beneficially used in back-ends for reducing time complexity as the IRT model would have to re-calculate the ability every-time it gets a request whereas the prediction from a neural network could be done in a single step for an existing trained Regressor. This study also proposes a new kind of framework whereby the neural network model could be used to incorporate feature sets, other than the normal IRT feature set and use a neural network’s capacity of learning unknown functions to give rise to better CAT models. Categorical features like test type, etc. could be learnt and incorporated in IRT functions with the help of techniques like logistic regression and can be used to learn functions and expressed as models which may not be trivial to be expressed via equations. This kind of a framework, when implemented would be highly advantageous in psychometrics and cognitive assessments. This study gives a brief overview as to how neural networks can be used in adaptive testing, not only by reducing time-complexity but also by being able to incorporate newer and better datasets which would eventually lead to higher quality testing.

Keywords: computer adaptive tests, item response theory, machine learning, neural networks

Procedia PDF Downloads 175