Search results for: 3D printed construction unit
4983 The Impact of Floods and Typhoons on Housing Welfare: Case Study of Thua Thien Hue Province, Vietnam
Authors: Seyeon Lee, Suyeon Lee, Julia Rogers
Abstract:
This research investigates and records post-flood and typhoon conditions of low income housing in the Thua Thien Hue Province, Vietnam; area prone to extreme flooding in Central Vietnam. The cost of rebuilding houses after flood and typhoon has been always a burden for low income households. These costs often lead to the elimination of essential construction practices for disaster resistance. Despite relief efforts from international non-profit organizations and Vietnam government, the impacts of flood and typhoon damages to residential construction has been reoccurring to the same neighborhood annually. Notwithstanding its importance, this topic has not been systematically investigated. The study is limited to assistance provided to low income households documenting existing conditions of low income homes impacted by post flood and typhoon conditions in the Thua Thien Hue Province. The research identifies leading causes of the building failure from the natural disasters. Relief efforts and progress made since the last typhoon is documented. The quality of construction and repairs are assessed based on Home Builders Guide to Coastal Construction by Federal Emergency Management Agency. Focus group discussions and individual interviews with local residents from four different communities were conducted to get incites on repair effort by the non-profit organizations and Vietnam government, and their needs post flood and typhoon. The findings from the field study informed that many of the local people are now aware of the importance of improving housing conditions as one of the key coping strategies to withstand flood and typhoon events as it makes housing and community more resilient to future events. While there has been a remarkable improvement of housing and infrastructure with the support from the local government as well as the non-profit organizations, many households in the study areas are found to still live in weak and fragile housing conditions without gaining access to the aid to repair and strengthen the houses. Given that the major immediate recovery action taken by the local people tends to focus on repairing damaged houses, and on this ground, low-income households spend a considerable amount of their income on housing repair, providing proper and applicable construction practices will not only improve the housing condition, but also contribute to reducing poverty in Vietnam.Keywords: disaster coping mechanism, housing welfare, low-income housing, recovery reduction
Procedia PDF Downloads 2714982 Experimental Investigation on Freeze-Concentration Process Desalting for Highly Saline Brines
Authors: H. Al-Jabli
Abstract:
Using the freeze-melting process for the disposing of high saline brines was the aim of the paper by confirming the performance estimation of the treatment system. A laboratory bench scale freezing technique test unit was designed, constructed, and tested at Doha Research Plant (DRP) in Kuwait. The principal unit operations that have been considered for the laboratory study are: ice crystallization, separation, washing, and melting. The applied process is characterized as “the secondary-refrigerant indirect freezing”, which is utilizing normal freezing concept. The high saline brine was used as definite feed water, i.e. average TDS of 250,000 ppm. Kuwait desalination plants were carried out in the experimental study to measure the performance of the proposed treatment system. Experimental analysis shows that the freeze-melting process is capable of dropping the TDS of the feed water from 249,482 ppm to 56,880 ppm of the freeze-melting process in the two-phase’s course, whereas overall recovery results of the salt passage and salt rejection are 31.11%, 19.05%, and 80.95%, correspondingly. Therefore, the freeze-melting process is encouraging for the proposed application, as it shows on the results, which approves the process capability of reducing a major amount of the dissolved salts of the high saline brine with reasonable sensible recovery. This process might be reasonable with other brine disposal processes.Keywords: high saline brine, freeze-melting process, ice crystallization, brine disposal process
Procedia PDF Downloads 2724981 Intertextuality in Tourism Advertising: Sources of Knowledge Asymmetries in Translating Vocative Texts
Authors: Maria Ilyushkina
Abstract:
The article addresses the problem of translating vocative texts with intertextual references and describes the influence of language on how knowledge and meaning are developed in the field of advertising. The starting point of the article takes advertisements from the sphere of tourism and the way we choose, translate, and interpret intertexts. The article focuses on the perception and understanding of the information in printed texts advertising recreational facilities and services for tourists as the target audience by representatives of other cultures and the knowledge intertexts convey. The authors argue that intertextuality complicates translation leading to knowledge asymmetries. Studying typical communicative failures is considered to be of great importance, allowing for improvement in the practice of translation in the sphere of advertising as well as preventing the fallacious transfer of knowledge when translating foreign intertexts.Keywords: advertising, translation, intertext, Russian culture, knowledge asymmetries, tourism, vocative texts
Procedia PDF Downloads 1374980 Sustainable Strategies for Post-Disaster Shelters: Case Study-Based Review and Future Prospects
Authors: Fangwen Ni, Hongpeng Xu
Abstract:
When disasters occur, it is important to provide temporary shelters to protect victims from their environment and to comfort them with privacy and dignity. However, the commonly used shelters like tents and shanties can not ensure a comfortable condition. Furthermore, the demand for more energy and less pollution has become a major challenge. Focusing on the sustainable of temporary shelters, this study intends to clarify the essential role of temporary shelters before the reconstruction work is done. The paper also identifies the main problems from three aspects including spatial layout, thermal comfort and utilization of passive technology. Moreover, it expounds the passive strategies of ecological design by case study and simulation. It is found that the living condition of shelters can be improved from the perspective of architectural space, ventilation theory and construction techniques. Regardless of being temporary, these shelters are crucial elements in emergency situations and should be taken more seriously.Keywords: architectural space, construction technique, sustainable strategy, temporary shelter
Procedia PDF Downloads 2724979 A Case Study of Bee Algorithm for Ready Mixed Concrete Problem
Authors: Wuthichai Wongthatsanekorn, Nuntana Matheekrieangkrai
Abstract:
This research proposes Bee Algorithm (BA) to optimize Ready Mixed Concrete (RMC) truck scheduling problem from single batch plant to multiple construction sites. This problem is considered as an NP-hard constrained combinatorial optimization problem. This paper provides the details of the RMC dispatching process and its related constraints. BA was then developed to minimize total waiting time of RMC trucks while satisfying all constraints. The performance of BA is then evaluated on two benchmark problems (3 and 5construction sites) according to previous researchers. The simulation results of BA are compared in term of efficiency and accuracy with Genetic Algorithm (GA) and all problems show that BA approach outperforms GA in term of efficiency and accuracy to obtain optimal solution. Hence, BA approach could be practically implemented to obtain the best schedule.Keywords: bee colony optimization, ready mixed concrete problem, ruck scheduling, multiple construction sites
Procedia PDF Downloads 3854978 Effect of Sodium Hydroxide on Geotechnical Properties of Soft Soil in Kathmandu Valley
Authors: Bal Deep Sharma, Suresh Ray Yadav
Abstract:
Local soils are often chosen due to their widespread availability and low cost. However, these soils typically have poor durability, which can lead to significant limitations in their use for construction. To address this issue, various soil stabilization techniques have been developed and used over the years. This study investigates the viability of employing the mineral polymerization (MIP) technique to stabilize black soils, intending to enhance their suitability for construction applications. This technique involves the microstructural transformation of certain clay minerals into solid and stable compounds exhibiting characteristics similar to hydroxy sodalite, feldspathoid, or zeolite. This transformation occurs through the action of an alkaline reactant at atmospheric pressure and low temperature. The soil sample was characterized using grain size distribution, Atterberg limit test, organic content test, and pH-value tests. The unconfined compressive strength of the soil specimens, prepared with varying percentages of sodium hydroxide as an additive and sand as a filler by weight, was determined at the optimum moisture content. The unconfined compressive strength of the specimens was tested under three different conditions: dry, wet, and cycling. The maximum unconfined compressive strengths were 77.568 kg/cm², 38.85 kg/cm², and 56.3 kg/cm² for the dry, wet, and cycling specimens, respectively, while the unconfined compressive strength of the untreated soil was 7.38 kg/cm². The minimum unconfined compressive strength of the wet and cycling specimens was greater than that of the untreated soil. Based on these findings, it can be concluded that these soils can be effectively used as construction material after treatment with sodium hydroxide.Keywords: soil stabilization technique, soft soil treatment, sodium hydroxide, unconfined compressive strength
Procedia PDF Downloads 814977 Method for Predicting the Deformation of a Swelling Clay of the Region of N’Gaous (Batna, in Algeria)
Authors: Ferrah F., Baheddi M.
Abstract:
This study relates to how water content in some clay soils affects their structure by increasing or decreasing the volume. These cyclic phenomena of swelling-shrinkage cause parasitic stresses in structures and at the foundation. These stresses create damage in buildings, highways, pavements, airports and structures lightly loaded. This study was conducted on soil from a site near the hospital of N'gaous (Batna), whose soil is at the origin of cracks in the filler walls of the hospital. After a few years of exploitation, and according to the findings of experts in subdivision of construction and urbanism (SUCH), cracks appeared just after the heavy rains that the region experienced in 1987. Our study shows the need to become aware of the importance of damages occasioned by swellings by adopting construction techniques to solve this problem. The study is to determine a methodology to take into account the effects of swelling in calculating long-term foundations.Keywords: clay, swelling, shrinkage, swelling pressure, compressibility
Procedia PDF Downloads 334976 Evaluation of Zr/NH₄ClO₄ and Zr/KClO₄ Compositions for Development of Igniter for Ammonium Perchlorate and Hydroxyl-Terminated Polybutadiene Based Base Bleed System
Authors: Amir Mukhtar, Habib Nasir
Abstract:
To achieve an enhanced range of large calibre artillery a base bleed unit equipped with ammonium perchlorate and hydroxyl-terminated polybutadiene (AP/HTPB) based composite propellant grain is installed at the bottom of a projectile which produces jet of hot gasses and reduces base drag during flight of the projectile. Upon leaving the muzzle at very high muzzle velocity, due to sudden pressure drop, the propellant grain gets quenched. Therefore, base-bleed unit is equipped with an igniter to ensure ignition as well as reignition of the propellant grain. Pyrotechnic compositions based on Zr/NH₄ClO₄ and Zr/KClO₄ mixtures have been studied for the effect of fuel/oxidizer ratio and oxidizer type on ballistic properties. Calorific values of mixtures were investigated by bomb calorimeter, the average burning rate was measured by fuse wire technique at ambient conditions, and high-pressure closed vessel was used to record pressure-time profile, maximum pressure achieved (Pmax), time to achieve Pmax and differential pressure (dP/dt). It was observed that the 30, 40, 50 and 60 wt.% of Zr has a very significant effect on ballistic properties of mixtures. Compositions with NH₄ClO₄ produced higher values of Pmax, dP/dt and Calorific value as compared to Zr/KClO₄ based mixtures. Composition containing KClO₄ comparatively produced higher burning rate and maximum burning rate was recorded at 8.30 mm/s with 60 wt.% Zr in Zr/KClO₄ pyrotechnic mixture. Zr/KClO₄ with 50 wt. % of Zr was tests fired in igniter assembly by electric initiation method. Igniter assembly was test fired several times and average burning time of 3.5 sec with igniter mass burning rate of 6.85 g/sec was recorded. Igniter was finally fired on static and dynamic level with base bleed unit which gave successful ignition to the base bleed grain and extended range was achieved with 155 mm artillery projectile.Keywords: base bleed, closed vessel, igniter, zirconium
Procedia PDF Downloads 1684975 Effects of Jigsaw Strategy on Senior Secondary School Students’ Achievement in Ecology in Maitagari, Jigawa State, Nigeriaind Out the Effect of Jigsaw Strategy on Students’ Achievement in Ecology
Authors: Ozoji Bernadette, Sa’Ad-Abdullahi Abdulhafiz, Izundu Chike Leo
Abstract:
The study investigated the effect of Jigsaw strategy on senior secondary school students’ achievement in Maitagari, Jigawa State, Nigeria. The pre-test, post-test quasi experimental design was employed in the study. The sample for the study comprised 120 students from two public schools from the study area. An instrument namely, Ecological Achievement Test (EAT) was used to collect data from students. The data were analyzed using SPSS version 26.0. The EAT was validated by two experts, one, in Science Education unit and the other in Research, Measurement and Evaluation unit, both in the Faculty of Education, University of Jos, Nigeria. The reliability coefficient of the EAT was established as 0.85 using Kuder Richardson Formular 20. Mean and standard deviation were used to answer two research questions while Analysis of Covariance was used to test two hypotheses that guided the study. Results showed that students taught using jigsaw strategy achieved significantly better than their counterparts taught using the conventional method in ecology. Furthermore, it was revealed that gender had no significant influence on achievement of students exposed to jigsaw strategy. It was concluded that jigsaw strategy was effective in improving students’ achievement in ecology. The study recommended that teachers should incorporate jigsaw strategy into science classrooms for improved achievement outcome and gender equality.Keywords: achievement, ecology, jigsaw strategy, lecture strategy
Procedia PDF Downloads 1234974 Examining the Changes in Complexity, Accuracy, and Fluency in Japanese L2 Writing Over an Academic Semester
Authors: Robert Long
Abstract:
The results of a one-year study on the evolution of complexity, accuracy, and fluency (CAF) in the compositions of Japanese L2 university students throughout a semester are presented in this study. One goal was to determine if any improvement in writing abilities over this academic term had occurred, while another was to examine methods of editing. Participants had 30 minutes to write each essay with an additional 10 minutes allotted for editing. As for editing, participants were divided into two groups, one of which utilized an online grammar checker, while the other half self-edited their initial manuscripts. From the three different institutions, there was a total of 159 students. Research questions focused on determining if the CAF had evolved over the previous year, identifying potential variations in editing techniques, and describing the connections between the CAF dimensions. According to the findings, there was some improvement in accuracy (fewer errors) in all three of the measures), whereas there was a marked decline in complexity and fluency. As for the second research aim relating to the interaction among the three dimensions (CAF) and of possible increases in fluency being offset by decreases in grammatical accuracy, results showed (there is a logical high correlation with clauses and word counts, and mean length of T-unit (MLT) and (coordinate phrase of T-unit (CP/T) as well as MLT and clause per T-unit (C/T); furthermore, word counts and error/100 ratio correlated highly with error-free clause totals (EFCT). Issues of syntactical complexity had a negative correlation with EFCT, indicating that more syntactical complexity relates to decreased accuracy. Concerning a difference in error correction between those who self-edited and those who used an online grammar correction tool, results indicated that the variable of errors-free clause ratios (EFCR) had the greatest difference regarding accuracy, with fewer errors noted with writers using an online grammar checker. As for possible differences between the first and second (edited) drafts regarding CAF, results indicated there were positive changes in accuracy, the most significant change seen in complexity (CP/T and MLT), while there were relatively insignificant changes in fluency. Results also indicated significant differences among the three institutions, with Fujian University of Technology having the most fluency and accuracy. These findings suggest that to raise students' awareness of their overall writing development, teachers should support them in developing more complex syntactic structures, improving their fluency, and making more effective use of online grammar checkers.Keywords: complexity, accuracy, fluency, writing
Procedia PDF Downloads 424973 Predicting Costs in Construction Projects with Machine Learning: A Detailed Study Based on Activity-Level Data
Authors: Soheila Sadeghi
Abstract:
Construction projects are complex and often subject to significant cost overruns due to the multifaceted nature of the activities involved. Accurate cost estimation is crucial for effective budget planning and resource allocation. Traditional methods for predicting overruns often rely on expert judgment or analysis of historical data, which can be time-consuming, subjective, and may fail to consider important factors. However, with the increasing availability of data from construction projects, machine learning techniques can be leveraged to improve the accuracy of overrun predictions. This study applied machine learning algorithms to enhance the prediction of cost overruns in a case study of a construction project. The methodology involved the development and evaluation of two machine learning models: Random Forest and Neural Networks. Random Forest can handle high-dimensional data, capture complex relationships, and provide feature importance estimates. Neural Networks, particularly Deep Neural Networks (DNNs), are capable of automatically learning and modeling complex, non-linear relationships between input features and the target variable. These models can adapt to new data, reduce human bias, and uncover hidden patterns in the dataset. The findings of this study demonstrate that both Random Forest and Neural Networks can significantly improve the accuracy of cost overrun predictions compared to traditional methods. The Random Forest model also identified key cost drivers and risk factors, such as changes in the scope of work and delays in material delivery, which can inform better project risk management. However, the study acknowledges several limitations. First, the findings are based on a single construction project, which may limit the generalizability of the results to other projects or contexts. Second, the dataset, although comprehensive, may not capture all relevant factors influencing cost overruns, such as external economic conditions or political factors. Third, the study focuses primarily on cost overruns, while schedule overruns are not explicitly addressed. Future research should explore the application of machine learning techniques to a broader range of projects, incorporate additional data sources, and investigate the prediction of both cost and schedule overruns simultaneously.Keywords: cost prediction, machine learning, project management, random forest, neural networks
Procedia PDF Downloads 604972 Public Participation and Decision-Making towards Planning Legislation: A Case for GCC Countries
Authors: Saad Saeed Althiabi
Abstract:
There is great progress in formulating and executing legislative policies in GCC, however, the public participation in formulating and in major decision making still remains weak. Drawing attention on the international law of public participation in construction and natural resource management, this paper aims in creating a feasible legislative framework for extensive public participation in the industries such as construction and oil and gas decision-making that GCC can implement. This paper would address the conflicts associated with the management and creation of legislation and ensuring public participation for the creation of a practical framework. A feasible legislative framework must take into account the various factors that shape the effectiveness of participation and the elements that promote the objectives of participation. It is premised on the ground that viewing to international prescriptions might help to reveal gaps in domestic laws, as well as alternatives to overcome them.Keywords: legislative policies, public participation, planning legislation, GCC countries, international law
Procedia PDF Downloads 5364971 Introduction of Dams Impacts on Downstream Wetlands: Case Study in Ahwar Delta in Yemen
Authors: Afrah Saad Mohsen Al-Mahfadi
Abstract:
The construction of dams can provide various ecosystem services, but it can also lead to ecological changes such as habitat loss and coastal degradation. Yemen faces multiple risks, including water crises and inadequate environmental policies, which are particularly detrimental to coastal zones like the Ahwar Delta in Abyan. This study aims to examine the impacts of dam construction on downstream wetlands and propose sustainable management approaches. Research Aim: The main objective of this study is to assess the different impacts of dam construction on downstream wetlands, specifically focusing on the Ahwar Delta in Yemen. Methodology: The study utilizes a literature review approach to gather relevant information on dam impacts and adaptation measures. Interviews with decision-making stakeholders and local community members are conducted to gain insights into the specific challenges faced in the Ahwar Delta. Additionally, sensing data, such as Arc-GIS and precipitation data from 1981 to 2020, are analyzed to examine changes in hydrological dynamics. Questions Addressed: This study addresses the following questions: What are the impacts of dam construction on downstream wetlands in the Ahwar delta? How can environmental management planning activities be implemented to minimize these impacts? Findings: The results indicate several future issues arising from dam construction in the coastal areas, including land loss due to rising sea levels and increased salinity in drinking water wells. Climate change has led to a decrease in rainfall rates, impacting vegetation and increasing sedimentation and erosion. Downstream areas with dams exhibit lower sediment levels and slower flowing habitats compared to those without dams. Theoretical Importance: The findings of this study provide valuable insights into the ecological impacts of dam construction on downstream wetlands. Understanding these dynamics can inform decision-makers about the need for adaptation measures and their potential benefits in improving coastal biodiversity under dam impacts. Data Collection and Analysis Procedures: The study collects data through a literature review, interviews, and sensing technology. The literature review helps identify relevant studies on dam impacts and adaptation measures. Interviews with stakeholders and local community members provide firsthand information on the specific challenges faced in the Ahwar Delta. Sensing data, such as Arc-GIS and precipitation data, are analyzed to understand changes in hydrological dynamics over time. Conclusion: The study concludes that while the situation can worsen due to dam construction, practical adaptation measures can help mitigate the impacts. Recommendations include improving water management, developing integrated coastal zone planning, raising awareness among stakeholders, improving health and education, and implementing emergency projects to combat climate change.Keywords: dam impact, delta wetland, hydrology, Yemen
Procedia PDF Downloads 694970 An Optimal Hybrid EMS System for a Hyperloop Prototype Vehicle
Authors: J. F. Gonzalez-Rojo, Federico Lluesma-Rodriguez, Temoatzin Gonzalez
Abstract:
Hyperloop, a new mode of transport, is gaining significance. It consists of the use of a ground-based transport system which includes a levitation system, that avoids rolling friction forces, and which has been covered with a tube, controlling the inner atmosphere lowering the aerodynamic drag forces. Thus, hyperloop is proposed as a solution to the current limitation on ground transportation. Rolling and aerodynamic problems, that limit large speeds for traditional high-speed rail or even maglev systems, are overcome using a hyperloop solution. Zeleros is one of the companies developing technology for hyperloop application worldwide. It is working on a concept that reduces the infrastructure cost and minimizes the power consumption as well as the losses associated with magnetic drag forces. For this purpose, Zeleros proposes a Hybrid ElectroMagnetic Suspension (EMS) for its prototype. In the present manuscript an active and optimal electromagnetic suspension levitation method based on nearly zero power consumption individual modules is presented. This system consists of several hybrid permanent magnet-coil levitation units that can be arranged along the vehicle. The proposed unit manages to redirect the magnetic field along a defined direction forming a magnetic circuit and minimizing the loses due to field dispersion. This is achieved using an electrical steel core. Each module can stabilize the gap distance using the coil current and either linear or non-linear control methods. The ratio between weight and levitation force for each unit is 1/10. In addition, the quotient between the lifted weight and power consumption at the target gap distance is 1/3 [kg/W]. One degree of freedom (DoF) (along the gap direction) is controlled by a single unit. However, when several units are present, a 5 DoF control (2 translational and 3 rotational) can be achieved, leading to the full attitude control of the vehicle. The proposed system has been successfully tested reaching TRL-4 in a laboratory test bench and is currently in TRL-5 state development if the module association in order to control 5 DoF is considered.Keywords: active optimal control, electromagnetic levitation, HEMS, high-speed transport, hyperloop
Procedia PDF Downloads 1474969 A Machine Learning Approach for Efficient Resource Management in Construction Projects
Authors: Soheila Sadeghi
Abstract:
Construction projects are complex and often subject to significant cost overruns due to the multifaceted nature of the activities involved. Accurate cost estimation is crucial for effective budget planning and resource allocation. Traditional methods for predicting overruns often rely on expert judgment or analysis of historical data, which can be time-consuming, subjective, and may fail to consider important factors. However, with the increasing availability of data from construction projects, machine learning techniques can be leveraged to improve the accuracy of overrun predictions. This study applied machine learning algorithms to enhance the prediction of cost overruns in a case study of a construction project. The methodology involved the development and evaluation of two machine learning models: Random Forest and Neural Networks. Random Forest can handle high-dimensional data, capture complex relationships, and provide feature importance estimates. Neural Networks, particularly Deep Neural Networks (DNNs), are capable of automatically learning and modeling complex, non-linear relationships between input features and the target variable. These models can adapt to new data, reduce human bias, and uncover hidden patterns in the dataset. The findings of this study demonstrate that both Random Forest and Neural Networks can significantly improve the accuracy of cost overrun predictions compared to traditional methods. The Random Forest model also identified key cost drivers and risk factors, such as changes in the scope of work and delays in material delivery, which can inform better project risk management. However, the study acknowledges several limitations. First, the findings are based on a single construction project, which may limit the generalizability of the results to other projects or contexts. Second, the dataset, although comprehensive, may not capture all relevant factors influencing cost overruns, such as external economic conditions or political factors. Third, the study focuses primarily on cost overruns, while schedule overruns are not explicitly addressed. Future research should explore the application of machine learning techniques to a broader range of projects, incorporate additional data sources, and investigate the prediction of both cost and schedule overruns simultaneously.Keywords: resource allocation, machine learning, optimization, data-driven decision-making, project management
Procedia PDF Downloads 404968 Characterization of Inkjet-Printed Carbon Nanotube Electrode Patterns on Cotton Fabric
Authors: N. Najafi, Laleh Maleknia , M. E. Olya
Abstract:
An aqueous conductive ink of single-walled carbon nanotubes for inkjet printing was formulated. To prepare the homogeneous SWCNT ink in a size small enough not to block a commercial inkjet printer nozzle, we used a kinetic ball-milling process to disperse the SWCNTs in an aqueous suspension. When a patterned electrode was overlaid by repeated inkjet printings of the ink on various types of fabric, the fabric resistance decreased rapidly following a power law, reaching approximately 760 X/sq, which is the lowest value ever for a dozen printings. The Raman and Fourier transform infrared spectra revealed that the oxidation of the SWCNTs was the source of the doped impurities. This study proved also that the droplet ejection velocity can have an impact on the CNT distribution and consequently on the electrical performances of the ink.Keywords: ink-jet printing, carbon nanotube, fabric ink, cotton fabric, raman spectroscopy, fourier transform infrared spectroscopy, dozen printings
Procedia PDF Downloads 4244967 Exploring Weld Rejection Rate Limits and Tracers Effects in Construction Projects
Authors: Abdalaziz M. Alsalhabi, Loai M. Alowa
Abstract:
This paper investigates Weld Rejection Rate (WRR) limits and tracer effects in construction projects, with a specific focus on a Gas Plant Project, a mega-project held by Saudi Aramco (SA) in Saudi Arabia. The study included a comprehensive examination of various factors impacting WRR limits. It commenced by comparing the Company practices with ASME standards, followed by an in-depth analysis of both weekly and cumulative projects' historical WRR data, evaluation of Radiographic Testing (RT) reports for rejected welds, and proposal of mitigation methods to eliminate future rejections. Additionally, the study revealed the causes of fluctuation in WRR data and benchmarked with the industry practices. Furthermore, a case study was conducted to explore the impact of tracers on WRR, providing insights into their influence on the welding process. This paper aims to achieve three primary objectives. Firstly, it seeks to validate the existing practices of WRR limits and advocate for their inclusion within relevant International Industry Standards. Secondly, it aims to validate the effectiveness of the WRR formula that incorporates tracer effects, ensuring its reliability in assessing weld quality. Lastly, this study aims to identify opportunities for process improvement in WRR control, with the ultimate goal of enhancing project processes and ensuring the integrity, safety, and efficiency of constructed assets.Keywords: weld rejection rate, weld repair rate in joint and linear basis, tracers effects, construction projects
Procedia PDF Downloads 454966 Ventilator Associated Pneumonia in a Medical Intensive Care Unit, Incidence and Risk Factors: A Case Control Study
Authors: Ammar Asma, Bouafia Nabiha, Ben Cheikh Asma, Ezzi Olfa, Mahjoub Mohamed, Sma Nesrine, Chouchène Imed, Boussarsar Hamadi, Njah Mansour
Abstract:
Background: Ventilator-associated pneumonia (VAP) is currently recognized as one of the most relevant causes of morbidity and mortality among intensive care unit (ICU) patients worldwide. Identifying modifiable risk factors for VAP could be helpful for future controlled interventional studies aiming at improving prevention of VAP. The purposes of this study were to determine the incidence and risk factors for VAP in in a Tunisian medical ICU. Materials / Methods: A retrospective case-control study design based on the prospective database collected over a 14-month period from September 15th, 2015 through November 15th, 2016 in an 8-bed medical ICU. Patients under ventilation for over 48 h were included. The number of cases was estimated by Epi-info Software with the power of statistical test equal to 90 %. Each case patient was successfully matched to two controls according to the length of mechanical ventilation (MV) before VAP for cases and the total length of MV in controls. VAP in the ICU was defined according to American Thoracic Society; Infectious Diseases Society of America guidelines. Early onset or late-onset VAP were defined whether the infectious process occurred within or after 96 h of ICU admission. Patients’ risk factors, causes of admission, comorbidities and respiratory specimens collected were reviewed. Univariate and multivariate analyses were performed to determine variables associated with VAP with a p-value < 0.05. Results: During the period study, a total of 169 patients under mechanical ventilation were considered, 34 patients (20.11%) developed at least one episode of VAP in the ICU. The incidence rate for VAP was 14.88/1000 ventilation days. Among these cases, 9 (26.5 %) were early-onset VAP and 25 (73.5 %) were late-onset VAP. It was a certain diagnosis in 66.7% of cases. Tracheal aspiration was positive in 80% of cases. Multi-drug resistant Acinerobacter baumanii was the most common species detected in cases; 67.64% (n=23). The rate of mortality out of cases was 88.23% (n= 30). In univariate analysis, the patients with VAP were statistically more likely to suffer from cardiovascular diseases (p=0.035) and prolonged duration of sedation (p=0.009) and tracheostomy (p=0.001), they also had a higher number of re-intubation (p=0.017) and a longer total time of intubation (p=0.012). Multivariate analysis showed that cardiovascular diseases (OR= 4.44; 95% IC= [1.3 - 14]; p=0.016), tracheostomy (OR= 4.2; 95% IC= [1.16 -15.12]; p= 0.028) and prolonged duration of sedation (OR=1.21; 95% IC= [1.07, 1.36]; p=0.002) were independent risk factors for the development of VAP. Conclusion: VAP constitutes a therapeutic challenge in an ICU setting, therefore; strategies that effectively prevent VAP are needed. An infection control-training program intended to all professional heath care in this unit insisting on bundles and elaboration of procedures are planned to reduce effectively incidence rate of VAP.Keywords: case control study, intensive care unit, risk factors, ventilator associated pneumonia
Procedia PDF Downloads 3964965 Non-Chronological Approach in Crane Girder and Composite Steel Beam Installation: Case Study
Authors: Govindaraj Ramanathan
Abstract:
The time delay and the structural stability are major issues in big size projects due to several factors. Improper planning and poor coordination lead to delay in construction, which sometimes result in reworking or rebuilding. This definitely increases the cost and time of project. This situation stresses the structural engineers to plan out of the limits of contemporary technology utilizing non-chronological approach with creative ideas. One of the strategies to solve this issue is through structural integrity solutions in a cost-effective way. We have faced several problems in a project worth 470 million USD, and one such issue is crane girder installation with composite steel beams. We have applied structural integrity approach with the proper and revised planning schedule to solve the problem efficiently with minimal expenses.Keywords: construction management, delay, non-chronological approach, composite beam, structural integrity
Procedia PDF Downloads 2374964 Decision Support for Modularisation: Engineering Construction Case Studies
Authors: Rolla Monib, Chris Ian Goodier, Alistair Gibb
Abstract:
This paper aims to investigate decision support strategies in the EC sector to determine the most appropriate degree of modularization. This is achieved through three oil and gas (O&G) and two power plant case studies via semi-structured interviews (n=59 and n=27, respectively), analysis of project documents, and case study-specific semi-structured validation interviews (n=12 and n=8). New terminology to distinguish degrees of modularization is proposed, along with a decision-making support checklist and a diagrammatic decision-making support figure. Results indicate that the EC sub-sectors were substantially more satisfied with the application of component, structural, or traditional modularization compared with system modularization for some types of modules. Key drivers for decisions on the degree of modularization vary across module types. This paper can help the EC sector determine the most suitable degree of modularization via a decision-making support strategy.Keywords: modularization, engineering construction, case study, decision support
Procedia PDF Downloads 944963 Impact of Aging on Fatigue Performance of Novel Hybrid HMA
Authors: Faizan Asghar, Mohammad Jamal Khattak
Abstract:
Aging, in general, refers to changes in rheological characteristics of asphalt mixture due to changes in chemical composition over the course of construction and service life of the pavement. The main goal of this study was to investigate the impact of oxidation on fatigue characteristics of a novel HMA composite fabricated with a combination of crumb rubber (CRM) and polyvinyl alcohol (PVA) fiber subject to aging of 7 and 14 days. A flexural beam fatigue test was performed to evaluate several characteristics of control, CRM modified, PVA reinforced, and novel rubber-fiber HMA composite. Experimental results revealed that aging had a significant impact on the fatigue performance of novel HMA composite. It was found that a suitable proportion of CRM and PVA radically affected the performance of novel rubber-fiber HMA in resistance to fracture and fatigue cracking when subjected to long-term aging. The developed novel HMA composite containing 2% CRM and 0.2% PVA presented around 29 times higher resistance to fatigue cracking for a period of 7 days of aging. To develop a cumulative plastic deformation level of 250 micros, such a mixture required over 50 times higher cycles than control HMA. Moreover, the crack propagation rate was reduced by over 90%, with over 12 times higher energy required to propagate a unit crack length in such a mixture compared to conventional HMA. Further, digital imaging correlation analyses revealed a more twisted and convoluted fracture path and higher strain distribution in rubber-fiber HMA composite. The fatigue performance after long-term aging of such novel HMA composite explicitly validates the ability to withstand load repetition that could lead to an extension in the service life of pavement infrastructure and reduce taxpayers’ dollars spent.Keywords: crumb rubber, PVA fibers, dry process, aging, performance testing, fatigue life
Procedia PDF Downloads 674962 The Effect of Engineering Construction in Online Consultancy
Authors: Mariam Wagih Nagib Eskandar
Abstract:
The engineering design process is the activities formulation, to help an engineer raising a plan with a specified goal and performance. The engineering design process is a multi-stage course of action including the conceptualization, research, feasibility studies, establishment of design parameters, preliminary and finally the detailed design. It is a progression from the abstract to the concrete; starting with probably abstract ideas about need, and thereafter elaborating detailed specifications of the object that would satisfy the needs, identified. Engineering design issues, problems, and solutions are discussed in this paper using qualitative approach from an information structure perspective. The objective is to identify the problems, to analyze them and propose solutions by integrating; innovation, practical experience, time and resource management, communications skills, isolating the problem in coordination with all stakeholders. Consequently, this would be beneficial for the engineering community to improve the Engineering design practices.Keywords: education, engineering, math, performanceengineering design, architectural engineering, team-based learning, construction safetyrequirement engineering, models, practices, organizations
Procedia PDF Downloads 844961 Structural Rehabilitation, Retrofitting and Strengthening of Reinforced Concrete Structures
Authors: Manish Kumar
Abstract:
Reinforced cement concrete is getting extensively used for construction of different type of structures for the last one century. During this period, we have constructed many structures like buildings, bridges, industrial structures, pavement, water tanks etc. using this construction material. These structures have been created with huge investment of resources. It is essential to maintain those structures in functional condition. Since deterioration in RCC Structures is a common and natural phenomenon it is required to have a detailed plan, methodology for structural repair and rehabilitation shall be in place for dealing such issues. It is important to know exact reason of distress, type of distress and correct method of repair concrete structures. The different methods of repair are described in paper according to distress category which can be refereed for repair. Major finding of the study is that to protect our structure we need to have maintenance frequency and correct material to be chosen for repair. Also workmanship during repair needs to be taken utmost care for quality repair.Keywords: deterioration, functional condition, reinforced cement concrete, resources
Procedia PDF Downloads 2534960 The Effects of Land Grabbing on Livelihood Assets and Its Implication on Food Production in Ghana: A Case Study of Bui Dam Construction Project
Authors: Charles Kwaku Oppong
Abstract:
This study examined the effects of the agricultural land grabbed for the Bui Dam project on the livelihoods assets of the affected people and its implication on food production. Both quantitative and qualitative data were collected through the use of focus group discussions, questionnaire administration, interview guide, and observations. It was found that the land grabbing incident in the study communities as a result of the Bui Dam construction has resulted in the improvements in the physical assets of the affected people. The findings also indicated that local food crop production and the quantity of fish catch have dwindled after the land grabs. Contrary to this, the local people’s access to the natural capital, particularly the local land for agricultural activities has been worsened. The study recommends alternative sustainable livelihood for the affected people by the local government.Keywords: land grabbing, livelihood, asset, food production
Procedia PDF Downloads 1664959 Design and Analysis of a Planetary Gearbox Used in Stirred Vessel
Authors: Payal T. Patel, Ramakant Panchal, Ketankumar G. Patel
Abstract:
Gear in stirred vessel is one of the most critical components in machinery which has power transmission system and it is rotating machinery cost and redesign being the major constraints, there is always a great scope for a mechanical engineer to apply skills to improve the design. Gear will be most effective means of transmitting power in future machinery due to their high degree of compactness. The Galliard moved in the industry from heavy industries such as textile machinery and shipbuilding to industries such as automobile manufacture tools will necessitate the affable application of gear technology. The two-stage planetary reduction gear unit is designed to meet the output specifications. In industries, where the bevel gears are used in turret vessel to transmit the power, that unit is replaced by this planetary gearbox. Use of this type of gearbox is to get better efficiency and also the manufacturing of the bevel gear is more complex than the spur gears. Design a gearbox with the epicyclic gear train. In industries, the power transmission from gearbox to vessel is done through the bevel gears, which transmit the power at a right angle. In this work, the power is to be transmitted vertically from gearbox to vessel, which will increase the efficiency and life of gears. The arrangement of the gears is quite difficult as well as it needs high manufacturing cost and maintenance cost. The design is replaced by the planetary gearbox to reduce the difficulties, and same output is achieved but with a different arrangement of the planetary gearbox.Keywords: planetary gearbox, epicyclic gear, optimization, dynamic balancing
Procedia PDF Downloads 3614958 Robotic Solution for Nuclear Facility Safety and Monitoring System
Authors: Altab Hossain, Shakerul Islam, Golamur R. Khan, Abu Zafar M. Salahuddin
Abstract:
An effective identification of breakdowns is of premier importance for the safe and reliable operation of Nuclear Power Plants (NPP) and its associated facilities. A great number of monitoring and diagnosis methodologies are applied and used worldwide in areas such as industry, automobiles, hospitals, and power plant to detect and reduce human disasters. The potential consequences of several hazardous activities may harm the society using nuclear and its associated facilities. Hence, one of the most popular and effective methods to ensure safety and monitor the entire nuclear facility and imply risk-free operation without human interference during the hazardous situation is using a robot. Therefore, in this study, an advanced autonomous robot has been designed and developed that can monitor several parameters in the NPP to ensure the safety and do some risky job in case of nuclear disaster. The robot consisted of autonomous track following unit, data processing and transmitting unit can follow a straight line and take turn as the bank greater than 90 degrees. The developed robot can analyze various parameters such as temperature, altitude, radiation, obstacle, humidity, detecting fire, measuring distance, ultrasonic scan and taking the heat of any particular object. It has an ability to broadcast live stream and can record the document to its own server memory. There is a separate control unit constructed with a baseboard which processes the recorded data and a transmitter which transmits the processed data. To make the robot user-friendly, the code is developed such a way that a user can control any of robotic arm as per types of work. To control at any place and without the track, there is an advanced code has been developed to take manual overwrite. Through this process, administrator who has logged in permission to Dynamic Host Client Protocol (DHCP) can make the handover of the control of the robot. In this process, this robot is provided maximum nuclear security from being hacked. Not only NPP, this robot can be used to maximize the real-time monitoring system of any nuclear facility as well as nuclear material transportation and decomposition system.Keywords: nuclear power plant, radiation, dynamic host client protocol, nuclear security
Procedia PDF Downloads 2094957 Additive Manufacturing of Overhangs: From Temporary Supports to Self-Support
Authors: Paulo Mendonca, Nzar Faiq Naqeshbandi
Abstract:
The objective of this study is to propose an interactive design environment that outlines the underlying computational framework to reach self-supporting overhangs. The research demonstrates the digital printability of overhangs taking into consideration factors related to the geometry design, the material used, the applied support, and the printing set-up of slicing and the extruder inclination. Parametric design tools can contribute to the design phase, form-finding, and stability optimization of self-supporting structures while printing in order to hold the components in place until they are sufficiently advanced to support themselves. The challenge is to ensure the stability of the printed parts in the critical inclinations during the whole fabrication process. Facilitating the identification of parameterization will allow to predict and optimize the process. Later, in the light of the previous findings, some guidelines of simulations and physical tests are given to be conducted for estimating the structural and functional performance.Keywords: additive manufacturing, overhangs, self-support overhangs, printability, parametric tools
Procedia PDF Downloads 1224956 Prioritization Ranking for Managing Moisture Problems in a Building
Authors: Sai Amulya Gollapalli, Dilip A. Patel, Parth Patel K., Lukman E. Mansuri
Abstract:
Accumulation of moisture is one of the most worrisome aspects of a building. Architects and engineers tend to ignore its vitality during the designing and construction stage. Major fatalities in buildings can be caused by it. People avoid spending a lot of money on waterproofing. If the same mistake is repeated, no deep thinking is done. The quality of workmanship and construction is depleting due to negligence. It is important to do an analysis of the water maintenance issues happening in the current buildings and give a database for all the factors that are causing the defect. In this research, surveys are done with two waterproofing consultants, two client engineers, and two project managers. The survey was based on a matrix that was based on the causes of water maintenance issues. There were around 100 causes that were identified. The causes were categorized into six, namely, manpower, finance, method, management, environment, and material. In the matrices, the causes on the x-direction matched with the causes on the y-direction. 3 Likert scale was used to make a pairwise comparison between causes on each cell. Matrices were evaluated for the main categories and for each category separately. A final ranking was done by the weights achieved, and ‘cracks arriving from various construction joints’ was the highest with 0.57 relative significance, and ‘usage of the material’ was the lowest with 0.03 relative significance. Twelve defects due to water leakage were identified, and interviewees were asked to make a pairwise comparison of them, too, to understand the priorities. When the list of causes is achieved, the prioritization as per the stratification analysis is done. This will be beneficial to the consultants and contractors as they will get a primary idea of which causes to focus on.Keywords: water leakage, survey, causes, matrices, prioritization
Procedia PDF Downloads 994955 Analytical Study on the Shape of T-Type Girder Modular Bridge Connection by Using Parametric
Authors: Jongho Park, Jinwoong Choi, Sungnam Hong, Seung-Kyung Kye, Sun-Kyu Park
Abstract:
Recently, to cope with the rapidly changing construction trend because of aging infrastructures, modular bridge technology has been studied actively. Modular bridge is easily constructed by assembling standardized precast structure members in the field. It will be possible to construct rapidly and reduce construction cost efficiently. However, the shape examination of the transverse connection of T-type girder newly developed between the segmented modules is not performed. Therefore, the investigation of the connection shape is needed. In this study, shape of the modular T-girder bridge transverse connection was analyzed by finite element model that was verified in study which was verification of model for transverse connection using Abaqus. Connection angle was chosen as the parameter. The result of analyses showed that optimal value of angle is 130 degree.Keywords: modular bridge, optimal transverse shape, parameter, FEM
Procedia PDF Downloads 6514954 Structural Behaviour of Small-Scale Fibre-Filled Steel Tubular Planar Frames
Authors: Sadaf Karkoodi, Hassan Karampour
Abstract:
There is a growing interest in the construction industry towards hybrid systems. The hybrid systems use construction materials such as timber, steel, and concrete smartly, can be prefabricated, and are cost-effective and sustainable solutions to an industry targeting reduced carbon footprint. Moreover, in case of periodical shortage in timber resources, reusable and waste wood such as fibres can be used in the hybrid modules, which facilitates the circular economy. In this research, a hybrid frame is proposed and experimentally validated by introducing dried wood fibre products inside cold-formed steel square hollow sections without using any adhesives. As such, fibre-filled steel tubular (FFST) columns, beams, and 2D frames are manufactured and tested. The results show that the FFST columns have stiffness and strength 44% and 55% higher than cold-formed steel columns, respectively. The bearing strength of the FFST beams shows an increase of 39.5% compared to steel only. The flexural stiffness and strength of the FFST beams are 8.5% and 28% higher than the bare steel beams, respectively. The FFST frame depicted an 18.4% higher ultimate load capacity than the steel-only frame under a mid-point concentrated load. Moreover, the FFST beam-to-column bolted connection showed high ductile performance. The initial results and the proposed simple manufacturing process suggest that the proposed FFST concept can be upscaled and used in real structures.Keywords: wood fibre, reusing wood, fibre-filled steel, hybrid construction
Procedia PDF Downloads 80