Search results for: nursing interventions classification
3224 Predictors of Pelvic Vascular Injuries in Patients with Pelvic Fractures from Major Blunt Trauma
Authors: Osama Zayed
Abstract:
Aim of the work: The aim of this study is to assess the predictors of pelvic vascular injuries in patients with pelvic fractures from major blunt trauma. Methods: This study was conducted as a tool-assessment study. Forty six patients with pelvic fractures from major blunt trauma will be recruited to the study arriving to department of emergency, Suez Canal University Hospital. Data were collected from questionnaire including; personal data of the studied patients and full medical history, clinical examinations, outcome measures (The Physiological and Operative Severity Score for enumeration of Mortality and morbidity (POSSUM), laboratory and imaging studies. Patients underwent surgical interventions or further investigations based on the conventional standards for interventions. All patients were followed up during conservative, operative and post-operative periods in the hospital for interpretation the predictive scores of vascular injuries. Results: Significant predictors of vascular injuries according to computed tomography (CT) scan include age, male gender, lower Glasgow coma (GCS) scores, occurrence of hypotension, mortality rate, higher physical POSSUM scores, presence of ultrasound collection, type of management, higher systolic blood pressure (SBP) and diastolic blood pressure (DBP) POSSUM scores, presence of abdominal injuries, and poor outcome. Conclusions: There was higher frequency of males than females in the studied patients. There were high probability of morbidity and low probability of mortality among patients. Our study demonstrates that POSSUM score can be used as a predictor of vascular injury in pelvis fracture patients.Keywords: predictors, pelvic vascular injuries, pelvic fractures, major blunt trauma, POSSUM
Procedia PDF Downloads 3423223 Deep Feature Augmentation with Generative Adversarial Networks for Class Imbalance Learning in Medical Images
Authors: Rongbo Shen, Jianhua Yao, Kezhou Yan, Kuan Tian, Cheng Jiang, Ke Zhou
Abstract:
This study proposes a generative adversarial networks (GAN) framework to perform synthetic sampling in feature space, i.e., feature augmentation, to address the class imbalance problem in medical image analysis. A feature extraction network is first trained to convert images into feature space. Then the GAN framework incorporates adversarial learning to train a feature generator for the minority class through playing a minimax game with a discriminator. The feature generator then generates features for minority class from arbitrary latent distributions to balance the data between the majority class and the minority class. Additionally, a data cleaning technique, i.e., Tomek link, is employed to clean up undesirable conflicting features introduced from the feature augmentation and thus establish well-defined class clusters for the training. The experiment section evaluates the proposed method on two medical image analysis tasks, i.e., mass classification on mammogram and cancer metastasis classification on histopathological images. Experimental results suggest that the proposed method obtains superior or comparable performance over the state-of-the-art counterparts. Compared to all counterparts, our proposed method improves more than 1.5 percentage of accuracy.Keywords: class imbalance, synthetic sampling, feature augmentation, generative adversarial networks, data cleaning
Procedia PDF Downloads 1273222 Classification of Emotions in Emergency Call Center Conversations
Authors: Magdalena Igras, Joanna Grzybowska, Mariusz Ziółko
Abstract:
The study of emotions expressed in emergency phone call is presented, covering both statistical analysis of emotions configurations and an attempt to automatically classify emotions. An emergency call is a situation usually accompanied by intense, authentic emotions. They influence (and may inhibit) the communication between caller and responder. In order to support responders in their responsible and psychically exhaustive work, we studied when and in which combinations emotions appeared in calls. A corpus of 45 hours of conversations (about 3300 calls) from emergency call center was collected. Each recording was manually tagged with labels of emotions valence (positive, negative or neutral), type (sadness, tiredness, anxiety, surprise, stress, anger, fury, calm, relief, compassion, satisfaction, amusement, joy) and arousal (weak, typical, varying, high) on the basis of perceptual judgment of two annotators. As we concluded, basic emotions tend to appear in specific configurations depending on the overall situational context and attitude of speaker. After performing statistical analysis we distinguished four main types of emotional behavior of callers: worry/helplessness (sadness, tiredness, compassion), alarm (anxiety, intense stress), mistake or neutral request for information (calm, surprise, sometimes with amusement) and pretension/insisting (anger, fury). The frequency of profiles was respectively: 51%, 21%, 18% and 8% of recordings. A model of presenting the complex emotional profiles on the two-dimensional (tension-insecurity) plane was introduced. In the stage of acoustic analysis, a set of prosodic parameters, as well as Mel-Frequency Cepstral Coefficients (MFCC) were used. Using these parameters, complex emotional states were modeled with machine learning techniques including Gaussian mixture models, decision trees and discriminant analysis. Results of classification with several methods will be presented and compared with the state of the art results obtained for classification of basic emotions. Future work will include optimization of the algorithm to perform in real time in order to track changes of emotions during a conversation.Keywords: acoustic analysis, complex emotions, emotion recognition, machine learning
Procedia PDF Downloads 3983221 Forensic Nursing in the Emergency Department: The Overlooked Roles
Authors: E. Tugba Topcu
Abstract:
The emergency services are usually the first places to encounter forensic cases. Hence, it is important to consider forensics from the perspective of the emergency services staff and the physiological and psychological consequences that may arise as a result of behaviour by itself or another person. Accurate and detailed documentation of the situation in which the patient first arrives at the emergency service and preservation of the forensic findings is pivotal for the subsequent forensic investigation. The first step in determining whether or not a forensic case exists is to perform a medical examination of the patient. For each individual suspected to be part of a forensic case, police officers should be informed at the same time as the medical examination is being conducted. Violent events are increasing every year and with an increase in the number of forensic cases, emergency service workers have increasing responsibility and consequently play a key role in protecting, collecting and arranging the forensic evidence. In addition, because the emergency service workers involved in forensic events typically have information about the accused and/or victim, as well as evidence related to the events and the cause of injuries, police officers often require their testimony. However, both nurses and other health care personnel do not typically have adequate expertise in forensic medicine. Emergency nurses should take an active role for determining that whether any patient admitted to the emergency services is a clinical forensic patient the emergency service with injury and requiring possible punishment and knowing of their roles and responsibilities in this area provides legal protection as well as the protection of the judicial affair. Particularly, in emergency services, where rapid patient turnover and high workload exists, patient registration and case reporting may not exist. In such instances, the witnesses, typically the nurses, are often consulted for information. Knowledge of forensic medical matters plays a vital role in achieving justice. According to the Criminal Procedure Law, Article 75, Paragraph 3, ‘an internal body examination or the taking of blood or other biological samples from the body can be performed only by a doctor or other health professional member’. In favour of this item, the clinic nurse and doctor are mainly responsible for evaluating forensic cases in emergency departments, performing the examination, collecting evidence, and storing and reporting data. The courts place considerable importance on determining whether a suspect is the victim or accused and, thus, in terms of illuminating events, it is crucial that any evidence is gathered carefully and appropriately. All the evidence related to the forensic case including the forensic report should be handed over to the police officers. In instances where forensic evidence cannot be collected and the only way to obtain the evidence is the hospital environment, health care personnel in emergency services need to have knowledge about the diagnosis of forensic evidence, the collection of evidence, hiding evidence and provision of the evidence delivery chain.Keywords: emergency department, emergency nursing, forensic cases, forensic nursing
Procedia PDF Downloads 2523220 Methodology for Temporary Analysis of Production and Logistic Systems on the Basis of Distance Data
Authors: M. Mueller, M. Kuehn, M. Voelker
Abstract:
In small and medium-sized enterprises (SMEs), the challenge is to create a well-grounded and reliable basis for process analysis, optimization and planning due to a lack of data. SMEs have limited access to methods with which they can effectively and efficiently analyse processes and identify cause-and-effect relationships in order to generate the necessary database and derive optimization potential from it. The implementation of digitalization within the framework of Industry 4.0 thus becomes a particular necessity for SMEs. For these reasons, the abstract presents an analysis methodology that is subject to the objective of developing an SME-appropriate methodology for efficient, temporarily feasible data collection and evaluation in flexible production and logistics systems as a basis for process analysis and optimization. The overall methodology focuses on retrospective, event-based tracing and analysis of material flow objects. The technological basis consists of Bluetooth low energy (BLE)-based transmitters, so-called beacons, and smart mobile devices (SMD), e.g. smartphones as receivers, between which distance data can be measured and derived motion profiles. The distance is determined using the Received Signal Strength Indicator (RSSI), which is a measure of signal field strength between transmitter and receiver. The focus is the development of a software-based methodology for interpretation of relative movements of transmitters and receivers based on distance data. The main research is on selection and implementation of pattern recognition methods for automatic process recognition as well as methods for the visualization of relative distance data. Due to an existing categorization of the database regarding process types, classification methods (e.g. Support Vector Machine) from the field of supervised learning are used. The necessary data quality requires selection of suitable methods as well as filters for smoothing occurring signal variations of the RSSI, the integration of methods for determination of correction factors depending on possible signal interference sources (columns, pallets) as well as the configuration of the used technology. The parameter settings on which respective algorithms are based have a further significant influence on result quality of the classification methods, correction models and methods for visualizing the position profiles used. The accuracy of classification algorithms can be improved up to 30% by selected parameter variation; this has already been proven in studies. Similar potentials can be observed with parameter variation of methods and filters for signal smoothing. Thus, there is increased interest in obtaining detailed results on the influence of parameter and factor combinations on data quality in this area. The overall methodology is realized with a modular software architecture consisting of independently modules for data acquisition, data preparation and data storage. The demonstrator for initialization and data acquisition is available as mobile Java-based application. The data preparation, including methods for signal smoothing, are Python-based with the possibility to vary parameter settings and to store them in the database (SQLite). The evaluation is divided into two separate software modules with database connection: the achievement of an automated assignment of defined process classes to distance data using selected classification algorithms and the visualization as well as reporting in terms of a graphical user interface (GUI).Keywords: event-based tracing, machine learning, process classification, parameter settings, RSSI, signal smoothing
Procedia PDF Downloads 1313219 From Stigma to Solutions: Harnessing Innovation and Local Wisdom to Tackle Harms Associated with Menstrual Seclusion (Chhaupadi) in Nepal
Authors: Sara E. Baumann, Megan A. Rabin, Mary Hawk, Bhimsen Devkota, Kajol Upadhyaya, Guna Raj Shrestha, Brigit Joseph, Annika Agarwal, Jessica G. Burke
Abstract:
In Nepal, prevailing sociocultural norms associated with menstruation prompt adherence to stringent rules that limit participation in daily activities. Chhaupadi is a specific menstrual tradition in Nepal in which women and girls segregate themselves and follow a series of restrictions during menstruation. Despite having numerous physical and mental health implications, extant interventions have yet to sustainably address the harms associated with chhaupadi. In this study, the authors describe insights garnered from a collaboration with community members in Dailekh district, who formulated their own approaches to mitigate the adverse facets of chhaupadi. Envisaged as an entry point to improve women’s menstrual health experiences, this investigation employed an approach that uses Human-centered Design and a community-engaged approach. The authors conducted a four-day design workshop which unfolded in two phases: The Discovery Phase, to uncover chhaupadi context and key stakeholders, and the Design Phase, to design contextually relevant interventions. Diverse community-members, including those with lived experience practicing chhaupadi, developed five intervention concepts: 1) harnessing Female Community Health Volunteers as role models, for counseling, and raising awareness; 2) focusing on mothers and mother’s groups to instigate behavioral shifts; 3) engaging the broader community in behavior change efforts; 4) empowering fathers to effect change in their homes through counseling and education; and 5) training and emboldening youth to advocate for positive change through advocacy in their schools and homes. This research underscores the importance of employing multi-level approaches tailored to specific stakeholder groups, given Nepal’s rich cultural diversity. The engagement of Female Community Health Volunteers emerged as a promising yet underexplored intervention concept for chhaupadi, warranting broader implementation. Crucially, it is also imperative for interventions to prioritize tackling deleterious aspects of the chhaupadi tradition, emphasizing safety considerations, all while acknowledging chhaupadi’s entrenched cultural history; for some, there are positive aspects of the tradition that women and girls wish to preserve.Keywords: human-centered design, menstrual health, Nepal, community-engagement, intervention development, women's health, rural health
Procedia PDF Downloads 623218 Vineyard Soils of Karnataka - Characterization, Classification and Soil Site Suitability Evaluation
Authors: Harsha B. R., K. S. Anil Kumar
Abstract:
Land characterization, classification, and soil suitability evaluation of grapes-growing pedons were assessed at fifteen taluks covering four agro climatic zones of Karnataka. Study on problems and potentials of grapes cultivation in selected agro-climatic zones was carried out along with the plant sample analysis. Twenty soil profiles were excavated as study site based on the dominance of area falling under grapes production and existing spatial variability of soils. The detailed information of profiles and horizon wise soil samples were collected to study the morphological, physical, chemical, and fertility characteristics. Climatic analysis and water retention characteristics of soils of major grapes-growing areas were also done. Based on the characterisation and classification study, it was revealed that soils of Doddaballapur (Bangalore Blue and Wine grapes), Bangalore North (GKVK Farm, Rajankunte, and IIHR Farm), Devanahalli, Magadi, Hoskote, Chikkaballapur (Dilkush and Red globe), Yelaburga, Hagari Bommanahalli, Bagalkot (UHS farm) and Indi fall under the soil order Alfisol. Vijaypur pedon of northern dry zone was keyed out as Vertisols whereas, Jamkhandi and Athani as Inceptisols. Properties of Aridisols were observed in B. Bagewadi (Manikchaman and Thompson Seedless) and Afzalpur. Soil fertility status and its mapping using GIS technique revealed that all the nutrients were found to be in adequate range except nitrogen, potassium, zinc, iron, and boron, which indicated the need for application along with organic matter to improve the SOC status. Varieties differed among themselves in yield and plant nutrient composition depending on their age, climatic, soil, and management requirements. Bangalore North (GKVK farm) and Jamkhandi are having medium soil organic carbon stocks of 6.21 and 6.55 kg m⁻³, respectively. Soils of Bangalore North (Rajankunte) were highly suitable (S1) for grapes cultivation. Under northern Karnataka, Vijayapura, B. Bagewadi, Indi, and Afzalpur vineyards were good performers despite the limitations of fertility and free lime content.Keywords: land characterization, suitability, soil orders, soil organic carbon stock
Procedia PDF Downloads 1133217 The Application of Video Segmentation Methods for the Purpose of Action Detection in Videos
Authors: Nassima Noufail, Sara Bouhali
Abstract:
In this work, we develop a semi-supervised solution for the purpose of action detection in videos and propose an efficient algorithm for video segmentation. The approach is divided into video segmentation, feature extraction, and classification. In the first part, a video is segmented into clips, and we used the K-means algorithm for this segmentation; our goal is to find groups based on similarity in the video. The application of k-means clustering into all the frames is time-consuming; therefore, we started by the identification of transition frames where the scene in the video changes significantly, and then we applied K-means clustering into these transition frames. We used two image filters, the gaussian filter and the Laplacian of Gaussian. Each filter extracts a set of features from the frames. The Gaussian filter blurs the image and omits the higher frequencies, and the Laplacian of gaussian detects regions of rapid intensity changes; we then used this vector of filter responses as an input to our k-means algorithm. The output is a set of cluster centers. Each video frame pixel is then mapped to the nearest cluster center and painted with a corresponding color to form a visual map. The resulting visual map had similar pixels grouped. We then computed a cluster score indicating how clusters are near each other and plotted a signal representing frame number vs. clustering score. Our hypothesis was that the evolution of the signal would not change if semantically related events were happening in the scene. We marked the breakpoints at which the root mean square level of the signal changes significantly, and each breakpoint is an indication of the beginning of a new video segment. In the second part, for each segment from part 1, we randomly selected a 16-frame clip, then we extracted spatiotemporal features using convolutional 3D network C3D for every 16 frames using a pre-trained model. The C3D final output is a 512-feature vector dimension; hence we used principal component analysis (PCA) for dimensionality reduction. The final part is the classification. The C3D feature vectors are used as input to a multi-class linear support vector machine (SVM) for the training model, and we used a multi-classifier to detect the action. We evaluated our experiment on the UCF101 dataset, which consists of 101 human action categories, and we achieved an accuracy that outperforms the state of art by 1.2%.Keywords: video segmentation, action detection, classification, Kmeans, C3D
Procedia PDF Downloads 773216 Social Marketing – An Integrated and Comprehensive Nutrition Communication Strategy to Improve the Iron Nutriture among Preschool Children
Authors: Manjula Kola, K. Chandralekha
Abstract:
Anaemia is one of the world’s most widespread health problems. Prevalence of anemia in south Asia is among the highest in the world. Iron deficiency anemia accounts for almost 85 percent of all types of anemia in India and affects more than half of the total population. Women of childbearing age particularly pregnant women, infants, preschool children and adolescents are at greatest risk of developing iron deficiency anemia. In India, 74 percent children between 6-35 months of age are anemic. Children between 1-6 years in major cities are found with a high prevalence rate of 64.8 percent. Iron deficiency anemia is not only a public health problem, but also a development problem. Its prevention and reduction must be viewed as investment in human capital that will enhance development and reduce poverty. Ending this hidden hunger in the form of iron deficiency is the most important achievable international health goal. Eliminating the underlying problem is essential to the sustained elimination of the iron deficiency anemia. The intervention programmes toward the sustained elimination need to be broadly based so that interventions become accepted community practices. Hence, intervention strategies need to go well beyond traditional health and nutrition systems and based upon empowering people and communities so that they will be capable of arranging for and sustaining an adequate intake of foods with respect to iron, independent of external support. Such strategies must necessarily be multisectoral and integrate interventions with social communications, evaluation and surveillance. The main objective of the study was to design a community based Nutrition intervention using theoretical framework of social marketing to sustain improvement of iron nutriture among preschool children. In order to carryout the study eight rural communities In Chittoor district of Andhra Pradesh, India were selected. A formative research was carryout for situational analysis and baseline data was generated with regard to demographic and socioeconomic status, dietary intakes, Knowledge, Attitude and Practices of the mothers of preschool children, clinical and hemoglobin status of the target group. Based on the formative research results, the research area was divides into four groups as experimental area I,II,III and control area. A community based, integrated and comprehensive social marketing intervention was designed based on various theories and models of nutrition education/ communication. In Experimental area I, Nutrition intervention using social marketing and a weekly iron folic acid supplementation was given to improve iron nutriture of preschool children. In experimental area II, Social marketing alone was implemented and in experimental area III Iron supplementation alone was given. No intervention was given in control area. The Impact evaluation revealed that among different interventions tested, the integrated social marketing intervention resulted best outcomes. The overall observations of the study state that social marketing, an integrated and functional strategy for nutrition communication to prevent and control iron deficiency. Various theoretical frame works / models for nutrition communication facilitate to design culturally appropriate interventions thus achieved improvements in the knowledge, attitude and practices there by resulting successful impact on nutritional status of the target groups.Keywords: anemia, iron deficiency, social marketing, theoretical framework
Procedia PDF Downloads 4053215 Detection of Internal Mold Infection of Intact Tomatoes by Non-Destructive, Transmittance VIS-NIR Spectroscopy
Authors: K. Petcharaporn
Abstract:
The external characteristics of tomatoes, such as freshness, color and size are typically used in quality control processes for tomatoes sorting. However, the internal mold infection of intact tomato cannot be sorted based on a visible assessment and destructive method alone. In this study, a non-destructive technique was used to predict the internal mold infection of intact tomatoes by using transmittance visible and near infrared (VIS-NIR) spectroscopy. Spectra for 200 samples contained 100 samples for normal tomatoes and 100 samples for mold infected tomatoes were acquired in the wavelength range between 665-955 nm. This data was used in conjunction with partial least squares-discriminant analysis (PLS-DA) method to generate a classification model for tomato quality between groups of internal mold infection of intact tomato samples. For this task, the data was split into two groups, 140 samples were used for a training set and 60 samples were used for a test set. The spectra of both normal and internally mold infected tomatoes showed different features in the visible wavelength range. Combined spectral pretreatments of standard normal variate transformation (SNV) and smoothing (Savitzky-Golay) gave the optimal calibration model in training set, 85.0% (63 out of 71 for the normal samples and 56 out of 69 for the internal mold samples). The classification accuracy of the best model on the test set was 91.7% (29 out of 29 for the normal samples and 26 out of 31 for the internal mold tomato samples). The results from this experiment showed that transmittance VIS-NIR spectroscopy can be used as a non-destructive technique to predict the internal mold infection of intact tomatoes.Keywords: tomato, mold, quality, prediction, transmittance
Procedia PDF Downloads 3623214 A Supervised Approach for Detection of Singleton Spam Reviews
Authors: Atefeh Heydari, Mohammadali Tavakoli, Naomie Salim
Abstract:
In recent years, we have witnessed that online reviews are the most important source of customers’ opinion. They are progressively more used by individuals and organisations to make purchase and business decisions. Unfortunately, for the reason of profit or fame, frauds produce deceptive reviews to hoodwink potential customers. Their activities mislead not only potential customers to make appropriate purchasing decisions and organisations to reshape their business, but also opinion mining techniques by preventing them from reaching accurate results. Spam reviews could be divided into two main groups, i.e. multiple and singleton spam reviews. Detecting a singleton spam review that is the only review written by a user ID is extremely challenging due to lack of clue for detection purposes. Singleton spam reviews are very harmful and various features and proofs used in multiple spam reviews detection are not applicable in this case. Current research aims to propose a novel supervised technique to detect singleton spam reviews. To achieve this, various features are proposed in this study and are to be combined with the most appropriate features extracted from literature and employed in a classifier. In order to compare the performance of different classifiers, SVM and naive Bayes classification algorithms were used for model building. The results revealed that SVM was more accurate than naive Bayes and our proposed technique is capable to detect singleton spam reviews effectively.Keywords: classification algorithms, Naïve Bayes, opinion review spam detection, singleton review spam detection, support vector machine
Procedia PDF Downloads 3093213 Reconstructability Analysis for Landslide Prediction
Authors: David Percy
Abstract:
Landslides are a geologic phenomenon that affects a large number of inhabited places and are constantly being monitored and studied for the prediction of future occurrences. Reconstructability analysis (RA) is a methodology for extracting informative models from large volumes of data that work exclusively with discrete data. While RA has been used in medical applications and social science extensively, we are introducing it to the spatial sciences through applications like landslide prediction. Since RA works exclusively with discrete data, such as soil classification or bedrock type, working with continuous data, such as porosity, requires that these data are binned for inclusion in the model. RA constructs models of the data which pick out the most informative elements, independent variables (IVs), from each layer that predict the dependent variable (DV), landslide occurrence. Each layer included in the model retains its classification data as a primary encoding of the data. Unlike other machine learning algorithms that force the data into one-hot encoding type of schemes, RA works directly with the data as it is encoded, with the exception of continuous data, which must be binned. The usual physical and derived layers are included in the model, and testing our results against other published methodologies, such as neural networks, yields accuracy that is similar but with the advantage of a completely transparent model. The results of an RA session with a data set are a report on every combination of variables and their probability of landslide events occurring. In this way, every combination of informative state combinations can be examined.Keywords: reconstructability analysis, machine learning, landslides, raster analysis
Procedia PDF Downloads 663212 State of Emergency in Turkey (July 2016-July 2018): A Case of Utilization of Law as a Political Instrument
Authors: Neslihan Cetin
Abstract:
In this study, we will aim to analyze how the period of the state of emergency in Turkey lead to gaps in law and the formation of areas in which there was a complete lack of supervision. The state of emergency that was proclaimed following the coup attempt of July 15, 2016, continued until July 18, 2018, that is to say, 2 years, without taking into account whether the initial circumstances persisted. As part of this work, we claim that the state of emergency provided the executive power with important tools for governing, which it took constant use. We can highlight how the concern for security at the center of the basic considerations of the people in a city was exploited as a foundation by the military power in Turkey to interfere in the political, legal, and social spheres. The constitutions of 1924, 1961, and 1982 entrusted the army with the role of protector of the integrity of the state. This became an instrument at the hands of the military to legitimize their interventions in the name of public security. Its interventions in the political field are indeed politically motivated. The constitution, the legislative, and regulatory systems are modified and monopolized by the military power that dominates the legislative, regulatory, and judicial power, leading to a state of exception. With the political convulsions over a decade, the government was able to usurp the instrument called the state of exception. In particular, the decree-laws of the state of emergency, which the executive makes frequent and generally abusive use, became instruments in the hands of the government to take measures that it wishes to escape from the rules and the pre-established control mechanisms. Thus the struggle against the political opposition becomes more unbalanced and destructive. To this must also be added the ineffectiveness of ex-post controls and domestic remedies. This research allows us to stress how a legal concept, such as ‘the state of emergency’ can be politically exploited to make it a legal weapon that continues to produce victims.Keywords: constitutional law, state of emergency, rule of law, instrumentalization of law
Procedia PDF Downloads 1423211 Detection of Internal Mold Infection of Intact For Tomatoes by Non-Destructive, Transmittance VIS-NIR Spectroscopy
Authors: K. Petcharaporn, N. Prathengjit
Abstract:
The external characteristics of tomatoes, such as freshness, color and size are typically used in quality control processes for tomatoes sorting. However, the internal mold infection of intact tomato cannot be sorted based on a visible assessment and destructive method alone. In this study, a non-destructive technique was used to predict the internal mold infection of intact tomatoes by using transmittance visible and near infrared (VIS-NIR) spectroscopy. Spectra for 200 samples contained 100 samples for normal tomatoes and 100 samples for mold infected tomatoes were acquired in the wavelength range between 665-955 nm. This data was used in conjunction with partial least squares-discriminant analysis (PLS-DA) method to generate a classification model for tomato quality between groups of internal mold infection of intact tomato samples. For this task, the data was split into two groups, 140 samples were used for a training set and 60 samples were used for a test set. The spectra of both normal and internally mold infected tomatoes showed different features in the visible wavelength range. Combined spectral pretreatments of standard normal variate transformation (SNV) and smoothing (Savitzky-Golay) gave the optimal calibration model in training set, 85.0% (63 out of 71 for the normal samples and 56 out of 69 for the internal mold samples). The classification accuracy of the best model on the test set was 91.7% (29 out of 29 for the normal samples and 26 out of 31 for the internal mold tomato samples). The results from this experiment showed that transmittance VIS-NIR spectroscopy can be used as a non-destructive technique to predict the internal mold infection of intact tomatoes.Keywords: tomato, mold, quality, prediction, transmittance
Procedia PDF Downloads 5193210 Food and Nutritional Security in the Context of Climate Change in Ethiopia: Using Household Panel Data
Authors: Aemro Tazeze Terefe, Mengistu K. Aredo, Abule M. Workagegnehu, Wondimagegn M. Tesfaye
Abstract:
Climate-induced shocks have been shown to reduce agricultural production and cause fluctuation in output in developing countries. When livelihoods depend on rain-fed agriculture, climate-induced shocks translate into consumption shocks. Despite the substantial improvements in household consumption, climate-induced shocks, and other factors adversely affect consumption dynamics at the household level in Ethiopia. Therefore, household consumption dynamics in the context of climate-induced shocks help to guide resilience capacity and establish appropriate interventions and programs. The research employed three-round panel data based on the Ethiopian Socioeconomic Survey with spatial rainfall data to define unique measures of rainfall variability. The linear dynamic panel model results show that the lagged value of consumption, market shocks, and rainfall variability positively affected consumption dynamics. In contrast, production shocks, temperature, and amount of rainfall had a negative relationship. Coping strategies mitigate adverse climate-induced shocks on consumption aftershocks that smooth consumption over time. Support to increase the resilience capacity of households can involve efforts to make existing livelihoods and forms of production or reductions in the vulnerability of households. Therefore, government interventions are mandatory for asset accumulation agendas that support household coping strategies and respond to shocks. In addition, the dynamic linkage between consumption and significant socioeconomic and institutional factors should be taken into account to minimize the effect of climate-induced shocks on consumption dynamics.Keywords: climate shock, Ethiopia, fixed-effect model, food security
Procedia PDF Downloads 1163209 Change Detection of Vegetative Areas Using Land Use Land Cover of Desertification Vulnerable Areas in Nigeria
Authors: T. Garba, Y. Y. Sabo A. Babanyara, K. G. Ilellah, A. K. Mutari
Abstract:
This study used the Normalized Difference Vegetation Index (NDVI) and maps compiled from the classification of Landsat TM and Landsat ETM images of 1986 and 1999 respectively and Nigeria sat 1 images of 2007 to quantify changes in land use and land cover in selected areas of Nigeria covering 143,609 hectares that are threatened by the encroaching Sahara desert. The results of this investigation revealed a decrease in natural vegetation over the three time slices (1986, 1999 and 2007) which was characterised by an increase in high positive pixel values from 0.04 in 1986 to 0.22 and 0.32 in 1999 and 2007 respectively and, a decrease in natural vegetation from 74,411.60ha in 1986 to 28,591.93ha and 21,819.19ha in 1999 and 2007 respectively. The same results also revealed a periodic trend in which there was progressive increase in the cultivated area from 60,191.87ha in 1986 to 104,376.07ha in 1999 and a terminal decrease to 88,868.31ha in 2007. These findings point to expansion of vegetated and cultivated areas in in the initial period between 1988 and 1996 and reversal of these increases in the terminal period between 1988 and 1996. The study also revealed progressive expansion of built-up areas from 1, 681.68ha in 1986 to 2,661.82ha in 1999 and to 3,765.35ha in 2007. These results argue for the urgent need to protect and conserve the depleting natural vegetation by adopting sustainable human resource use practices i.e. intensive farming in order to minimize persistent depletion of natural vegetation.Keywords: changes, classification, desertification, vegetation changes
Procedia PDF Downloads 3873208 Diagnosis of the Heart Rhythm Disorders by Using Hybrid Classifiers
Authors: Sule Yucelbas, Gulay Tezel, Cuneyt Yucelbas, Seral Ozsen
Abstract:
In this study, it was tried to identify some heart rhythm disorders by electrocardiography (ECG) data that is taken from MIT-BIH arrhythmia database by subtracting the required features, presenting to artificial neural networks (ANN), artificial immune systems (AIS), artificial neural network based on artificial immune system (AIS-ANN) and particle swarm optimization based artificial neural network (PSO-NN) classifier systems. The main purpose of this study is to evaluate the performance of hybrid AIS-ANN and PSO-ANN classifiers with regard to the ANN and AIS. For this purpose, the normal sinus rhythm (NSR), atrial premature contraction (APC), sinus arrhythmia (SA), ventricular trigeminy (VTI), ventricular tachycardia (VTK) and atrial fibrillation (AF) data for each of the RR intervals were found. Then these data in the form of pairs (NSR-APC, NSR-SA, NSR-VTI, NSR-VTK and NSR-AF) is created by combining discrete wavelet transform which is applied to each of these two groups of data and two different data sets with 9 and 27 features were obtained from each of them after data reduction. Afterwards, the data randomly was firstly mixed within themselves, and then 4-fold cross validation method was applied to create the training and testing data. The training and testing accuracy rates and training time are compared with each other. As a result, performances of the hybrid classification systems, AIS-ANN and PSO-ANN were seen to be close to the performance of the ANN system. Also, the results of the hybrid systems were much better than AIS, too. However, ANN had much shorter period of training time than other systems. In terms of training times, ANN was followed by PSO-ANN, AIS-ANN and AIS systems respectively. Also, the features that extracted from the data affected the classification results significantly.Keywords: AIS, ANN, ECG, hybrid classifiers, PSO
Procedia PDF Downloads 4423207 Mitigating Urban Flooding through Spatial Planning Interventions: A Case of Bhopal City
Authors: Rama Umesh Pandey, Jyoti Yadav
Abstract:
Flooding is one of the waterborne disasters that causes extensive destruction in urban areas. Developing countries are at a higher risk of such damage and more than half of the global flooding events take place in Asian countries including India. Urban flooding is more of a human-induced disaster rather than natural. This is highly influenced by the anthropogenic factors, besides metrological and hydrological causes. Unplanned urbanization and poor management of cities enhance the impact manifold and cause huge loss of life and property in urban areas. It is an irony that urban areas have been facing water scarcity in summers and flooding during monsoon. This paper is an attempt to highlight the factors responsible for flooding in a city especially from an urban planning perspective and to suggest mitigating measures through spatial planning interventions. Analysis has been done in two stages; first is to assess the impacts of previous flooding events and second to analyze the factors responsible for flooding at macro and micro level in cities. Bhopal, a city in Central India having nearly two million population, has been selected for the study. The city has been experiencing flooding during heavy rains in monsoon. The factors responsible for urban flooding were identified through literature review as well as various case studies from different cities across the world and India. The factors thus identified were analyzed for both macro and micro level influences. For macro level, the previous flooding events that have caused huge destructions were analyzed and the most affected areas in Bhopal city were identified. Since the identified area was falling within the catchment of a drain so the catchment area was delineated for the study. The factors analyzed were: rainfall pattern to calculate the return period using Weibull’s formula; imperviousness through mapping in ArcGIS; runoff discharge by using Rational method. The catchment was divided into micro watersheds and the micro watershed having maximum impervious surfaces was selected to analyze the coverage and effect of physical infrastructure such as: storm water management; sewerage system; solid waste management practices. The area was further analyzed to assess the extent of violation of ‘building byelaws’ and ‘development control regulations’ and encroachment over the natural water streams. Through analysis, the study has revealed that the main issues have been: lack of sewerage system; inadequate storm water drains; inefficient solid waste management in the study area; violation of building byelaws through extending building structures ether on to the drain or on the road; encroachments by slum dwellers along or on to the drain reducing the width and capacity of the drain. Other factors include faulty culvert’s design resulting in back water effect. Roads are at higher level than the plinth of houses which creates submersion of their ground floors. The study recommends spatial planning interventions for mitigating urban flooding and strategies for management of excess rain water during monsoon season. Recommendations have also been made for efficient land use management to mitigate water logging in areas vulnerable to flooding.Keywords: mitigating strategies, spatial planning interventions, urban flooding, violation of development control regulations
Procedia PDF Downloads 3293206 Investigating the Efficacy of HIV/AIDS Psycho-Education and Behavioural Skills Training in Reducing Sexual Risk Behaviours in a Trucking Population in Nigeria
Authors: Abiodun Musbau Lawal, Benjamin Oladapo Olley
Abstract:
Long Distance Truck Drivers (LDTDs) have been found to be a high-risk group in the spread of HIV/AIDS globally; perhaps, due to their high Sexual Risk Behaviours (SRBs). Interventions for reducing SRBs in trucking population have not been fully exploited. A quasi-experimental control group pretest-posttest design was used to assess the efficacy of psycho-education and behavioural skills training in reducing SRBs among LDTDs. Sixteen drivers rivers were randomly assigned into either experimental or control groups using balloting technique. A questionnaire was used as an instrument for data collection. Repeated measures t-test and independent t-test were used to test hypotheses. The intervention had a significant effect on the SRBs among LDTDs at post-test(t{7}=6.01, p<.01) and at followup (t{7}=6.42, p<.01). No significant difference in sexual risk behaviour of LDTDs at post-test and at follow-up stage. Similarly, intervention had significant effects on sexual risk behaviour at post-test (t {14}=- 4.69, p<.05) and at follow-up (t {14}= -9.56, p < .05) respectively. At post-test and follow-up stages, drivers in experimental group reported reduced SRBs than those in the control group. Drivers in an experimental group reported lower sexual risk behaviour a week after intervention as well as at three months follow-up than those in the control group. It is concluded that HIV/AIDS preventive intervention that provides the necessary informational and behavioural skills content can significantly impact long distance truck drivers sexual risk behaviours.Keywords: HIV/AIDS interventions, long distance truck drivers, Nigeria, sexual risk behaviours
Procedia PDF Downloads 4763205 Life Stage Customer Segmentation by Fine-Tuning Large Language Models
Authors: Nikita Katyal, Shaurya Uppal
Abstract:
This paper tackles the significant challenge of accurately classifying customers within a retailer’s customer base. Accurate classification is essential for developing targeted marketing strategies that effectively engage this important demographic. To address this issue, we propose a method that utilizes Large Language Models (LLMs). By employing LLMs, we analyze the metadata associated with product purchases derived from historical data to identify key product categories that act as distinguishing factors. These categories, such as baby food, eldercare products, or family-sized packages, offer valuable insights into the likely household composition of customers, including families with babies, families with kids/teenagers, families with pets, households caring for elders, or mixed households. We segment high-confidence customers into distinct categories by integrating historical purchase behavior with LLM-powered product classification. This paper asserts that life stage segmentation can significantly enhance e-commerce businesses’ ability to target the appropriate customers with tailored products and campaigns, thereby augmenting sales and improving customer retention. Additionally, the paper details the data sources, model architecture, and evaluation metrics employed for the segmentation task.Keywords: LLMs, segmentation, product tags, fine-tuning, target segments, marketing communication
Procedia PDF Downloads 233204 Equipping Organic Farming in Medicinal and Aromatic Plants: Central Institute of Medicinal and Aromatic Plants' Scientific Interventions
Authors: Alok Kalra
Abstract:
Consumers and practitioners (medical herbalists, pharmacists, and aromatherapists) with strong and increased awareness about health and environment demand organically grown medicinal and aromatic plants (MAPs) to offer a valued product. As the system does not permit the use of synthetic fertilizers the use of nutrient rich organic manures is extremely important. CSIR-CIMAP has developed a complete recycling package for managing distillation and agro-waste of medicinal and aromatic plants for production of superior quality vermicompost involving microbes capable of producing high amounts of humic acid. The major benefits being faster composting period and nutrient rich vermicompost; a nutrient advantage of about 100-150% over the most commonly used organic manure (FYM). At CSIR-CIMAP, strains of microbial inoculants with multiple activities especially strains useful both as biofertilizers and biofungicide and consortia of microbes possessing diverse functional activities have been developed. CSIR-CIMAP has also initiated a program where a large number of accessions are being screened for identifying organic proficient genotypes in mints, ashwagandha, geranium and safed musli. Some of the natural plant growth promoters like calliterpenones from the plant Callicarpa macrophylla has been tested successfully for induction of rooting in stem cuttings and improving growth and yield of various crops. Some of the microbes especially the endophytes have even been identified improving the active constituents of medicinal and aromatic plants. The above said scientific interventions making organic farming a charming proposition would be discussed in details.Keywords: organic agriculture, microbial inoculants, organic fertilizers, natural plant growth promoters
Procedia PDF Downloads 2383203 The Classification Accuracy of Finance Data through Holder Functions
Authors: Yeliz Karaca, Carlo Cattani
Abstract:
This study focuses on the local Holder exponent as a measure of the function regularity for time series related to finance data. In this study, the attributes of the finance dataset belonging to 13 countries (India, China, Japan, Sweden, France, Germany, Italy, Australia, Mexico, United Kingdom, Argentina, Brazil, USA) located in 5 different continents (Asia, Europe, Australia, North America and South America) have been examined.These countries are the ones mostly affected by the attributes with regard to financial development, covering a period from 2012 to 2017. Our study is concerned with the most important attributes that have impact on the development of finance for the countries identified. Our method is comprised of the following stages: (a) among the multi fractal methods and Brownian motion Holder regularity functions (polynomial, exponential), significant and self-similar attributes have been identified (b) The significant and self-similar attributes have been applied to the Artificial Neuronal Network (ANN) algorithms (Feed Forward Back Propagation (FFBP) and Cascade Forward Back Propagation (CFBP)) (c) the outcomes of classification accuracy have been compared concerning the attributes that have impact on the attributes which affect the countries’ financial development. This study has enabled to reveal, through the application of ANN algorithms, how the most significant attributes are identified within the relevant dataset via the Holder functions (polynomial and exponential function).Keywords: artificial neural networks, finance data, Holder regularity, multifractals
Procedia PDF Downloads 2463202 Sustaining the Social Memory in a Historic Neighborhood: The Case Study of Uch Dukkan Neighborhood in Ardabil City in Azerbaijani Region of Iran
Authors: Yousef Daneshvar Rouyandozagh, Ece. K. Açikgöz
Abstract:
Conservation of historical urban patterns in the traditional neighborhoods is a part of creating integrated urban environments that are socially more sustainable. Urbanization reflects on life conditions and social, physical, economical characteristics of the society. In this regard, historical zones and traditional regions are affected by dramatic interventions on these characteristics. This article focuses on the Uch Dukkan neighborhood located in Ardabil City in Azarbaijani region of Iran, which has been up to such interventions that leaded its transformation from the past to the present. After introducing a brief inventory of the main elements of the historical zone and the neighborhood; this study explores the changes and transformations in different periods; and their impacts on the quality of the environment and its social sustainability. The survey conducted in the neighborhood as part of this research study revealed that the Uch Dukkan neighborhood and the unique architectural heritage that it possesses have become more inactive physically and functionally in a decade. This condition requires an exploration and comparison of the present and the expected transformations of the meaning of social space from the most private unit to the urban scale. From this token, it is argued that an architectural point of view that is based on space order; use and meaning of space as a social and cultural image, should not be ignored. Based on the interplay between social sustainability, collective memory, and the urban environment, study aims to make the invisible portion of ignorance clear, that ends up with a weakness in defining the collective meaning of the neighborhood as a historic urban district. It reveals that the spatial possessions of the neighborhood are valuable not only for their historical and physical characteristics, but also for their social memory that is to be remembered and constructed further.Keywords: urban integrity, social sustainability, collective memory, social decay
Procedia PDF Downloads 2883201 Tactical Urbanism and Sustainability: Tactical Experiences in the Promotion of Active Transportation
Authors: Aline Fernandes Barata, Adriana Sansão Fontes
Abstract:
The overvaluation of the use of automobile has detrimentally affected the importance of pedestrians within the city and consequently its public spaces. As a way of treating contemporary urban paradigms, Tactical Urbanism aims to recover and activate spaces through fast and easily-applied actions that demonstrate the possibility of large-scale and long-term changes in cities. Tactical interventions have represented an important practice of redefining public spaces and urban mobility. The concept of Active Transportation coheres with the idea of sustainable urban mobility, characterizing the means of transportation through human propulsion, such as walking and cycling. This paper aims to debate the potential of Tactical Urbanism in promoting Active Transportation by revealing opportunities of transformation in the urban space of contemporary cities through initiatives that promote the protection and valorization of the presence of pedestrians and cyclists in cities, and that subvert the importance of motorized vehicles. In this paper, we present the character of these actions in two different ways: when they are used as tests for permanent interventions and when they have pre-defined start and end periods. Using recent initiatives to illustrate, we aim to discuss the role of small-scale actions in promoting and incentivizing a more active, healthy, sustainable and responsive urban way of life, presenting how some of them have developed through public policies. For that, we will present some examples of tactical actions that illustrate the encouragement of Active Transportation and trials to balance the urban opportunities for pedestrians and cyclists. These include temporary closure of streets, the creation of new alternatives and more comfortable areas for walking and cycling, and the subversion of uses in public spaces where the usage of cars are predominant.Keywords: tactical urbanism, active transportation, sustainable mobility, non-motorized means
Procedia PDF Downloads 2433200 Artificial Intelligence Assisted Sentiment Analysis of Hotel Reviews Using Topic Modeling
Authors: Sushma Ghogale
Abstract:
With a surge in user-generated content or feedback or reviews on the internet, it has become possible and important to know consumers' opinions about products and services. This data is important for both potential customers and businesses providing the services. Data from social media is attracting significant attention and has become the most prominent channel of expressing an unregulated opinion. Prospective customers look for reviews from experienced customers before deciding to buy a product or service. Several websites provide a platform for users to post their feedback for the provider and potential customers. However, the biggest challenge in analyzing such data is in extracting latent features and providing term-level analysis of the data. This paper proposes an approach to use topic modeling to classify the reviews into topics and conduct sentiment analysis to mine the opinions. This approach can analyse and classify latent topics mentioned by reviewers on business sites or review sites, or social media using topic modeling to identify the importance of each topic. It is followed by sentiment analysis to assess the satisfaction level of each topic. This approach provides a classification of hotel reviews using multiple machine learning techniques and comparing different classifiers to mine the opinions of user reviews through sentiment analysis. This experiment concludes that Multinomial Naïve Bayes classifier produces higher accuracy than other classifiers.Keywords: latent Dirichlet allocation, topic modeling, text classification, sentiment analysis
Procedia PDF Downloads 973199 Paradigm Shift in Reducing Greenhouse Gas Emissions for Developing Countries: Focus on Behavioral Changes
Authors: Bishal Saha, Musah Ahmed Rufai Muhyedeen, Jubeyer Hossain Joy, Muhammad Muhitur Rahman, Mohammad Shahedur Rahman, Md Arif Hasan, Syed Masiur Rahman
Abstract:
Greenhouse gas (GHG) emission is one of the critical problems of today’s world. Many countries have been taking many short- and long-term plans to reduce climate change mitigation. However, the potential of behavioral changes in addressing this problem is promising, as reported by many researchers. This paper presents a comprehensive literature review that focuses on ways to influence people’s behavior in their homes, workplace, and transportation to mitigate the emission directly or indirectly. This study will investigate different theories pertinent to planned behavior and the key elements for modifying behavior like biophilia, reinforcement to use optimum energy and recyclable products, proper application of greenhouse tax, modern technology, and sustainable design adaptation, transportation sharing, social and community norms, proper education and information, and financial incentives. There is a number of challenges associated with behavioral changes. Behavioral interventions have different actions varied by their type and need to combine various policy tools and great social marketing. Many interventions can reduce GHG emissions without any compromise with household well-being. This study will develop a landscape of prevailing theories of environmental psychology by identifying and reviewing the key themes and findings of this field of study. It will support especially the developing countries to reduce GHG emissions without significant capital investment. It is also expected that the behavioral changes will lead to the successful adoption of climate-friendly policies easily. This study will also generate new research questions and directions.Keywords: behavioral changes, climate change mitigation, environmental psychology, greenhouse gas emission
Procedia PDF Downloads 2343198 Change Detection and Analysis of Desertification Processes in Semi Arid Land in Algeria Using Landsat Data
Authors: Zegrar Ahmed, Ghabi Mohamed
Abstract:
The degradation of arid and semi-arid ecosystems in Algeria has become a palpable fact that only hinders progress and rural development. In these exceptionally fragile environments, the decline of vegetation is done according to an alarming increase and wind erosion dominates. The ecosystem is subjected to a long hot dry season and low annual average rainfall. The urgency of the fight against desertification is imposed by the very nature of the process that tends to self-accelerate, resulting when human intervention is not forthcoming the irreversibility situations, preventing any possibility of restoration state of these zones. These phenomena have led to different degradation processes, such as the destruction of vegetation, soil erosion, and deterioration of the physical environment. In this study, the work is mainly based on the criteria for classification and identification of physical parameters for spatial analysis and multi-sources to determine the vulnerability of major steppe formations and their impact on desertification. we used Landsat data with two different dates March 2010 and November 2014 in order to determine the changes in land cover, sand moving and land degradation for the diagnosis of the desertification Phenomenon. The application, through specific processes, including the supervised classification was used to characterize the main steppe formations. An analysis of the vulnerability of plant communities was conducted to assign weights and identify areas most susceptible to desertification. Vegetation indices are used to characterize the steppe formations to determine changes in land use.Keywords: remote sensing, SIG, ecosystem, degradation, desertification
Procedia PDF Downloads 3393197 Experiences and Coping of Adults with Death of Siblings during Childhood in Chinese Context: Implications for Therapeutic Interventions
Authors: Sze Yee Lee
Abstract:
The death of a sibling in childhood leads to significant impacts on both the personal and family development of the surviving siblings. Yet, the effects of sibling loss in Chinese societies such as Hong Kong have been inadequately documented in the literature. In particular, there is a gap in the literature about the long term impacts on surviving siblings. This paper explores the experience of adult siblings encountering siblings’ death during childhood with the use of in-depth interviews. Through thematic analysis and in-depth interviews, the author explores the impacts on surviving siblings’ emotions, coping styles, struggles and challenges, and personal development. Furthermore, the influences on family dynamics are explored thoroughly, including the changes in a family atmosphere, family roles, family relationships, family communication, and parenting styles. More importantly, the author identifies (i) existing continuing bonds, (ii) crying, (iii) adequate social support, (iv) hiding own emotions as a gesture of protecting parents as the crucial elements pertinent to surviving siblings’ successful adaptation in the face of sibling loss. In addition, 'child-centered' and 'family-centered' interventions for families with siblings' death in a Chinese context are discussed. With the use of age-appropriate language and children’s participation in the preparation of death and after-death arrangements, surviving siblings could be assisted in transforming bereavement into opportunities for growth. In addition, the bereaved family could better cope with grief with open communication platforms, adequate social support, and family education resources. Meanwhile, life-and-death education at both school and community levels could enhance the public’s awareness and understanding of the bereaved individuals to prevent creating further harm to them.Keywords: children and adolescent bereavement, children-centered, family-centered, sibling’s death
Procedia PDF Downloads 1093196 Working in Multidisciplinary Care Teams: Perspectives from Health Care and Social Service Providers
Authors: Lindy Van Vliet, Saloni Phadke, Anthea Nelson, Ann Gallant
Abstract:
Holistic and patient-centred palliative care and support require an integrated system of care that includes health and social service providers working together to ensure that patients and families have access to the care they need. The objective of this study is to further explore and understand the benefits and challenges of mobilizing multidisciplinary care teams for health care professionals and social service providers. Drawing on an interpretivist, exploratory, qualitative design, our multidisciplinary research team (medicine, nursing and social work) conducted interviews with 15 health care and social service providers in the Ottawa region. Interview data was audio-recorded, transcribed, and analyzed using a reflexive thematic analysis approach. The data deepens our understandings of the facilitators and barriers posed by multidisciplinary care teams. Three main findings emerged: First, the data highlighted the benefits of multidisciplinary care teams for both patient outcomes and quality of life and provider mental health; second, the data showed that the lack of a system-wide integrated communication system reduces the quality of patient care and increases provider stress while working in multidisciplinary care teams; finally, the data demonstrated the existence of implicit hierarchies between disciplines, this coupled with different disciplinary perspectives of palliative care provision can lead to friction and challenges within care teams. These findings will have important implications for the future of palliative care as they will help to facilitate and build stronger person-centred/relationship-centred palliative care practices by naming the challenges faced by multidisciplinary palliative care teams and providing examples of best practices.Keywords: public health palliative care, palliative care nursing, care networks, integrated health care, palliative care approach, public health, multidisciplinary work, care teams
Procedia PDF Downloads 823195 Navigating Government Finance Statistics: Effortless Retrieval and Comparative Analysis through Data Science and Machine Learning
Authors: Kwaku Damoah
Abstract:
This paper presents a methodology and software application (App) designed to empower users in accessing, retrieving, and comparatively exploring data within the hierarchical network framework of the Government Finance Statistics (GFS) system. It explores the ease of navigating the GFS system and identifies the gaps filled by the new methodology and App. The GFS, embodies a complex Hierarchical Network Classification (HNC) structure, encapsulating institutional units, revenues, expenses, assets, liabilities, and economic activities. Navigating this structure demands specialized knowledge, experience, and skill, posing a significant challenge for effective analytics and fiscal policy decision-making. Many professionals encounter difficulties deciphering these classifications, hindering confident utilization of the system. This accessibility barrier obstructs a vast number of professionals, students, policymakers, and the public from leveraging the abundant data and information within the GFS. Leveraging R programming language, Data Science Analytics and Machine Learning, an efficient methodology enabling users to access, navigate, and conduct exploratory comparisons was developed. The machine learning Fiscal Analytics App (FLOWZZ) democratizes access to advanced analytics through its user-friendly interface, breaking down expertise barriers.Keywords: data science, data wrangling, drilldown analytics, government finance statistics, hierarchical network classification, machine learning, web application.
Procedia PDF Downloads 70