Search results for: multiple data
26599 Data Clustering Algorithm Based on Multi-Objective Periodic Bacterial Foraging Optimization with Two Learning Archives
Authors: Chen Guo, Heng Tang, Ben Niu
Abstract:
Clustering splits objects into different groups based on similarity, making the objects have higher similarity in the same group and lower similarity in different groups. Thus, clustering can be treated as an optimization problem to maximize the intra-cluster similarity or inter-cluster dissimilarity. In real-world applications, the datasets often have some complex characteristics: sparse, overlap, high dimensionality, etc. When facing these datasets, simultaneously optimizing two or more objectives can obtain better clustering results than optimizing one objective. However, except for the objectives weighting methods, traditional clustering approaches have difficulty in solving multi-objective data clustering problems. Due to this, evolutionary multi-objective optimization algorithms are investigated by researchers to optimize multiple clustering objectives. In this paper, the Data Clustering algorithm based on Multi-objective Periodic Bacterial Foraging Optimization with two Learning Archives (DC-MPBFOLA) is proposed. Specifically, first, to reduce the high computing complexity of the original BFO, periodic BFO is employed as the basic algorithmic framework. Then transfer the periodic BFO into a multi-objective type. Second, two learning strategies are proposed based on the two learning archives to guide the bacterial swarm to move in a better direction. On the one hand, the global best is selected from the global learning archive according to the convergence index and diversity index. On the other hand, the personal best is selected from the personal learning archive according to the sum of weighted objectives. According to the aforementioned learning strategies, a chemotaxis operation is designed. Third, an elite learning strategy is designed to provide fresh power to the objects in two learning archives. When the objects in these two archives do not change for two consecutive times, randomly initializing one dimension of objects can prevent the proposed algorithm from falling into local optima. Fourth, to validate the performance of the proposed algorithm, DC-MPBFOLA is compared with four state-of-art evolutionary multi-objective optimization algorithms and one classical clustering algorithm on evaluation indexes of datasets. To further verify the effectiveness and feasibility of designed strategies in DC-MPBFOLA, variants of DC-MPBFOLA are also proposed. Experimental results demonstrate that DC-MPBFOLA outperforms its competitors regarding all evaluation indexes and clustering partitions. These results also indicate that the designed strategies positively influence the performance improvement of the original BFO.Keywords: data clustering, multi-objective optimization, bacterial foraging optimization, learning archives
Procedia PDF Downloads 13926598 WiFi Data Offloading: Bundling Method in a Canvas Business Model
Authors: Majid Mokhtarnia, Alireza Amini
Abstract:
Mobile operators deal with increasing in the data traffic as a critical issue. As a result, a vital responsibility of the operators is to deal with such a trend in order to create added values. This paper addresses a bundling method in a Canvas business model in a WiFi Data Offloading (WDO) strategy by which some elements of the model may be affected. In the proposed method, it is supposed to sell a number of data packages for subscribers in which there are some packages with a free given volume of data-offloaded WiFi complimentary. The paper on hands analyses this method in the views of attractiveness and profitability. The results demonstrate that the quality of implementation of the WDO strongly affects the final result and helps the decision maker to make the best one.Keywords: bundling, canvas business model, telecommunication, WiFi data offloading
Procedia PDF Downloads 20026597 Distributed Perceptually Important Point Identification for Time Series Data Mining
Authors: Tak-Chung Fu, Ying-Kit Hung, Fu-Lai Chung
Abstract:
In the field of time series data mining, the concept of the Perceptually Important Point (PIP) identification process is first introduced in 2001. This process originally works for financial time series pattern matching and it is then found suitable for time series dimensionality reduction and representation. Its strength is on preserving the overall shape of the time series by identifying the salient points in it. With the rise of Big Data, time series data contributes a major proportion, especially on the data which generates by sensors in the Internet of Things (IoT) environment. According to the nature of PIP identification and the successful cases, it is worth to further explore the opportunity to apply PIP in time series ‘Big Data’. However, the performance of PIP identification is always considered as the limitation when dealing with ‘Big’ time series data. In this paper, two distributed versions of PIP identification based on the Specialized Binary (SB) Tree are proposed. The proposed approaches solve the bottleneck when running the PIP identification process in a standalone computer. Improvement in term of speed is obtained by the distributed versions.Keywords: distributed computing, performance analysis, Perceptually Important Point identification, time series data mining
Procedia PDF Downloads 43526596 Investors' Ratio Analysis and the Profitability of Listed Firms: Evidence from Nigeria
Authors: Abisola Akinola, Akinsulere Femi
Abstract:
The stock market has continually been a source of economic development in most developing countries. This study examined the relationship between investors’ ratio analysis and profitability of quoted companies in Nigeria using secondary data obtained from the annual reports of forty-two (42) companies. The study employed the multiple regression technique to analyze the relationship between investors’ ratio analysis (measured by dividend per share and earning per share) and profitability (measured by the return on equity). The results from the analysis show that investors’ ratio analysis, when measured by earnings per share, have a positive and significant impact on profitability. However, the study noted that investors’ ratio analysis, when measured by dividend per share, tend to have a positive impact on profitability but it is statistically insignificant. By implication, investors and other stakeholders that are interested in investing in stocks can predict the earning capacity of listed firms in the stock market.Keywords: dividend per share, earnings per share, profitability, return on equity
Procedia PDF Downloads 13726595 Access and Utilization of Family Planning Services among Women in a Rural Community of Enugu state Nigeria, using a Descriptive Cross-sectional Design
Authors: Chidiebere Joy Nwankwo, Benjamin S. C. Uzochukwu, Florence T. Sibeudu
Abstract:
Background: Family planning is one of the most cost-effective ways to prevent maternal, infant, and child mortality. It can decrease maternal mortality by reducing the number of unintended pregnancies, the number of abortions, and the proportion of births at high risk. It has been seen to improve the health and economic well-being of families and communities and ensures women’s planned childbearing in order to achieve education and career goals which could raise family income thereby reducing poverty. The choice and use of a particular family planning method and their sources vary globally. Rural Communities often face significant challenges in accessing and utilizing family planning services. Aim: This study set out to assess Access and Utilization of Family Planning Services among Women of Reproductive Age in a Rural Community of Enugu state, Nigeria. Rural communities were chosen for this study because past demographic surveys have shown that women in urban areas are more likely to accept and practice family planning compared to those in rural areas. Method: A Descriptive Cross-sectional Research design was employed to achieve the aim and objectives of the study. Data collected from 177 consenting participants using interviewer-administered questionnaires was analysed using Descriptive statistics to summarize the Socio-demographic characteristics of the participants and Access and Utilization of Family Planning Services among the participants including Reasons for using different Family Planning Methods and Barriers encountered in Access and Utilization of these services. A Cross-tabulation between Socio-demographic Characteristics of respondents and the use of Family Planning services was carried out. Result: The findings of this study revealed that majority of the participants (72.9%) have not utilized any family planning service. Out of those (27.1%) that have used any family planning service, majority of them are still currently using a form of family planning service and have access to them in health facilities, patent medicine vendors and others based on multiple responses. Male condoms were the most utilized modern family planning service. Based on multiple responses, inaccessibility, personal beliefs and partner’s objection were the most identified barriers encountered in accessing family planning services. Conclusion: Access and uptake of family planning services in rural communities is lower than the national average. Increasing access to family planning is an urgent priority for rural areas Interventions that will scale up Access and Utilization of family planning services in rural communities should be intensified.Keywords: access, family planning, rural community, utilization
Procedia PDF Downloads 4526594 Use of Generative Adversarial Networks (GANs) in Neuroimaging and Clinical Neuroscience Applications
Authors: Niloufar Yadgari
Abstract:
GANs are a potent form of deep learning models that have found success in various fields. They are part of the larger group of generative techniques, which aim to produce authentic data using a probabilistic model that learns distributions from actual samples. In clinical settings, GANs have demonstrated improved abilities in capturing spatially intricate, nonlinear, and possibly subtle disease impacts in contrast to conventional generative techniques. This review critically evaluates the current research on how GANs are being used in imaging studies of different neurological conditions like Alzheimer's disease, brain tumors, aging of the brain, and multiple sclerosis. We offer a clear explanation of different GAN techniques for each use case in neuroimaging and delve into the key hurdles, unanswered queries, and potential advancements in utilizing GANs in this field. Our goal is to connect advanced deep learning techniques with neurology studies, showcasing how GANs can assist in clinical decision-making and enhance our comprehension of the structural and functional aspects of brain disorders.Keywords: GAN, pathology, generative adversarial network, neuro imaging
Procedia PDF Downloads 3326593 Analysing Techniques for Fusing Multimodal Data in Predictive Scenarios Using Convolutional Neural Networks
Authors: Philipp Ruf, Massiwa Chabbi, Christoph Reich, Djaffar Ould-Abdeslam
Abstract:
In recent years, convolutional neural networks (CNN) have demonstrated high performance in image analysis, but oftentimes, there is only structured data available regarding a specific problem. By interpreting structured data as images, CNNs can effectively learn and extract valuable insights from tabular data, leading to improved predictive accuracy and uncovering hidden patterns that may not be apparent in traditional structured data analysis. In applying a single neural network for analyzing multimodal data, e.g., both structured and unstructured information, significant advantages in terms of time complexity and energy efficiency can be achieved. Converting structured data into images and merging them with existing visual material offers a promising solution for applying CNN in multimodal datasets, as they often occur in a medical context. By employing suitable preprocessing techniques, structured data is transformed into image representations, where the respective features are expressed as different formations of colors and shapes. In an additional step, these representations are fused with existing images to incorporate both types of information. This final image is finally analyzed using a CNN.Keywords: CNN, image processing, tabular data, mixed dataset, data transformation, multimodal fusion
Procedia PDF Downloads 12326592 Factors Determining the Women Empowerment through Microfinance: An Empirical Study in Sri Lanka
Authors: Y. Rathiranee, D. M. Semasinghe
Abstract:
This study attempts to identify the factors influencing on women empowerment of rural area in Sri Lanka through micro finance services. Data were collected from one hundred (100) rural women involving self employment activities through a questionnaire using direct personal interviews. Judgment and Convenience Random sampling technique was used to select the sample size from three Divisional Secretariat divisions of Kandawalai, Poonakari and Karachchi in Kilinochchi District. The factor analysis was performed on fourteen (14) variables for screening and reducing the variables to identify the influencing factors on empowerment. Multiple regression analysis was used to identify the relationship between the three empowerment factors and the impact of micro-finance on overall empowerment of rural women. The result of this study summarized the variables into three factors namely decision making, freedom to mobility and family support and which are positively associated with empowerment. In addition to this the value of adjusted R2 is 0.248 indicates that all the variables extracted can be explained 24.8% of the variation in the women empowerment through microfinance. Independent variables of these three factors have a positive correlation with women empowerment as well as significant values at 5 percent level.Keywords: influencing factors, micro finance, rural women, women empowerment
Procedia PDF Downloads 47326591 Knowledge Discovery and Data Mining Techniques in Textile Industry
Authors: Filiz Ersoz, Taner Ersoz, Erkin Guler
Abstract:
This paper addresses the issues and technique for textile industry using data mining techniques. Data mining has been applied to the stitching of garments products that were obtained from a textile company. Data mining techniques were applied to the data obtained from the CHAID algorithm, CART algorithm, Regression Analysis and, Artificial Neural Networks. Classification technique based analyses were used while data mining and decision model about the production per person and variables affecting about production were found by this method. In the study, the results show that as the daily working time increases, the production per person also decreases. In addition, the relationship between total daily working and production per person shows a negative result and the production per person show the highest and negative relationship.Keywords: data mining, textile production, decision trees, classification
Procedia PDF Downloads 34926590 The Nexus between Downstream Supply Chain Losses and Food Security in Nigeria: Empirical Evidence from the Yam Industry
Authors: Alban Igwe, Ijeoma Kalu, Alloy Ezirim
Abstract:
Food insecurity is a global problem, and the search for food security has assumed a central stage in the global development agenda as the United Nations currently placed zero hunger as a goal number in its sustainable development goals. Nigeria currently ranks 107th out of 113 countries in the global food security index (GFSI), a metric that defines a country's ability to furnish its citizens with food and nutrients for healthy living. Paradoxically, Nigeria is a global leader in food production, ranking 1st in yam (over 70% of global output), beans (over 41% of global output), cassava (20% of global output) and shea nuts, where it commands 53% of global output. Furthermore, it ranks 2nd in millet, sweet potatoes, and cashew nuts. It is Africa's largest producer of rice. So, it is apparent that Nigeria's food insecurity woes must relate to a factor other than food production. We investigated the nexus between food security and downstream supply chain losses in the yam industry with secondary data from the Food and Agricultural Organization (FAOSTAT) and the National Bureau of Statics for the decade 2012-2021. In analyzing the data, multiple regression techniques were used, and findings reveal that downstream losses have a strong positive correlation with food security (r = .763*) and a 58.3% variation in food security is explainable by post-downstream supply chain food losses. The study discovered that yam supply chain losses within the period under review averaged 50.6%, suggestive of the fact that downstream supply chain losses are the drainpipe and the major source of food insecurity in Nigeria. Therefore, the study concluded that there is a significant relationship between downstream supply chain losses and food insecurity and recommended the establishment of food supply chain structures and policies to enhance food security in Nigeria.Keywords: food security, downstream supply chain losses, yam, nigeria, supply chain
Procedia PDF Downloads 9126589 Polymer Patterning by Dip Pen Nanolithography
Authors: Ayse Cagil Kandemir, Derya Erdem, Markus Niederberger, Ralph Spolenak
Abstract:
Dip Pen nanolithography (DPN), which is a tip based method, serves a novel approach to produce nano and micro-scaled patterns due to its high resolution and pattern flexibility. It is introduced as a new constructive scanning probe lithography (SPL) technique. DPN delivers materials in the form of an ink by using the tip of a cantilever as pen and substrate as paper in order to form surface architectures. First studies rely on delivery of small organic molecules on gold substrate in ambient conditions. As time passes different inks such as; polymers, colloidal particles, oligonucleotides, metallic salts were examined on a variety of surfaces. Discovery of DPN also enabled patterning with multiple inks by using multiple cantilevers for the first time in SPL history. Specifically, polymer inks, which constitute a flexible matrix for various materials, can have a potential in MEMS, NEMS and drug delivery applications. In our study, it is aimed to construct polymer patterns using DPN by studying wetting behavior of polymer on semiconductor, metal and polymer surfaces. The optimum viscosity range of polymer and effect of environmental conditions such as humidity and temperature are examined. It is observed that there is an inverse relation with ink viscosity and depletion time. This study also yields the optimal writing conditions to produce consistent patterns with DPN. It is shown that written dot sizes increase with dwell time, indicating that the examined writing conditions yield repeatable patterns.Keywords: dip pen nanolithography, polymer, surface patterning, surface science
Procedia PDF Downloads 39726588 Key Aroma Compounds as Predictors of Pineapple Sensory Quality
Authors: Jenson George, Thoa Nguyen, Garth Sanewski, Craig Hardner, Heather Eunice Smyth
Abstract:
Pineapple (Ananas comosus), with its unique sweet flavour, is one of the most popular tropical, non-climacteric fruits consumed worldwide. It is also the third most important tropical fruit in world production. In Australia, 99% of the pineapple production is from the Queensland state due to the favourable subtropical climatic conditions. The flavourful fruit is known to contain around 500 volatile organic compounds (VOC) at varying concentrations and greatly contribute to the flavour quality of pineapple fruit by providing distinct aroma sensory properties that are sweet, fruity, tropical, pineapple-like, caramel-like, coconut-like, etc. The aroma of pineapple is one of the important factors attracting consumers and strengthening the marketplace. To better understand the aroma of Australian-grown pineapples, the matrix-matched Gas chromatography–mass spectrometry (GC-MS), Head Space - Solid-phase microextraction (HS-SPME), Stable-isotope dilution analysis (SIDA) method was developed and validated. The developed method represents a significant improvement over current methods with the incorporation of multiple external reference standards, multiple isotopes labeled internal standards, and a matching model system of pineapple fruit matrix. This method was employed to quantify 28 key aroma compounds in more than 200 genetically diverse pineapple varieties from a breeding program. The Australian pineapple cultivars varied in content and composition of free volatile compounds, which were predominantly comprised of esters, followed by terpenes, alcohols, aldehydes, and ketones. Using selected commercial cultivars grown in Australia, and by employing the sensorial analysis, the appearance (colour), aroma (intensity, sweet, vinegar/tang, tropical fruits, floral, coconut, green, metallic, vegetal, fresh, peppery, fermented, eggy/sulphurous) and texture (crunchiness, fibrousness, and juiciness) were obtained. Relationships between sensory descriptors and volatiles were explored by applying multivariate analysis (PCA) to the sensorial and chemical data. The key aroma compounds of pineapple exhibited a positive correlation with corresponding sensory properties. The sensory and volatile data were also used to explore genetic diversity in the breeding population. GWAS was employed to unravel the genetic control of the pineapple volatilome and its interplay with fruit sensory characteristics. This study enhances our understanding of pineapple aroma (flavour) compounds, their biosynthetic pathways and expands breeding option for pineapple cultivars. This research provides foundational knowledge to support breeding programs, post-harvest and target market studies, and efforts to optimise the flavour of commercial pineapple varieties and their parent lines to produce better tasting fruits for consumers.Keywords: Ananas comosus, pineapple, flavour, volatile organic compounds, aroma, Gas chromatography–mass spectrometry (GC-MS), Head Space - Solid-phase microextraction (HS-SPME), Stable-isotope dilution analysis (SIDA).
Procedia PDF Downloads 5726587 Investigation of Effects and Hazards of Wind Flow on Buildings in Multiple Arrangements Using CFD
Authors: S. C. Gupta
Abstract:
The wind flow over several buildings lying in close vicinity in urban areas generates flow interference effects causing problems related to pedestrian comfort and ventilation within the buildings. This promoted a lot of research interest in the recent years. Airflow over a building creates a positive pressure zone on the upstream side and negative pressure zones (cavities or eddy zones) on the roof and all other sides. Large eddy simulation model is used along with sub-grid-scale model to numerically simulate turbulence for this purpose. The basis of flow outside the building is the pressure difference (between the wind and building interior). Wind Tunnel models are fabricated and tested in the subsonic wind tunnel. Theoretical results are compared with the experimental data. Newer configuration is tried for favorable effects in recovering static pressure values. Results obtained are seen very encouraging. The proposed exhaustive research investigation through numerical simulations and the experimental work are described and some interesting findings are brought out.Keywords: wind flow, buildings, static pressure wind tunnel testing, CFD
Procedia PDF Downloads 49826586 Effect of Viscosity on Void Structure in Dusty Plasma
Authors: El Amine Nebbat
Abstract:
A void is a dust-free region in dusty plasma, a medium formed of electrons, ions, and charged dust (grain). This structure appears in multiple experimental works. Several researchers have developed models to understand it. Recently, Nebbat and Annou proposed a nonlinear model that describes the void in non-viscos plasma, where the particles of the dusty plasma are treated as a fluid. In fact, the void appears even in dense dusty plasma where viscosity exists through the strong interaction between grains, so in this work, we augment the nonlinear model of Nebbat and Annou by introducing viscosity into the fluid equations. The analysis of the data of the numerical resolution confirms the important effect of this parameter (viscosity). The study revealed that the viscosity increases the dimension of the void for certain dimensions of the grains, and its effect on the value of the density of the grains at the boundary of the void is inversely proportional to their radii, i.e., this density increase for submicron grains and decrease for others. Finally, this parameter reduces the rings of dust density which surround the void.Keywords: voids, dusty plasmas, variable charge, density, viscosity
Procedia PDF Downloads 5726585 A Supervised Approach for Detection of Singleton Spam Reviews
Authors: Atefeh Heydari, Mohammadali Tavakoli, Naomie Salim
Abstract:
In recent years, we have witnessed that online reviews are the most important source of customers’ opinion. They are progressively more used by individuals and organisations to make purchase and business decisions. Unfortunately, for the reason of profit or fame, frauds produce deceptive reviews to hoodwink potential customers. Their activities mislead not only potential customers to make appropriate purchasing decisions and organisations to reshape their business, but also opinion mining techniques by preventing them from reaching accurate results. Spam reviews could be divided into two main groups, i.e. multiple and singleton spam reviews. Detecting a singleton spam review that is the only review written by a user ID is extremely challenging due to lack of clue for detection purposes. Singleton spam reviews are very harmful and various features and proofs used in multiple spam reviews detection are not applicable in this case. Current research aims to propose a novel supervised technique to detect singleton spam reviews. To achieve this, various features are proposed in this study and are to be combined with the most appropriate features extracted from literature and employed in a classifier. In order to compare the performance of different classifiers, SVM and naive Bayes classification algorithms were used for model building. The results revealed that SVM was more accurate than naive Bayes and our proposed technique is capable to detect singleton spam reviews effectively.Keywords: classification algorithms, Naïve Bayes, opinion review spam detection, singleton review spam detection, support vector machine
Procedia PDF Downloads 30926584 Enhancing Fault Detection in Rotating Machinery Using Wiener-CNN Method
Authors: Mohamad R. Moshtagh, Ahmad Bagheri
Abstract:
Accurate fault detection in rotating machinery is of utmost importance to ensure optimal performance and prevent costly downtime in industrial applications. This study presents a robust fault detection system based on vibration data collected from rotating gears under various operating conditions. The considered scenarios include: (1) both gears being healthy, (2) one healthy gear and one faulty gear, and (3) introducing an imbalanced condition to a healthy gear. Vibration data was acquired using a Hentek 1008 device and stored in a CSV file. Python code implemented in the Spider environment was used for data preprocessing and analysis. Winner features were extracted using the Wiener feature selection method. These features were then employed in multiple machine learning algorithms, including Convolutional Neural Networks (CNN), Multilayer Perceptron (MLP), K-Nearest Neighbors (KNN), and Random Forest, to evaluate their performance in detecting and classifying faults in both the training and validation datasets. The comparative analysis of the methods revealed the superior performance of the Wiener-CNN approach. The Wiener-CNN method achieved a remarkable accuracy of 100% for both the two-class (healthy gear and faulty gear) and three-class (healthy gear, faulty gear, and imbalanced) scenarios in the training and validation datasets. In contrast, the other methods exhibited varying levels of accuracy. The Wiener-MLP method attained 100% accuracy for the two-class training dataset and 100% for the validation dataset. For the three-class scenario, the Wiener-MLP method demonstrated 100% accuracy in the training dataset and 95.3% accuracy in the validation dataset. The Wiener-KNN method yielded 96.3% accuracy for the two-class training dataset and 94.5% for the validation dataset. In the three-class scenario, it achieved 85.3% accuracy in the training dataset and 77.2% in the validation dataset. The Wiener-Random Forest method achieved 100% accuracy for the two-class training dataset and 85% for the validation dataset, while in the three-class training dataset, it attained 100% accuracy and 90.8% accuracy for the validation dataset. The exceptional accuracy demonstrated by the Wiener-CNN method underscores its effectiveness in accurately identifying and classifying fault conditions in rotating machinery. The proposed fault detection system utilizes vibration data analysis and advanced machine learning techniques to improve operational reliability and productivity. By adopting the Wiener-CNN method, industrial systems can benefit from enhanced fault detection capabilities, facilitating proactive maintenance and reducing equipment downtime.Keywords: fault detection, gearbox, machine learning, wiener method
Procedia PDF Downloads 8026583 Investigation of Delivery of Triple Play Data in GE-PON Fiber to the Home Network
Authors: Ashima Anurag Sharma
Abstract:
Optical fiber based networks can deliver performance that can support the increasing demands for high speed connections. One of the new technologies that have emerged in recent years is Passive Optical Networks. This research paper is targeted to show the simultaneous delivery of triple play service (data, voice, and video). The comparison between various data rates is presented. It is demonstrated that as we increase the data rate, number of users to be decreases due to increase in bit error rate.Keywords: BER, PON, TDMPON, GPON, CWDM, OLT, ONT
Procedia PDF Downloads 52726582 Microarray Gene Expression Data Dimensionality Reduction Using PCA
Authors: Fuad M. Alkoot
Abstract:
Different experimental technologies such as microarray sequencing have been proposed to generate high-resolution genetic data, in order to understand the complex dynamic interactions between complex diseases and the biological system components of genes and gene products. However, the generated samples have a very large dimension reaching thousands. Therefore, hindering all attempts to design a classifier system that can identify diseases based on such data. Additionally, the high overlap in the class distributions makes the task more difficult. The data we experiment with is generated for the identification of autism. It includes 142 samples, which is small compared to the large dimension of the data. The classifier systems trained on this data yield very low classification rates that are almost equivalent to a guess. We aim at reducing the data dimension and improve it for classification. Here, we experiment with applying a multistage PCA on the genetic data to reduce its dimensionality. Results show a significant improvement in the classification rates which increases the possibility of building an automated system for autism detection.Keywords: PCA, gene expression, dimensionality reduction, classification, autism
Procedia PDF Downloads 56026581 Germplasm Collections and Morphological Studies of Andropogongayanus-Andropogon tectorum Complex in Southwestern Nigeria
Authors: Ojo F. M., Nwekeocha C. C., Faluyi J. O.
Abstract:
Morphological studies were carried out on Andropogongayanus-Andropogontectorum complex collected in Southwestern Nigeria to provide full characterizationof the two species of Andropogon; elucidating their population dynamics. Morphological data from selected accessions of A. gayanus and A. tectorum from different parts of Southwestern Nigeria were collected and characterized using an adaptation of the Descriptors for Wild and Cultivated Rice (Oryza spp). Preliminary morphological descriptions were carried out at the points of collection. Garden populations were raised from the vegetative parts of some accessions, and hybrids were maintained in Botanical Garden of the Obafemi Awolowo University, Ile- Ife. The data obtained were subjected to inferential tests and Duncan’s multiple range test. This study has revealed distribution pattern of the two species in the area of study, which suggests a south-ward migration of Andropogongayanus from the northern vegetational zones of Nigeria to the southern ecological zones. The migration of A. gayanus around Igbeti with occasional occurrence of A. tectorum along the roadsides without any distinct phenotypic hybrid and Budo-Ode in Oyo State has been established as the southern limit of the spread of A. gayanus, the migration of A. gayanus to the South is not an invasion but a slow process. A. gayanus was not encountered in Osun, Ondo, Ekiti, and Ogun States. Andropogongayanus and Andropogon tectorum not only emerge from the rootstocks rapidly but can also produce independent propagules by rooting at some nodes. The plants can spread by means of these propagules even if it does not produce sexual or apomictic seeds. This potential for vegetative propagation, in addition to the perennial habit, confer considerable advantage for colonization by the Andropogongayanus-AndropogontectorumComplex.Keywords: accessions, distribution, migration, propagation
Procedia PDF Downloads 11626580 Establishing a Computational Screening Framework to Identify Environmental Exposures Using Untargeted Gas-Chromatography High-Resolution Mass Spectrometry
Authors: Juni C. Kim, Anna R. Robuck, Douglas I. Walker
Abstract:
The human exposome, which includes chemical exposures over the lifetime and their effects, is now recognized as an important measure for understanding human health; however, the complexity of the data makes the identification of environmental chemicals challenging. The goal of our project was to establish a computational workflow for the improved identification of environmental pollutants containing chlorine or bromine. Using the “pattern. search” function available in the R package NonTarget, we wrote a multifunctional script that searches mass spectral clusters from untargeted gas-chromatography high-resolution mass spectrometry (GC-HRMS) for the presence of spectra consistent with chlorine and bromine-containing organic compounds. The “pattern. search” function was incorporated into a different function that allows the evaluation of clusters containing multiple analyte fragments, has multi-core support, and provides a simplified output identifying listing compounds containing chlorine and/or bromine. The new function was able to process 46,000 spectral clusters in under 8 seconds and identified over 150 potential halogenated spectra. We next applied our function to a deidentified dataset from patients diagnosed with primary biliary cholangitis (PBC), primary sclerosing cholangitis (PSC), and healthy controls. Twenty-two spectra corresponded to potential halogenated compounds in the PSC and PBC dataset, including six significantly different in PBC patients, while four differed in PSC patients. We have developed an improved algorithm for detecting halogenated compounds in GC-HRMS data, providing a strategy for prioritizing exposures in the study of human disease.Keywords: exposome, metabolome, computational metabolomics, high-resolution mass spectrometry, exposure, pollutants
Procedia PDF Downloads 13826579 Design of Quality Assessment System for On-Orbit 3D Printing Based on 3D Reconstruction Technology
Authors: Jianning Tang, Trevor Hocksun Kwan, Xiaofeng Wu
Abstract:
With the increasing demand for space use in multiple sectors (navigation, telecommunication, imagery, etc.), the deployment and maintenance demand of satellites are growing. Considering the high launching cost and the restrictions on weight and size of the payload when using launch vehicle, the technique of on-orbit manufacturing has obtained more attention because of its significant potential to support future space missions. 3D printing is the most promising manufacturing technology that could be applied in space. However, due to the lack of autonomous quality assessment, the operation of conventional 3D printers still relies on human presence to supervise the printing process. This paper is proposed to develop an automatic 3D reconstruction system aiming at detecting failures on the 3D printed objects through application of point cloud technology. Based on the data obtained from the point cloud, the 3D printer could locate the failure and repair the failure. The system will increase automation and provide 3D printing with more feasibilities for space use without human interference.Keywords: 3D printing, quality assessment, point cloud, on-orbit manufacturing
Procedia PDF Downloads 12026578 Supervised-Component-Based Generalised Linear Regression with Multiple Explanatory Blocks: THEME-SCGLR
Authors: Bry X., Trottier C., Mortier F., Cornu G., Verron T.
Abstract:
We address component-based regularization of a Multivariate Generalized Linear Model (MGLM). A set of random responses Y is assumed to depend, through a GLM, on a set X of explanatory variables, as well as on a set T of additional covariates. X is partitioned into R conceptually homogeneous blocks X1, ... , XR , viewed as explanatory themes. Variables in each Xr are assumed many and redundant. Thus, Generalised Linear Regression (GLR) demands regularization with respect to each Xr. By contrast, variables in T are assumed selected so as to demand no regularization. Regularization is performed searching each Xr for an appropriate number of orthogonal components that both contribute to model Y and capture relevant structural information in Xr. We propose a very general criterion to measure structural relevance (SR) of a component in a block, and show how to take SR into account within a Fisher-scoring-type algorithm in order to estimate the model. We show how to deal with mixed-type explanatory variables. The method, named THEME-SCGLR, is tested on simulated data.Keywords: Component-Model, Fisher Scoring Algorithm, GLM, PLS Regression, SCGLR, SEER, THEME
Procedia PDF Downloads 39626577 Sustainability Enhancement of Pedestrian Space Quality in Old Communities from the Perspective of Inclusiveness:Taking Cao Yang New Village, Shanghai as an Example
Authors: Feng Zisu
Abstract:
Community is the basic unit of the city, community pedestrian space is also an important part of the urban public space, and its quality improvement is also closely related to the residents' happiness and sense of belonging. Domestic and international research perspectives on community pedestrian space have gradually changed to inclusive design for the whole population, paying more attention to the equitable accessibility of urban space and the multiple composite enhancement of spatial connotation. In order to realize the inclusive and sustainable development of pedestrian space in old communities, this article selects Cao Yang New Village in Shanghai as a practice case, and based on the connotation of inclusiveness, the four dimensions of space, traffic, function and emotion are selected as the layers of inclusive connotation of pedestrian space in old communities. This article identifies the objective social needs, dynamic activity characteristics and subjective feelings of multiple subjects, and reconstructs the structural hierarchy of “spatial perception - behavioral characteristics - subjective feelings” of walking. It also proposes a governance strategy of “reconfiguring the pedestrian network, optimizing street quality, integrating ecological space and reshaping the community scene” from the aspects of quality of physical environment and quality of behavioral perception, aiming to provide new ideas for promoting the inclusive and sustainable development of pedestrian space in old communities.Keywords: inclusivity, old community, pedestrian space, spatial quality, sustainable renovation
Procedia PDF Downloads 3526576 Data Science-Based Key Factor Analysis and Risk Prediction of Diabetic
Authors: Fei Gao, Rodolfo C. Raga Jr.
Abstract:
This research proposal will ascertain the major risk factors for diabetes and to design a predictive model for risk assessment. The project aims to improve diabetes early detection and management by utilizing data science techniques, which may improve patient outcomes and healthcare efficiency. The phase relation values of each attribute were used to analyze and choose the attributes that might influence the examiner's survival probability using Diabetes Health Indicators Dataset from Kaggle’s data as the research data. We compare and evaluate eight machine learning algorithms. Our investigation begins with comprehensive data preprocessing, including feature engineering and dimensionality reduction, aimed at enhancing data quality. The dataset, comprising health indicators and medical data, serves as a foundation for training and testing these algorithms. A rigorous cross-validation process is applied, and we assess their performance using five key metrics like accuracy, precision, recall, F1-score, and area under the receiver operating characteristic curve (AUC-ROC). After analyzing the data characteristics, investigate their impact on the likelihood of diabetes and develop corresponding risk indicators.Keywords: diabetes, risk factors, predictive model, risk assessment, data science techniques, early detection, data analysis, Kaggle
Procedia PDF Downloads 7526575 An Evaluation of Education Provision for Students with Autism Spectrum Disorder in Ireland: The Role of the Special Needs Assistant
Authors: Claire P. Griffin
Abstract:
The education provision for students with special educational needs, including students with Autism Spectrum Disorder (ASD), has undergone significant national and international changes in recent years. In particular, an increase in resource-based provision has occurred across educational settings in an effort to support inclusive practices. This paper seeks to explore the role of the Special Needs Assistant (SNA) in supporting children with ASD in Irish schools. This research stems from the second national evaluation of ‘Education Provision for Students with Autism Spectrum Disorder in Ireland’ (NCSE, 2016). This research was commissioned by the National Council for Special Education (NCSE) in Ireland and conducted by a team of researchers from Mary Immaculate College, Limerick from February to July 2014. This study involved a multiple case study research strategy across 24 educational sites, as selected through a stratified sampling process. Research strategies included semi-structured interviews, classroom observations, documentary review and child conversations. Data analysis was conducted electronically using Nvivo software, with use of an additional quantitative recording mechanism based on scaled weighting criteria for collected data. Based on such information, key findings from the NCSE national evaluation will be presented and critically reviewed, with particular reference to the role of the SNA in supporting pupils with ASD. Examples of positive practice inherent within the SNA role will be outlined and contrasted with discrete areas for development. Based on such findings, recommendations for the evolving role of the SNA will be presented, with the aim of informing both policy and best practice within the field.Keywords: autism spectrum disorder, inclusive education , paraprofessional, special needs assistant
Procedia PDF Downloads 27926574 Damage Localization of Deterministic-Stochastic Systems
Authors: Yen-Po Wang, Ming-Chih Huang, Ming-Lian Chang
Abstract:
A scheme integrated with deterministic–stochastic subspace system identification and the method of damage localization vector is proposed in this study for damage detection of structures based on seismic response data. A series of shaking table tests using a five-storey steel frame has been conducted in National Center for Research on Earthquake Engineering (NCREE), Taiwan. Damage condition is simulated by reducing the cross-sectional area of some of the columns at the bottom. Both single and combinations of multiple damage conditions at various locations have been considered. In the system identification analysis, either full or partial observation conditions have been taken into account. It has been shown that the damaged stories can be identified from global responses of the structure to earthquakes if sufficiently observed. In addition to detecting damage(s) with respect to the intact structure, identification of new or extended damages of the as-damaged (ill-conditioned) counterpart has also been studied. The proposed scheme proves to be effective.Keywords: damage locating vectors, deterministic-stochastic subspace system, shaking table tests, system identification
Procedia PDF Downloads 32726573 Analytics Capabilities and Employee Role Stressors: Implications for Organizational Performance
Authors: Divine Agozie, Muesser Nat, Eric Afful-Dadzie
Abstract:
This examination attempts an analysis of the effect of business intelligence and analytics (BI&A) capabilities on organizational role stressors and the implications of such an effect on performance. Two hundred twenty-eight responses gathered from seventy-six firms across Ghana were analyzed using the Partial Least Squares Structural Equation Modelling (PLS-SEM) approach to validate the hypothesized relationships identified in the research model. Findings suggest both endogenous and exogenous dependencies of the sensing capability on the multiple role requirements of personnel. Further, transforming capability increases role conflict, whereas driving capability of BI&A systems impacts role conflict and role ambiguity. This study poses many practical insights to firms seeking to acquire analytics capabilities to drive performance and data-driven decision-making. It is important for firms to consider balancing role changes and task requirements before implementing and post-implementation stages of BI&A innovations.Keywords: business intelligence and analytics, dynamic capabilities view, organizational stressors, structural equation modelling
Procedia PDF Downloads 11326572 Frequency of Consonant Production Errors in Children with Speech Sound Disorder: A Retrospective-Descriptive Study
Authors: Amulya P. Rao, Prathima S., Sreedevi N.
Abstract:
Speech sound disorders (SSD) encompass the major concern in younger population of India with highest prevalence rate among the speech disorders. Children with SSD if not identified and rehabilitated at the earliest, are at risk for academic difficulties. This necessitates early identification using screening tools assessing the frequently misarticulated speech sounds. The literature on frequently misarticulated speech sounds is ample in English and other western languages targeting individuals with various communication disorders. Articulation is language specific, and there are limited studies reporting the same in Kannada, a Dravidian Language. Hence, the present study aimed to identify the frequently misarticulated consonants in Kannada and also to examine the error type. A retrospective, descriptive study was carried out using secondary data analysis of 41 participants (34-phonetic type and 7-phonemic type) with SSD in the age range 3-to 12-years. All the consonants of Kannada were analyzed by considering three words for each speech sound from the Kannada Diagnostic Photo Articulation test (KDPAT). Picture naming task was carried out, and responses were audio recorded. The recorded data were transcribed using IPA 2018 broad transcription. A criterion of 2/3 or 3/3 error productions was set to consider the speech sound to be an error. Number of error productions was calculated for each consonant in each participant. Then, the percentage of participants meeting the criteria were documented for each consonant to identify the frequently misarticulated speech sound. Overall results indicated that velar /k/ (48.78%) and /g/ (43.90%) were frequently misarticulated followed by voiced retroflex /ɖ/ (36.58%) and trill /r/ (36.58%). The lateral retroflex /ɭ/ was misarticulated by 31.70% of the children with SSD. Dentals (/t/, /n/), bilabials (/p/, /b/, /m/) and labiodental /v/ were produced correctly by all the participants. The highly misarticulated velars /k/ and /g/ were frequently substituted by dentals /t/ and /d/ respectively or omitted. Participants with SSD-phonemic type had multiple substitutions for one speech sound whereas, SSD-phonetic type had consistent single sound substitutions. Intra- and inter-judge reliability for 10% of the data using Cronbach’s Alpha revealed good reliability (0.8 ≤ α < 0.9). Analyzing a larger sample by replicating such studies will validate the present study results.Keywords: consonant, frequently misarticulated, Kannada, SSD
Procedia PDF Downloads 13426571 Big Data Analytics and Data Security in the Cloud via Fully Homomorphic Encryption
Authors: Waziri Victor Onomza, John K. Alhassan, Idris Ismaila, Noel Dogonyaro Moses
Abstract:
This paper describes the problem of building secure computational services for encrypted information in the Cloud Computing without decrypting the encrypted data; therefore, it meets the yearning of computational encryption algorithmic aspiration model that could enhance the security of big data for privacy, confidentiality, availability of the users. The cryptographic model applied for the computational process of the encrypted data is the Fully Homomorphic Encryption Scheme. We contribute theoretical presentations in high-level computational processes that are based on number theory and algebra that can easily be integrated and leveraged in the Cloud computing with detail theoretic mathematical concepts to the fully homomorphic encryption models. This contribution enhances the full implementation of big data analytics based cryptographic security algorithm.Keywords: big data analytics, security, privacy, bootstrapping, homomorphic, homomorphic encryption scheme
Procedia PDF Downloads 38026570 A Multiple Freezing/Thawing Cycles Influence Internal Structure and Mechanical Properties of Achilles Tendon
Authors: Martyna Ekiert, Natalia Grzechnik, Joanna Karbowniczek, Urszula Stachewicz, Andrzej Mlyniec
Abstract:
Tendon grafting is a common procedure performed to treat tendon rupture. Before the surgical procedure, tissues intended for grafts (i.e., Achilles tendon) are stored in ultra-low temperatures for a long time and also may be subjected to unfavorable conditions, such as repetitive freezing (F) and thawing (T). Such storage protocols may highly influence the graft mechanical properties, decrease its functionality and thus increase the risk of complications during the transplant procedure. The literature reports on the influence of multiple F/T cycles on internal structure and mechanical properties of tendons stay inconclusive, confirming and denying the negative influence of multiple F/T at the same time. An inconsistent research methodology and lack of clear limit of F/T cycles, which disqualifies tissue for surgical graft purposes, encouraged us to investigate the issue of multiple F/T cycles by the mean of biomechanical tensile tests supported with Scanning Electron Microscope (SEM) imaging. The study was conducted on male bovine Achilles tendon-derived from the local abattoir. Fresh tendons were cleaned of excessive membranes and then sectioned to obtained fascicle bundles. Collected samples were randomly assigned to 6 groups subjected to 1, 2, 4, 6, 8 and 12 cycles of freezing-thawing (F/T), respectively. Each F/T cycle included deep freezing at -80°C temperature, followed by thawing at room temperature. After final thawing, thin slices of the side part of samples subjected to 1, 4, 8 and 12 F/T cycles were collected for SEM imaging. Then, the width and thickness of all samples were measured to calculate the cross-sectional area. Biomechanical tests were performed using the universal testing machine (model Instron 8872, INSTRON®, Norwood, Massachusetts, USA) using a load cell with a maximum capacity of 250 kN and standard atmospheric conditions. Both ends of each fascicle bundle were manually clamped in grasping clamps using abrasive paper and wet cellulose wadding swabs to prevent tissue slipping while clamping and testing. Samples were subjected to the testing procedure including pre-loading, pre-cycling, loading, holding and unloading steps to obtain stress-strain curves for representing tendon stretching and relaxation. The stiffness of AT fascicles bundle samples was evaluated in terms of modulus of elasticity (Young’s modulus), calculated from the slope of the linear region of stress-strain curves. SEM imaging was preceded by chemical sample preparation including 24hr fixation in 3% glutaraldehyde buffered with 0.1 M phosphate buffer, washing with 0.1 M phosphate buffer solution and dehydration in a graded ethanol solution. SEM images (Merlin Gemini II microscope, ZEISS®) were taken using 30 000x mag, which allowed measuring a diameter of collagen fibrils. The results confirm a decrease in fascicle bundles Young’s modulus as well as a decrease in the diameter of collagen fibrils. These results confirm the negative influence of multiple F/T cycles on the mechanical properties of tendon tissue.Keywords: biomechanics, collagen, fascicle bundles, soft tissue
Procedia PDF Downloads 125