Search results for: miRNA:mRNA target prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5088

Search results for: miRNA:mRNA target prediction

3678 Advancements in Predicting Diabetes Biomarkers: A Machine Learning Epigenetic Approach

Authors: James Ladzekpo

Abstract:

Background: The urgent need to identify new pharmacological targets for diabetes treatment and prevention has been amplified by the disease's extensive impact on individuals and healthcare systems. A deeper insight into the biological underpinnings of diabetes is crucial for the creation of therapeutic strategies aimed at these biological processes. Current predictive models based on genetic variations fall short of accurately forecasting diabetes. Objectives: Our study aims to pinpoint key epigenetic factors that predispose individuals to diabetes. These factors will inform the development of an advanced predictive model that estimates diabetes risk from genetic profiles, utilizing state-of-the-art statistical and data mining methods. Methodology: We have implemented a recursive feature elimination with cross-validation using the support vector machine (SVM) approach for refined feature selection. Building on this, we developed six machine learning models, including logistic regression, k-Nearest Neighbors (k-NN), Naive Bayes, Random Forest, Gradient Boosting, and Multilayer Perceptron Neural Network, to evaluate their performance. Findings: The Gradient Boosting Classifier excelled, achieving a median recall of 92.17% and outstanding metrics such as area under the receiver operating characteristics curve (AUC) with a median of 68%, alongside median accuracy and precision scores of 76%. Through our machine learning analysis, we identified 31 genes significantly associated with diabetes traits, highlighting their potential as biomarkers and targets for diabetes management strategies. Conclusion: Particularly noteworthy were the Gradient Boosting Classifier and Multilayer Perceptron Neural Network, which demonstrated potential in diabetes outcome prediction. We recommend future investigations to incorporate larger cohorts and a wider array of predictive variables to enhance the models' predictive capabilities.

Keywords: diabetes, machine learning, prediction, biomarkers

Procedia PDF Downloads 56
3677 The Prediction of Evolutionary Process of Coloured Vision in Mammals: A System Biology Approach

Authors: Shivani Sharma, Prashant Saxena, Inamul Hasan Madar

Abstract:

Since the time of Darwin, it has been considered that genetic change is the direct indicator of variation in phenotype. But a few studies in system biology in the past years have proposed that epigenetic developmental processes also affect the phenotype thus shifting the focus from a linear genotype-phenotype map to a non-linear G-P map. In this paper, we attempt at explaining the evolution of colour vision in mammals by taking LWS/ Long-wave sensitive gene under consideration.

Keywords: evolution, phenotypes, epigenetics, LWS gene, G-P map

Procedia PDF Downloads 522
3676 Impact of Totiviridae L-A dsRNA Virus on Saccharomyces Cerevisiae Host: Transcriptomic and Proteomic Approach

Authors: Juliana Lukša, Bazilė Ravoitytė, Elena Servienė, Saulius Serva

Abstract:

Totiviridae L-A virus is a persistent Saccharomyces cerevisiae dsRNA virus. It encodes the major structural capsid protein Gag and Gag-Pol fusion protein, responsible for virus replication and encapsulation. These features also enable the copying of satellite dsRNAs (called M dsRNAs) encoding a secreted toxin and immunity to it (known as killer toxin). Viral capsid pore presumably functions in nucleotide uptake and viral mRNA release. During cell division, sporogenesis, and cell fusion, the virions remain intracellular and are transferred to daughter cells. By employing high throughput RNA sequencing data analysis, we describe the influence of solely L-A virus on the expression of genes in three different S. cerevisiae hosts. We provide a new perception into Totiviridae L-A virus-related transcriptional regulation, encompassing multiple bioinformatics analyses. Transcriptional responses to L-A infection were similar to those induced upon stress or availability of nutrients. It also delves into the connection between the cell metabolism and L-A virus-conferred demands to the host transcriptome by uncovering host proteins that may be associated with intact virions. To better understand the virus-host interaction, we applied differential proteomic analysis of virus particle-enriched fractions of yeast strains that harboreither complete killer system (L-A-lus and M-2 virus), M-2 depleted orvirus-free. Our analysis resulted in the identification of host proteins, associated with structural proteins of the virus (Gag and Gag-Pol). This research was funded by the European Social Fund under the No.09.3.3-LMT-K-712-19-0157“Development of Competences of Scientists, other Researchers, and Students through Practical Research Activities” measure.

Keywords: totiviridae, killer virus, proteomics, transcriptomics

Procedia PDF Downloads 147
3675 Optimization for Guide RNA and CRISPR/Cas9 System Nanoparticle Mediated Delivery into Plant Cell for Genome Editing

Authors: Andrey V. Khromov, Antonida V. Makhotenko, Ekaterina A. Snigir, Svetlana S. Makarova, Natalia O. Kalinina, Valentin V. Makarov, Mikhail E. Taliansky

Abstract:

Due to its simplicity, CRISPR/Cas9 has become widely used and capable of inducing mutations in the genes of organisms of various kingdoms. The aim of this work was to develop applications for the efficient modification of DNA coding sequences of phytoene desaturase (PDS), coilin and vacuolar invertase (Solanum tuberosum) genes, and to develop a new nanoparticles carrier efficient technology to deliver the CRISPR/Cas9 system for editing the plant genome. For each of the genes - coilin, PDS and vacuolar invertase, five single RNA guide (sgRNAs) were synthesized. To determine the most suitable nanoplatform, two types of NP platforms were used: magnetic NPs (MNPS) and gold NPs (AuNPs). To test the penetration efficiency, they were functionalized with fluorescent agents - BSA * FITS and GFP, as well as labeled Cy3 small-sized RNA. To measure the efficiency, a fluorescence and confocal microscopy were used. It was shown that the best of these options were AuNP - both in the case of proteins and in the case of RNA. The next step was to check the possibility of delivering components of the CRISPR/Cas9 system to plant cells for editing target genes. AuNPs were functionalized with a ribonucleoprotein complex consisting of Cas9 and corresponding to target genes sgRNAs, and they were biolistically bombarded to axillary buds and apical meristems of potato plants. After the treatment by the best NP carrier, potato meristems were grown to adult plants. DNA isolated from this plants was sent to a preliminary fragment of the analysis to screen out the non-transformed samples, and then to the NGS. The present work was carried out with the financial support from the Russian Science Foundation (grant No. 16-16-04019).

Keywords: biobombardment, coilin, CRISPR/Cas9, nanoparticles, NPs, PDS, sgRNA, vacuolar invertase

Procedia PDF Downloads 317
3674 Evaluation of a Chitin Synthesis Inhibitor Novaluron in the Shrimp Palaemon Adspersus: Impact on Ecdysteroids and Chitin Contents

Authors: Hinda Berghiche, Hamida Benradia, Noureddine Soltani

Abstract:

Pesticides are widely used in crop production and are known to induce a major contamination of ecosystems especially in aquatic environments. The leaching of a large amount of pollutants derived from agricultural activities (fertilizers, pesticides) might contaminate rivers which diverse into the likes and estuarine and coastal environments affecting several organisms such as crustacean species. In this context, there is searched for new selective insecticides with minimal toxic effects on the environment and human health such as growth insect regulators (GIRs). The current study aimed to examine the impact of novaluron (CE 20%), a potent benzoylphenylurea derivative insecticide on mosquito larvae, against non-target shrimp, Palaemon adspersus (Decapoda, Palaemonidae). The compound was tested at two concentrations (0.91 mg/L and 4.30 mg/L) corresponding respectively to the LC50 and LC90 determined against fourth-instar larvae of Culiseta longiareolata (Diptera, Culicidae). The molting hormone titer was determined in the haemolymph by an enzyme-immunoassay, while chitin was measured in peripheral integument at different stages during the molting cycle. Under normal conditions, the haemolymphatic ecdysteroid concentrations increased during the molting cycle to reach peak at stage D. In the treated series, we note absence of the peak at stage D and an increase at stages B, C and D as compared to the controls. Concerning the chitin amounts, we observe an increase from stage A to stage C followed by a decrease at stage D. Exposition of shrimps to novaluron resulted in a significant decrease of values at all molting stages with a dose-response effect. Thus, the insecticide can present secondary effects on this non-target arthropod species.

Keywords: toxicology, novaluron, crustacean, palaemon adspersus, ecdysteroids, cuticle, chitin

Procedia PDF Downloads 249
3673 Protein Feeding Pattern, Casein Feeding, or Milk-Soluble Protein Feeding did not Change the Evolution of Body Composition during a Short-Term Weight Loss Program

Authors: Solange Adechian, Michèle Balage, Didier Remond, Carole Migné, Annie Quignard-Boulangé, Agnès Marset-Baglieri, Sylvie Rousset, Yves Boirie, Claire Gaudichon, Dominique Dardevet, Laurent Mosoni

Abstract:

Studies have shown that timing of protein intake, leucine content, and speed of digestion significantly affect postprandial protein utilization. Our aim was to determine if one can spare lean body mass during energy restriction by varying the quality and the timing of protein intake. Obese volunteers followed a 6-wk restricted energy diet. Four groups were compared: casein pulse, casein spread, milk-soluble protein (MSP, = whey) pulse, and MSP spread (n = 10-11 per group). In casein groups, caseins were the only protein source; it was MSP in MSP groups. Proteins were distributed in four meals per day in the proportion 8:80:4:8% in the pulse groups; it was 25:25:25:25% in the spread groups. We measured weight, body composition, nitrogen balance, 3-methylhistidine excretion, perception of hunger, plasma parameters, adipose tissue metabolism, and whole body protein metabolism. Volunteers lost 7.5 ± 0.4 kg of weight, 5.1 ± 0.2 kg of fat, and 2.2 ± 0.2 kg of lean mass, with no difference between groups. In adipose tissue, cell size and mRNA expression of various genes were reduced with no difference between groups. Hunger perception was also never different between groups. In the last week, due to a higher inhibition of protein degradation and despite a lower stimulation of protein synthesis, postprandial balance between whole body protein synthesis and degradation was better with caseins than with MSP. It seems likely that the positive effect of caseins on protein balance occurred only at the end of the experiment.

Keywords: lean body mass, fat mass, casein, whey, protein metabolism

Procedia PDF Downloads 72
3672 Acanthopanax koreanum and Major Ingredient, Impressic Acid, Possess Matrix Metalloproteinase-13 Down-Regulating Capacity and Protect Cartilage Destruction

Authors: Hyun Lim, Dong Sook Min, Han Eul Yun, Kil Tae Kim, Ya Nan Sun, Young Ho Kim, Hyun Pyo Kim

Abstract:

Matrix metalloproteinase (MMP)-13 has an important role for degrading cartilage materials under inflammatory conditions such as arthritis. Since the 70% ethanol extract of Acanthopanax koreanum inhibited MMP-13 expression in IL-1β-treated human chondrocyte cell line, SW1353, two major constituents including acanthoic acid and impressic acid were initially isolated from the same plant materials and their MMP-13 down-regulating capacity was examined. In IL-1β-treated SW1353 cells, acanthoic acid and impressic acid significantly and concentration-dependently inhibited MMP-13 expression at 10 – 100 μM and 0.5 – 10 μM, respectively. The potent one, impressic acid, was found to inhibit MMP-13 expression by blocking the phosphorylation of signal transducer and activator of transcription-1/-2 (STAT-1/-2) and activation of c-Jun and c-Fos among cellular signaling pathway involved, but did not affect the activation of mitogen-activated protein kinases (MAPKs) and nuclear transcription factor-κB (NF-κB). Further, impressic acid was also found to inhibit the expression of MMP-13 mRNA (47.7% inhibition at 10 μM), the glycosaminoglycan release (42.2% reduction at 10 μM) and proteoglycan loss in IL-1-treated rabbit cartilage explants culture. For a further study, 21 impressic acid derivatives were isolated from the same plant materials and their suppressive activities against MMP-13 expression were examined. Among the derivatives, 3α-hydroxy-lup-20(29)-en-23-oxo,28-oic acid, (20R)-3α-hydroxy-29-dimethoxylupan-23,28-dioic acid, acankoreoside F and acantrifoside A clearly down-regulated MMP-13 expression, but impressic acid being most potent. All these results suggest that impressic acid, 3α-hydroxy-lup-20(29)-en-23-oxo,28-oic acid, (20R)-3α-hydroxy-29-dimethoxylupan-23,28-dioic acid, acankoreoside F, acantrifoside A and A. koreanum may have a potential for therapeutic agents to prevent cartilage degradation possibly by inhibiting matrix protein degradation.

Keywords: acanthoic acid, Acanthopanax koreanum, cartilage, impressic acid, matrix metalloproteinase

Procedia PDF Downloads 364
3671 Effect of Dietary Graded Levels of L-Theanine on Growth Performance, Carcass Traits, Meat Quality, and Immune Response of Broilers

Authors: Muhammad Saeed, Sun Chao

Abstract:

L-theanine is water soluble non-proteinous amino acid found in green tea leaves. Despite the availability of abundant literature on green tea, studies on the use of L-theanine as an additive in animals especially broilers are scanty. The objective of this study was to evaluate the effectiveness of different dietary levels of L-theanine on growth performance, meat quality, growth, immune response and blood chemistry in broilers. A total of 400 day-old chicks were randomly divided into four treatment groups (A, B, C, and D) using a complete randomized design. Treatments were as follows: A; control (basal diet), B; basal diet+100 mg L-theanine / kg diet, C; basal diet+ 200 mg L-theanine / kg diet, and D; basal diet+ 300 mg L-theanine / kg diet. Results revealed that intermediate level of L-theanine (200 mg/ kg diet, group C) showed better results in terms of BWG, FC, and FCR compared with control and other L-theanine levels. The live weight eviscerated weight and gizzard weight was higher in all L-theanine levels as compared to that of the control group. The heaviest (P > 0.05) spleen and bursa were found in group C (200 mg L-theanine / kg diet). Analysis of meat colors according to yellowness (b*), redness (a*), and lightness (L*) showed significantly higher values of a* and b* in L-theanine groups. Supplementing broiler diet with L-theanine minimized (P=0.02) total cholesterol contents in serum. Further analysis revealed , lower mRNA expression of TNF-α and IL-6 in thymus and IFN- γ and IL-2 in spleen was observed in L-theanine group It is concluded that supplementation of L-theanine at 200mg/kg diet showed better results in terms of performance and it could be utilized as a natural feed additive alternative to antibiotics to improve overall performance of broilers. Increasing the levels up to 300 mg L-theanine /kg diet may has deleterious effects on performance and other health aspects.

Keywords: blood chemistry, broilers growth, L-theanine, meat quality

Procedia PDF Downloads 253
3670 Applying Semi-Automatic Digital Aerial Survey Technology and Canopy Characters Classification for Surface Vegetation Interpretation of Archaeological Sites

Authors: Yung-Chung Chuang

Abstract:

The cultural layers of archaeological sites are mainly affected by surface land use, land cover, and root system of surface vegetation. For this reason, continuous monitoring of land use and land cover change is important for archaeological sites protection and management. However, in actual operation, on-site investigation and orthogonal photograph interpretation require a lot of time and manpower. For this reason, it is necessary to perform a good alternative for surface vegetation survey in an automated or semi-automated manner. In this study, we applied semi-automatic digital aerial survey technology and canopy characters classification with very high-resolution aerial photographs for surface vegetation interpretation of archaeological sites. The main idea is based on different landscape or forest type can easily be distinguished with canopy characters (e.g., specific texture distribution, shadow effects and gap characters) extracted by semi-automatic image classification. A novel methodology to classify the shape of canopy characters using landscape indices and multivariate statistics was also proposed. Non-hierarchical cluster analysis was used to assess the optimal number of canopy character clusters and canonical discriminant analysis was used to generate the discriminant functions for canopy character classification (seven categories). Therefore, people could easily predict the forest type and vegetation land cover by corresponding to the specific canopy character category. The results showed that the semi-automatic classification could effectively extract the canopy characters of forest and vegetation land cover. As for forest type and vegetation type prediction, the average prediction accuracy reached 80.3%~91.7% with different sizes of test frame. It represented this technology is useful for archaeological site survey, and can improve the classification efficiency and data update rate.

Keywords: digital aerial survey, canopy characters classification, archaeological sites, multivariate statistics

Procedia PDF Downloads 144
3669 Improvements and Implementation Solutions to Reduce the Computational Load for Traffic Situational Awareness with Alerts (TSAA)

Authors: Salvatore Luongo, Carlo Luongo

Abstract:

This paper discusses the implementation solutions to reduce the computational load for the Traffic Situational Awareness with Alerts (TSAA) application, based on Automatic Dependent Surveillance-Broadcast (ADS-B) technology. In 2008, there were 23 total mid-air collisions involving general aviation fixed-wing aircraft, 6 of which were fatal leading to 21 fatalities. These collisions occurred during visual meteorological conditions, indicating the limitations of the see-and-avoid concept for mid-air collision avoidance as defined in the Federal Aviation Administration’s (FAA). The commercial aviation aircraft are already equipped with collision avoidance system called TCAS, which is based on classic transponder technology. This system dramatically reduced the number of mid-air collisions involving air transport aircraft. In general aviation, the same reduction in mid-air collisions has not occurred, so this reduction is the main objective of the TSAA application. The major difference between the original conflict detection application and the TSAA application is that the conflict detection is focused on preventing loss of separation in en-route environments. Instead TSAA is devoted to reducing the probability of mid-air collision in all phases of flight. The TSAA application increases the flight crew traffic situation awareness providing alerts of traffic that are detected in conflict with ownship in support of the see-and-avoid responsibility. The relevant effort has been spent in the design process and the code generation in order to maximize the efficiency and performances in terms of computational load and memory consumption reduction. The TSAA architecture is divided into two high-level systems: the “Threats database” and the “Conflict detector”. The first one receives the traffic data from ADS-B device and provides the memorization of the target’s data history. Conflict detector module estimates ownship and targets trajectories in order to perform the detection of possible future loss of separation between ownship and each target. Finally, the alerts are verified by additional conflict verification logic, in order to prevent possible undesirable behaviors of the alert flag. In order to reduce the computational load, a pre-check evaluation module is used. This pre-check is only a computational optimization, so the performances of the conflict detector system are not modified in terms of number of alerts detected. The pre-check module uses analytical trajectories propagation for both target and ownship. This allows major accuracy and avoids the step-by-step propagation, which requests major computational load. Furthermore, the pre-check permits to exclude the target that is certainly not a threat, using an analytical and efficient geometrical approach, in order to decrease the computational load for the following modules. This software improvement is not suggested by FAA documents, and so it is the main innovation of this work. The efficiency and efficacy of this enhancement are verified using fast-time and real-time simulations and by the execution on a real device in several FAA scenarios. The final implementation also permits the FAA software certification in compliance with DO-178B standard. The computational load reduction allows the installation of TSAA application also on devices with multiple applications and/or low capacity in terms of available memory and computational capabilities

Keywords: traffic situation awareness, general aviation, aircraft conflict detection, computational load reduction, implementation solutions, software certification

Procedia PDF Downloads 286
3668 Dual Electrochemical Immunosensor for IL-13Rα2 and E-Cadherin Determination in Cell, Serum and Tissues from Cancer Patients

Authors: Amira ben Hassine, A. Valverde, V. Serafín, C. Muñoz-San Martín, M. Garranzo-Asensio, M. Gamella, R. Barderas, M. Pedrero, N. Raouafi, S. Campuzano, P. Yáñez-Sedeño, J. M. Pingarrón

Abstract:

This work describes the development of a dual electrochemical immunosensing platform for accurate determination of two target proteins, IL-13 Receptor α2 (IL-13Rα2) and E-cadherin (E-cad). The proposed methodology is based on the use of sandwich immunosensing approaches (involving horseradish peroxidase-labeled detector antibodies) implemented onto magnetic microbeads (MBs) and amperometric transduction at screen-printed dual carbon electrodes (SPdCEs). The magnetic bioconjugates were captured onto SPdCEs and the amperometric transduction was performed using the H2O2/hydroquinone (HQ) system. Under optimal experimental conditions, the developed bio platform demonstrates linear concentration ranges of 1.0–25 and 5.0-100 ng mL-1, detection limits of 0.28 and 1.04 ng mL-1 for E-cad and IL-13Rα2, respectively, and excellent selectivity against other non-target proteins. The developed immuno-platform also offers a good reproducibility among amperometric responses provided by nine different sensors constructed in the same manner (Relative Standard Deviation values of 3.1% for E-cad and 4.3% for IL-13Rα2). Moreover, obtained results confirm the practical applicability of this bio-platform for the accurate determination of the endogenous levels of both extracellular receptors in colon cancer cells (both intact and lysed) with different metastatic potential and serum and tissues from patients diagnosed with colorectal cancer at different grades. Interesting features in terms of, simplicity, speed, portability and sample amount required to provide quantitative results, make this immuno-platform more compatible than conventional methodologies with the clinical diagnosis and prognosis at the point of care.

Keywords: electrochemistry, mmunosensors, biosensors, E-cadherin, IL-13 receptor α2, cancer colorectal

Procedia PDF Downloads 137
3667 Dosimetric Comparison of Conventional Optimization Methods with Inverse Planning Simulated Annealing Technique

Authors: Shraddha Srivastava, N. K. Painuly, S. P. Mishra, Navin Singh, Muhsin Punchankandy, Kirti Srivastava, M. L. B. Bhatt

Abstract:

Various optimization methods used in interstitial brachytherapy are based on dwell positions and dwell weights alteration to produce dose distribution based on the implant geometry. Since these optimization schemes are not anatomy based, they could lead to deviations from the desired plan. This study was henceforth carried out to compare anatomy-based Inverse Planning Simulated Annealing (IPSA) optimization technique with graphical and geometrical optimization methods in interstitial high dose rate brachytherapy planning of cervical carcinoma. Six patients with 12 CT data sets of MUPIT implants in HDR brachytherapy of cervical cancer were prospectively studied. HR-CTV and organs at risk (OARs) were contoured in Oncentra treatment planning system (TPS) using GYN GEC-ESTRO guidelines on cervical carcinoma. Three sets of plans were generated for each fraction using IPSA, graphical optimization (GrOPT) and geometrical optimization (GOPT) methods. All patients were treated to a dose of 20 Gy in 2 fractions. The main objective was to cover at least 95% of HR-CTV with 100% of the prescribed dose (V100 ≥ 95% of HR-CTV). IPSA, GrOPT, and GOPT based plans were compared in terms of target coverage, OAR doses, homogeneity index (HI) and conformity index (COIN) using dose-volume histogram (DVH). Target volume coverage (mean V100) was found to be 93.980.87%, 91.341.02% and 85.052.84% for IPSA, GrOPT and GOPT plans respectively. Mean D90 (minimum dose received by 90% of HR-CTV) values for IPSA, GrOPT and GOPT plans were 10.19 ± 1.07 Gy, 10.17 ± 0.12 Gy and 7.99 ± 1.0 Gy respectively, while D100 (minimum dose received by 100% volume of HR-CTV) for IPSA, GrOPT and GOPT plans was 6.55 ± 0.85 Gy, 6.55 ± 0.65 Gy, 4.73 ± 0.14 Gy respectively. IPSA plans resulted in lower doses to the bladder (D₂

Keywords: cervical cancer, HDR brachytherapy, IPSA, MUPIT

Procedia PDF Downloads 188
3666 An Evolutionary Perspective on the Role of Extrinsic Noise in Filtering Transcript Variability in Small RNA Regulation in Bacteria

Authors: Rinat Arbel-Goren, Joel Stavans

Abstract:

Cell-to-cell variations in transcript or protein abundance, called noise, may give rise to phenotypic variability between isogenic cells, enhancing the probability of survival under stress conditions. These variations may be introduced by post-transcriptional regulatory processes such as non-coding, small RNAs stoichiometric degradation of target transcripts in bacteria. We study the iron homeostasis network in Escherichia coli, in which the RyhB small RNA regulates the expression of various targets as a model system. Using fluorescence reporter genes to detect protein levels and single-molecule fluorescence in situ hybridization to monitor transcripts levels in individual cells, allows us to compare noise at both transcript and protein levels. The experimental results and computer simulations show that extrinsic noise buffers through a feed-forward loop configuration the increase in variability introduced at the transcript level by iron deprivation, illuminating the important role that extrinsic noise plays during stress. Surprisingly, extrinsic noise also decouples of fluctuations of two different targets, in spite of RyhB being a common upstream factor degrading both. Thus, phenotypic variability increases under stress conditions by the decoupling of target fluctuations in the same cell rather than by increasing the noise of each. We also present preliminary results on the adaptation of cells to prolonged iron deprivation in order to shed light on the evolutionary role of post-transcriptional downregulation by small RNAs.

Keywords: cell-to-cell variability, Escherichia coli, noise, single-molecule fluorescence in situ hybridization (smFISH), transcript

Procedia PDF Downloads 164
3665 A Generalized Weighted Loss for Support Vextor Classification and Multilayer Perceptron

Authors: Filippo Portera

Abstract:

Usually standard algorithms employ a loss where each error is the mere absolute difference between the true value and the prediction, in case of a regression task. In the present, we present several error weighting schemes that are a generalization of the consolidated routine. We study both a binary classification model for Support Vextor Classification and a regression net for Multylayer Perceptron. Results proves that the error is never worse than the standard procedure and several times it is better.

Keywords: loss, binary-classification, MLP, weights, regression

Procedia PDF Downloads 97
3664 Development of an Electrochemical Aptasensor for the Detection of Human Osteopontin Protein

Authors: Sofia G. Meirinho, Luis G. Dias, António M. Peres, Lígia R. Rodrigues

Abstract:

The emerging development of electrochemical aptasen sors has enabled the easy and fast detection of protein biomarkers in standard and real samples. Biomarkers are produced by body organs or tumours and provide a measure of antigens on cell surfaces. When detected in high amounts in blood, they can be suggestive of tumour activity. These biomarkers are more often used to evaluate treatment effects or to assess the potential for metastatic disease in patients with established disease. Osteopontin (OPN) is a protein found in all body fluids and constitutes a possible biomarker because its overexpression has been related with breast cancer evolution and metastasis. Currently, biomarkers are commonly used for the development of diagnostic methods, allowing the detection of the disease in its initial stages. A previously described RNA aptamer was used in the current work to develop a simple and sensitive electrochemical aptasensor with high affinity for human OPN. The RNA aptamer was biotinylated and immobilized on a gold electrode by avidin-biotin interaction. The electrochemical signal generated from the aptamer–target molecule interaction was monitored electrochemically using cyclic voltammetry in the presence of [Fe (CN) 6]−3/− as a redox probe. The signal observed showed a current decrease due to the binding of OPN. The preliminary results showed that this aptasensor enables the detection of OPN in standard solutions, showing good selectivity towards the target in the presence of others interfering proteins such as bovine OPN and bovine serum albumin. The results gathered in the current work suggest that the proposed electrochemical aptasensor is a simple and sensitive detection tool for human OPN and so, may have future applications in cancer disease monitoring.

Keywords: osteopontin, aptamer, aptasensor, screen-printed electrode, cyclic voltammetry

Procedia PDF Downloads 431
3663 The Ability of Consortium Wastewater Protozoan and Bacterial Species to Remove Chemical Oxygen Demand in the Presence of Nanomaterials under Varying pH Conditions

Authors: Anza-Vhudziki Mboyi, Ilunga Kamika, Maggy Momba

Abstract:

The aim of this study was to ascertain the survival limit and capability of commonly found wastewater protozoan (Aspidisca sp, Trachelophyllum sp, and Peranema sp) and bacterial (Bacillus licheniformis, Brevibacillus laterosporus, and Pseudomonas putida) species to remove COD while exposed to commercial nanomaterials under varying pH conditions. The experimental study was carried out in modified mixed liquor media adjusted to various pH levels (pH 2, 7 and 10), and a comparative study was performed to determine the difference between the cytotoxicity effects of commercial zinc oxide (nZnO) and silver (nAg) nanomaterials (NMs) on the target wastewater microbial communities using standard methods. The selected microbial communities were exposed to lethal concentrations ranging from 0.015 g/L to 40 g/L for nZnO and from 0.015 g/L to 2 g/L for nAg for a period of 5 days of incubation at 30°C (100 r/min). Compared with the absence of NMs in wastewater mixed liquor, the relevant environmental concentration ranging between 10 µg/L and 100 µg/L, for both nZnO and nAg caused no adverse effects, but the presence of 20 g of nZnO/L and 0.65 g of nAg/L significantly inhibited microbial growth. Statistical evidence showed that nAg was significantly more toxic compared to nZnO, but there was an insignificant difference in toxicity between microbial communities and pH variations. A significant decrease in the removal of COD by microbial populations was observed in the presence of NMs with a moderate correlation of r = 0.3 to r = 0.7 at all pH levels. It was evident that there was a physical interaction between commercial NMs and target wastewater microbial communities; although not quantitatively assessed, cell morphology and cell death were observed. Such phenomena suggest the high resilience of the microbial community, but it is the accumulation of NMs that will have adverse effects on the performance in terms of COD removal.

Keywords: bacteria, biological treatment, chemical oxygen demand (COD) and nanomaterials, consortium, pH, protozoan

Procedia PDF Downloads 309
3662 Analysis of Biomarkers Intractable Epileptogenic Brain Networks with Independent Component Analysis and Deep Learning Algorithms: A Comprehensive Framework for Scalable Seizure Prediction with Unimodal Neuroimaging Data in Pediatric Patients

Authors: Bliss Singhal

Abstract:

Epilepsy is a prevalent neurological disorder affecting approximately 50 million individuals worldwide and 1.2 million Americans. There exist millions of pediatric patients with intractable epilepsy, a condition in which seizures fail to come under control. The occurrence of seizures can result in physical injury, disorientation, unconsciousness, and additional symptoms that could impede children's ability to participate in everyday tasks. Predicting seizures can help parents and healthcare providers take precautions, prevent risky situations, and mentally prepare children to minimize anxiety and nervousness associated with the uncertainty of a seizure. This research proposes a comprehensive framework to predict seizures in pediatric patients by evaluating machine learning algorithms on unimodal neuroimaging data consisting of electroencephalogram signals. The bandpass filtering and independent component analysis proved to be effective in reducing the noise and artifacts from the dataset. Various machine learning algorithms’ performance is evaluated on important metrics such as accuracy, precision, specificity, sensitivity, F1 score and MCC. The results show that the deep learning algorithms are more successful in predicting seizures than logistic Regression, and k nearest neighbors. The recurrent neural network (RNN) gave the highest precision and F1 Score, long short-term memory (LSTM) outperformed RNN in accuracy and convolutional neural network (CNN) resulted in the highest Specificity. This research has significant implications for healthcare providers in proactively managing seizure occurrence in pediatric patients, potentially transforming clinical practices, and improving pediatric care.

Keywords: intractable epilepsy, seizure, deep learning, prediction, electroencephalogram channels

Procedia PDF Downloads 86
3661 Gradient Boosted Trees on Spark Platform for Supervised Learning in Health Care Big Data

Authors: Gayathri Nagarajan, L. D. Dhinesh Babu

Abstract:

Health care is one of the prominent industries that generate voluminous data thereby finding the need of machine learning techniques with big data solutions for efficient processing and prediction. Missing data, incomplete data, real time streaming data, sensitive data, privacy, heterogeneity are few of the common challenges to be addressed for efficient processing and mining of health care data. In comparison with other applications, accuracy and fast processing are of higher importance for health care applications as they are related to the human life directly. Though there are many machine learning techniques and big data solutions used for efficient processing and prediction in health care data, different techniques and different frameworks are proved to be effective for different applications largely depending on the characteristics of the datasets. In this paper, we present a framework that uses ensemble machine learning technique gradient boosted trees for data classification in health care big data. The framework is built on Spark platform which is fast in comparison with other traditional frameworks. Unlike other works that focus on a single technique, our work presents a comparison of six different machine learning techniques along with gradient boosted trees on datasets of different characteristics. Five benchmark health care datasets are considered for experimentation, and the results of different machine learning techniques are discussed in comparison with gradient boosted trees. The metric chosen for comparison is misclassification error rate and the run time of the algorithms. The goal of this paper is to i) Compare the performance of gradient boosted trees with other machine learning techniques in Spark platform specifically for health care big data and ii) Discuss the results from the experiments conducted on datasets of different characteristics thereby drawing inference and conclusion. The experimental results show that the accuracy is largely dependent on the characteristics of the datasets for other machine learning techniques whereas gradient boosting trees yields reasonably stable results in terms of accuracy without largely depending on the dataset characteristics.

Keywords: big data analytics, ensemble machine learning, gradient boosted trees, Spark platform

Procedia PDF Downloads 241
3660 YPFS Attenuating TH2 Cell-Mediated Allergic Inflammation by Regulating the TSLP Pathway

Authors: Xi Yu, Lili Gu, Huizhu Wang, Xiao Wei, Dandan Sheng, Xiaoyan Jiang, Min Hong

Abstract:

Introduction: Hypersensitivity disease is difficult to cure completely because of its recurrence, yupingfengsan (YPFS) is used to treat the diseases with the advantage of reducing the recurrence,but the precise mechanism is not clear. Previous studies of our laboratory have shown that the extract of YPFS can inhibit Th2-type allergic contact dermatitis(ACD) induced by FITC.Besides, thymic stromal lymphopoietin(TSLP) have been proved to be a master switch for allergic inflammation. Based on these studies, we want to establish a mouse model of TSLP production based on Th2 cell-mediated allergic inflammation to explore the regulating mechanisms of YPFS on TSLP in Th2 cell-mediated allergic inflammation. Methods: Th2-type ACD mouse model: The mice were topically sensitized on the abdomens (induction phase) and elicited on its ears skin 6 day later (excitation phase) with FITC solution, and the ear swelling was measured to evaluate the allergic inflammation;A mouse model of TSLP production based on Th2 cell-mediated allergic inflammation (TSLP production model): the skin of the ear was sensitized on two consecutive days with FITC solution causing the production of TSLP;Mice were treated with YPFS extract,ELISA、Real-time PCR and Western-blotting were using to examine the mRNA and protein levels of TSLP\TSLPR and TLRs ect. Results: YPFS extract can attenuates Th2-type allergic inflammatory in mice;in TSLP production model, YPFS can inhibit the expression of TSLP、 TSLPR、TLRs and MyD88, So we deduce the possible mechanisms of YPFS to play a role of intervention is through TLRs- MyD88 dependent and independent pathway to reduce TSLP production.

Keywords: YPFS, TSLP, TLRs, Th2-type allergic contact dermatitis

Procedia PDF Downloads 423
3659 A Systematic Categorization of Arguments against the Vision Zero Goal: A Literature Review

Authors: Henok Girma Abebe

Abstract:

The Vision Zero is a long-term goal of preventing all road traffic fatalities and serious injuries which was first adopted in Sweden in 1997. It is based on the assumption that death and serious injury in the road system is morally unacceptable. In order to approach this end, vision zero has put in place strategies that are radically different from the traditional safety work. The vision zero, for instance, promoted the adoption of the best available technology to promote safety, and placed the ultimate responsibility for traffic safety on system designers. Despite Vision Zero’s moral appeal and its expansion to different safety areas and also parts of the world, important philosophical concerns related to the adoption and implementation of the vision zero remain to be addressed. Moreover, the vision zero goal has been criticized on different grounds. The aim of this paper is to identify and systematically categorize criticisms that have been put forward against vision zero. The findings of the paper are solely based on a critical analysis of secondary sources and snowball method is employed to identify the relevant philosophical and empirical literatures. Two general categories of criticisms on the vision zero goal are identified. The first category consists of criticisms that target the setting of vision zero as a ‘goal’ and some of the basic assumptions upon which the goal is based. Among others, the goal of achieving zero fatalities and serious injuries, together with vision zero’s lexicographical prioritization of safety has been criticized as unrealistic. The second category consists of criticisms that target the strategies put in place to achieve the goal of zero fatalities and serious injuries. For instance, Vision zero’s responsibility ascription for road safety and its rejection of cost-benefit analysis in the formulation and adoption of safety measures has both been criticized as counterproductive. In this category also falls the criticism that Vision Zero safety measures tend to be too paternalistic. Significant improvements have been recorded in road safety work since the adoption of vision zero, however, for the vision zero to even succeed more, it is important that issues and criticisms of philosophical nature associated with it are identified and critically dealt with.

Keywords: criticisms, systems approach, traffic safety, vision zero

Procedia PDF Downloads 303
3658 Field Prognostic Factors on Discharge Prediction of Traumatic Brain Injuries

Authors: Mohammad Javad Behzadnia, Amir Bahador Boroumand

Abstract:

Introduction: Limited facility situations require allocating the most available resources for most casualties. Accordingly, Traumatic Brain Injury (TBI) is the one that may need to transport the patient as soon as possible. In a mass casualty event, deciding when the facilities are restricted is hard. The Extended Glasgow Outcome Score (GOSE) has been introduced to assess the global outcome after brain injuries. Therefore, we aimed to evaluate the prognostic factors associated with GOSE. Materials and Methods: In a multicenter cross-sectional study conducted on 144 patients with TBI admitted to trauma emergency centers. All the patients with isolated TBI who were mentally and physically healthy before the trauma entered the study. The patient’s information was evaluated, including demographic characteristics, duration of hospital stays, mechanical ventilation on admission laboratory measurements, and on-admission vital signs. We recorded the patients’ TBI-related symptoms and brain computed tomography (CT) scan findings. Results: GOSE assessments showed an increasing trend by the comparison of on-discharge (7.47 ± 1.30), within a month (7.51 ± 1.30), and within three months (7.58 ± 1.21) evaluations (P < 0.001). On discharge, GOSE was positively correlated with Glasgow Coma Scale (GCS) (r = 0.729, P < 0.001) and motor GCS (r = 0.812, P < 0.001), and inversely with age (r = −0.261, P = 0.002), hospitalization period (r = −0.678, P < 0.001), pulse rate (r = −0.256, P = 0.002) and white blood cell (WBC). Among imaging signs and trauma-related symptoms in univariate analysis, intracranial hemorrhage (ICH), interventricular hemorrhage (IVH) (P = 0.006), subarachnoid hemorrhage (SAH) (P = 0.06; marginally at P < 0.1), subdural hemorrhage (SDH) (P = 0.032), and epidural hemorrhage (EDH) (P = 0.037) were significantly associated with GOSE at discharge in multivariable analysis. Conclusion: Our study showed some predictive factors that could help to decide which casualty should transport earlier to a trauma center. According to the current study findings, GCS, pulse rate, WBC, and among imaging signs and trauma-related symptoms, ICH, IVH, SAH, SDH, and EDH are significant independent predictors of GOSE at discharge in TBI patients.

Keywords: field, Glasgow outcome score, prediction, traumatic brain injury.

Procedia PDF Downloads 76
3657 A Long Short-Term Memory Based Deep Learning Model for Corporate Bond Price Predictions

Authors: Vikrant Gupta, Amrit Goswami

Abstract:

The fixed income market forms the basis of the modern financial market. All other assets in financial markets derive their value from the bond market. Owing to its over-the-counter nature, corporate bonds have relatively less data publicly available and thus is researched upon far less compared to Equities. Bond price prediction is a complex financial time series forecasting problem and is considered very crucial in the domain of finance. The bond prices are highly volatile and full of noise which makes it very difficult for traditional statistical time-series models to capture the complexity in series patterns which leads to inefficient forecasts. To overcome the inefficiencies of statistical models, various machine learning techniques were initially used in the literature for more accurate forecasting of time-series. However, simple machine learning methods such as linear regression, support vectors, random forests fail to provide efficient results when tested on highly complex sequences such as stock prices and bond prices. hence to capture these intricate sequence patterns, various deep learning-based methodologies have been discussed in the literature. In this study, a recurrent neural network-based deep learning model using long short term networks for prediction of corporate bond prices has been discussed. Long Short Term networks (LSTM) have been widely used in the literature for various sequence learning tasks in various domains such as machine translation, speech recognition, etc. In recent years, various studies have discussed the effectiveness of LSTMs in forecasting complex time-series sequences and have shown promising results when compared to other methodologies. LSTMs are a special kind of recurrent neural networks which are capable of learning long term dependencies due to its memory function which traditional neural networks fail to capture. In this study, a simple LSTM, Stacked LSTM and a Masked LSTM based model has been discussed with respect to varying input sequences (three days, seven days and 14 days). In order to facilitate faster learning and to gradually decompose the complexity of bond price sequence, an Empirical Mode Decomposition (EMD) has been used, which has resulted in accuracy improvement of the standalone LSTM model. With a variety of Technical Indicators and EMD decomposed time series, Masked LSTM outperformed the other two counterparts in terms of prediction accuracy. To benchmark the proposed model, the results have been compared with traditional time series models (ARIMA), shallow neural networks and above discussed three different LSTM models. In summary, our results show that the use of LSTM models provide more accurate results and should be explored more within the asset management industry.

Keywords: bond prices, long short-term memory, time series forecasting, empirical mode decomposition

Procedia PDF Downloads 137
3656 Biosafety Study of Genetically Modified CEMB Sugarcane on Animals for Glyphosate Tolerance

Authors: Aminah Salim, Idrees Ahmed Nasir, Abdul Qayyum Rao, Muhammad Ali, Muhammad Sohail Anjum, Ayesha Hameed, Bushra Tabassum, Anwar Khan, Arfan Ali, Mariyam Zameer, Tayyab Husnain

Abstract:

Risk assessment of transgenic herbicide tolerant sugarcane having CEMB codon optimized cp4EPSPS gene was done in present study. Fifteen days old chicks taken from K&Ns Company were randomly assorted into four groups with eight chicks in each group namely control chicken group fed with commercial diet, non-transgenic group fed with non-experimental sugarcane and transgenic group fed with transgenic sugarcane with minimum and maximum level. Body weights, biochemical analysis for Urea, alkaline phosphatase, alanine transferase, aspartate transferase, creatinine and bilirubin determination and histological examination of chicks fed with four types of feed was taken at fifteen days interval and no significant difference was observed in body weight biochemical and histological studies of all four groups. Protein isolated from the serum sample was analyzed through dipstick and SDS-PAGE, showing the absence of transgene protein in the serum sample of control and experimental groups. Moreover the amplification of cp4EPSPS gene with gene specific primers of DNA isolated from chicks blood and also from commercial diet was done to determine the presence and mobility of any nucleotide fragment of the transgene in/from feed and no amplification was obtained in feed as well as in blood extracted DNA of any group. Also no mRNA expression of cp4EPSPS gene was obtained in any tissue of four groups of chicks. From the results it is clear that there is no deleterious or harmful effect of the CEMB codon optimized transgenic cp4EPSPS sugarcane on the chicks health.

Keywords: chicks, cp4EPSPS, glyphosate, sugarcane

Procedia PDF Downloads 374
3655 Measuring Enterprise Growth: Pitfalls and Implications

Authors: N. Šarlija, S. Pfeifer, M. Jeger, A. Bilandžić

Abstract:

Enterprise growth is generally considered as a key driver of competitiveness, employment, economic development and social inclusion. As such, it is perceived to be a highly desirable outcome of entrepreneurship for scholars and decision makers. The huge academic debate resulted in the multitude of theoretical frameworks focused on explaining growth stages, determinants and future prospects. It has been widely accepted that enterprise growth is most likely nonlinear, temporal and related to the variety of factors which reflect the individual, firm, organizational, industry or environmental determinants of growth. However, factors that affect growth are not easily captured, instruments to measure those factors are often arbitrary, causality between variables and growth is elusive, indicating that growth is not easily modeled. Furthermore, in line with heterogeneous nature of the growth phenomenon, there is a vast number of measurement constructs assessing growth which are used interchangeably. Differences among various growth measures, at conceptual as well as at operationalization level, can hinder theory development which emphasizes the need for more empirically robust studies. In line with these highlights, the main purpose of this paper is twofold. Firstly, to compare structure and performance of three growth prediction models based on the main growth measures: Revenues, employment and assets growth. Secondly, to explore the prospects of financial indicators, set as exact, visible, standardized and accessible variables, to serve as determinants of enterprise growth. Finally, to contribute to the understanding of the implications on research results and recommendations for growth caused by different growth measures. The models include a range of financial indicators as lag determinants of the enterprises’ performances during the 2008-2013, extracted from the national register of the financial statements of SMEs in Croatia. The design and testing stage of the modeling used the logistic regression procedures. Findings confirm that growth prediction models based on different measures of growth have different set of predictors. Moreover, the relationship between particular predictors and growth measure is inconsistent, namely the same predictor positively related to one growth measure may exert negative effect on a different growth measure. Overall, financial indicators alone can serve as good proxy of growth and yield adequate predictive power of the models. The paper sheds light on both methodology and conceptual framework of enterprise growth by using a range of variables which serve as a proxy for the multitude of internal and external determinants, but are unlike them, accessible, available, exact and free of perceptual nuances in building up the model. Selection of the growth measure seems to have significant impact on the implications and recommendations related to growth. Furthermore, the paper points out to potential pitfalls of measuring and predicting growth. Overall, the results and the implications of the study are relevant for advancing academic debates on growth-related methodology, and can contribute to evidence-based decisions of policy makers.

Keywords: growth measurement constructs, logistic regression, prediction of growth potential, small and medium-sized enterprises

Procedia PDF Downloads 253
3654 Lineup Optimization Model of Basketball Players Based on the Prediction of Recursive Neural Networks

Authors: Wang Yichen, Haruka Yamashita

Abstract:

In recent years, in the field of sports, decision making such as member in the game and strategy of the game based on then analysis of the accumulated sports data are widely attempted. In fact, in the NBA basketball league where the world's highest level players gather, to win the games, teams analyze the data using various statistical techniques. However, it is difficult to analyze the game data for each play such as the ball tracking or motion of the players in the game, because the situation of the game changes rapidly, and the structure of the data should be complicated. Therefore, it is considered that the analysis method for real time game play data is proposed. In this research, we propose an analytical model for "determining the optimal lineup composition" using the real time play data, which is considered to be difficult for all coaches. In this study, because replacing the entire lineup is too complicated, and the actual question for the replacement of players is "whether or not the lineup should be changed", and “whether or not Small Ball lineup is adopted”. Therefore, we propose an analytical model for the optimal player selection problem based on Small Ball lineups. In basketball, we can accumulate scoring data for each play, which indicates a player's contribution to the game, and the scoring data can be considered as a time series data. In order to compare the importance of players in different situations and lineups, we combine RNN (Recurrent Neural Network) model, which can analyze time series data, and NN (Neural Network) model, which can analyze the situation on the field, to build the prediction model of score. This model is capable to identify the current optimal lineup for different situations. In this research, we collected all the data of accumulated data of NBA from 2019-2020. Then we apply the method to the actual basketball play data to verify the reliability of the proposed model.

Keywords: recurrent neural network, players lineup, basketball data, decision making model

Procedia PDF Downloads 134
3653 Comparing Performance of Neural Network and Decision Tree in Prediction of Myocardial Infarction

Authors: Reza Safdari, Goli Arji, Robab Abdolkhani Maryam zahmatkeshan

Abstract:

Background and purpose: Cardiovascular diseases are among the most common diseases in all societies. The most important step in minimizing myocardial infarction and its complications is to minimize its risk factors. The amount of medical data is increasingly growing. Medical data mining has a great potential for transforming these data into information. Using data mining techniques to generate predictive models for identifying those at risk for reducing the effects of the disease is very helpful. The present study aimed to collect data related to risk factors of heart infarction from patients’ medical record and developed predicting models using data mining algorithm. Methods: The present work was an analytical study conducted on a database containing 350 records. Data were related to patients admitted to Shahid Rajaei specialized cardiovascular hospital, Iran, in 2011. Data were collected using a four-sectioned data collection form. Data analysis was performed using SPSS and Clementine version 12. Seven predictive algorithms and one algorithm-based model for predicting association rules were applied to the data. Accuracy, precision, sensitivity, specificity, as well as positive and negative predictive values were determined and the final model was obtained. Results: five parameters, including hypertension, DLP, tobacco smoking, diabetes, and A+ blood group, were the most critical risk factors of myocardial infarction. Among the models, the neural network model was found to have the highest sensitivity, indicating its ability to successfully diagnose the disease. Conclusion: Risk prediction models have great potentials in facilitating the management of a patient with a specific disease. Therefore, health interventions or change in their life style can be conducted based on these models for improving the health conditions of the individuals at risk.

Keywords: decision trees, neural network, myocardial infarction, Data Mining

Procedia PDF Downloads 430
3652 A Corpus-Based Study on the Styles of Three Translators

Authors: Wang Yunhong

Abstract:

The present paper is preoccupied with the different styles of three translators in their translating a Chinese classical novel Shuihu Zhuan. Based on a parallel corpus, it adopts a target-oriented approach to look into whether and what stylistic differences and shifts the three translations have revealed. The findings show that the three translators demonstrate different styles concerning their word choices and sentence preferences, which implies that identification of recurrent textual patterns may be a basic step for investigating the style of a translator.

Keywords: corpus, lexical choices, sentence characteristics, style

Procedia PDF Downloads 269
3651 Effect of Oxygen Ion Irradiation on the Structural, Spectral and Optical Properties of L-Arginine Acetate Single Crystals

Authors: N. Renuka, R. Ramesh Babu, N. Vijayan

Abstract:

Ion beams play a significant role in the process of tuning the properties of materials. Based on the radiation behavior, the engineering materials are categorized into two different types. The first one comprises organic solids which are sensitive to the energy deposited in their electronic system and the second one comprises metals which are insensitive to the energy deposited in their electronic system. However, exposure to swift heavy ions alters this general behavior. Depending on the mass, kinetic energy and nuclear charge, an ion can produce modifications within a thin surface layer or it can penetrate deeply to produce long and narrow distorted area along its path. When a high energetic ion beam impinges on a material, it causes two different types of changes in the material due to the columbic interaction between the target atom and the energetic ion beam: (i) inelastic collisions of the energetic ion with the atomic electrons of the material; and (ii) elastic scattering from the nuclei of the atoms of the material, which is extremely responsible for relocating the atoms of matter from their lattice position. The exposure of the heavy ions renders the material return to equilibrium state during which the material undergoes surface and bulk modifications which depends on the mass of the projectile ion, physical properties of the target material, its energy, and beam dimension. It is well established that electronic stopping power plays a major role in the defect creation mechanism provided it exceeds a threshold which strongly depends on the nature of the target material. There are reports available on heavy ion irradiation especially on crystalline materials to tune their physical and chemical properties. L-Arginine Acetate [LAA] is a potential semi-organic nonlinear optical crystal and its optical, mechanical and thermal properties have already been reported The main objective of the present work is to enhance or tune the structural and optical properties of LAA single crystals by heavy ion irradiation. In the present study, a potential nonlinear optical single crystal, L-arginine acetate (LAA) was grown by slow evaporation solution growth technique. The grown LAA single crystal was irradiated with oxygen ions at the dose rate of 600 krad and 1M rad in order to tune the structural and optical properties. The structural properties of pristine and oxygen ions irradiated LAA single crystals were studied using Powder X- ray diffraction and Fourier Transform Infrared spectral studies which reveal the structural changes that are generated due to irradiation. Optical behavior of pristine and oxygen ions irradiated crystals is studied by UV-Vis-NIR and photoluminescence analyses. From this investigation we can concluded that oxygen ions irradiation modifies the structural and optical properties of LAA single crystals.

Keywords: heavy ion irradiation, NLO single crystal, photoluminescence, X-ray diffractometer

Procedia PDF Downloads 254
3650 Curcumin Reduces the Expression of Main Fibrogenic Genes and Phosphorylation of Smad3C Signaling Pathway in TGFB-Activated Human HSCs. A New Remedy for Liver Fibrosis

Authors: Elham Shakerian, Reza Afarin

Abstract:

The hepatic disease causes approximately 2 million deaths/year worldwide. Liver fibrosis is the last stage of numerous chronic liver diseases, and until now there is no definite cure or drug for it. Activation of hepatic stellate cells (HSCs) is the main reason for fibrosis. Transforming growth factor (TGF-β), as a main profibrogenic cytokine, if increased in these cells, leads to liver fibrosis through smad3 signaling pathways and increasing the expressions of Collagen type I and III, and actin-alpha smooth muscle (αSMA) genes. Curcumin (CUR) is a polyphenolic compound and an active ingredient derived from the rhizome of the turmeric plant that exerts effective antioxidant, anti-inflammatory, and antimicrobial activity. It has been shown that daily consumption of curcumin may have a protective effect on the liver against oxidative stress associated with alcohol consumption. In this study, we investigate the role of Curcumin in decreasing HSC activation and treating liver fibrosis. First, the human HSCs were treated with 2 ng/ml of (TGF-β) for 24 hours to become activated, then with Silibinin for 24 hours. Total RNAs were extracted, reversely transcribed into cDNA, Quantitative Real-time PCR, and western blot were performed. The mRNA expression levels of Collagen type I and III, αSMA genes, and the level of smad3 phosphorylation in TGF-β activated human HSCs treated with Curcumin were significantly reduced compared to human HSCs untreated with Curcumin. Curcumin is effective in reducing the expression of fibrogenic genes in the activated human HSCs treated with TGFB through downregulation of the TGF-β/smad3 signaling pathway. Therefore, Curcumin possesses significant antifibrotic properties in hepatic fibrosis

Keywords: hepatic fibrosis, human HSCs, curcumin, fibrogenic genes

Procedia PDF Downloads 123
3649 Practices of Waterwise Circular Economy in Water Protection: A Case Study on Pyhäjärvi, SW Finland

Authors: Jari Koskiaho, Teija Kirkkala, Jani Salminen, Sarianne Tikkanen, Sirkka Tattari

Abstract:

Here, phosphorus (P) loading to the lake Pyhäjärvi (SW Finland) was reviewed, load reduction targets were determined, and different measures of waterwise circular economy to reach the targets were evaluated. In addition to the P loading from the lake’s catchment, there is a significant amount of internal P loading occurring in the lake. There are no point source emissions into the lake. Thus, the most important source of external nutrient loading is agriculture. According to the simulations made with LLR-model, the chemical state of the lake is at the border of the classes ‘Satisfactory’ and ‘Good’. The LLR simulations suggest that a reduction of some hundreds of kilograms in annual P loading would be needed to reach an unquestionably ‘Good’ state. Evaluation of the measures of the waterwise circular economy suggested that they possess great potential in reaching the target P load reduction. If they were applied extensively and in a versatile, targeted manner in the catchment, their combined effect would reach the target reduction. In terms of cost-effectiveness, the waterwise measures were ranked as follows: The best: Fishing, 2nd best: Recycling of vegetation of reed beds, wetlands and buffer zones, 3rd best: Recycling field drainage waters stored in wetlands and ponds for irrigation, 4th best: Controlled drainage and irrigation, and 5th best: Recycling of the sediments of wetlands and ponds for soil enrichment. We also identified various waterwise nutrient recycling measures to decrease the P content of arable land. The cost-effectiveness of such measures may be very good. Solutions are needed to Finnish water protection in general, and particularly for regions like lake Pyhäjärvi catchment with intensive domestic animal production, of which the ‘P-hotspots’ are a crucial issue.

Keywords: circular economy, lake protection, mitigation measures, phosphorus

Procedia PDF Downloads 107