Search results for: inherent feature
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2212

Search results for: inherent feature

802 Factors Affecting Reproductive Behaviour of Married Women in Sudan: Acase of Shendi Town

Authors: Mohamed Hamed

Abstract:

Population studies, essentially deals with the size, growth, and distribution of the population in a given area. Size, growth, and distribution are determined by three major factors, which are reproduction, mortality, and migration. Of these factors, reproduction is a potent socio-demographic force in vital process of population growth. It is a major component of population growth, and has crucial role in population dynamic, because it measures the rate at which a population increased. In fact the most striking feature of human reproduction is its variation. Its levels are vary widely among nations, countries, geographic regions, ethnic. The variations of reproductive behaviour among married women have been empirically documented in a large numbers of countries. For instance, many researchers in developing and developed countries investigated the differential of reproductive behaviour among married women. Most of these studies found that reproductive behaviour is strongly influenced by the socioeconomic and biological factors.Such as education, income, employment of women, marriage pattern, age at marriage, contraceptive use, education, and employment. However, the above socioeconomic and biological factors are determined by cultural factors surrounded by married women. So, this study is going to find out the effect of culture on reproductive behaviour among married women in Sudan, a case of Shendi town.

Keywords: fertilty pattern, sudan, shendi town, factors affecting reproductive behaviour, married women

Procedia PDF Downloads 300
801 Human Rights Regulations and Rules Affecting Community

Authors: Mariana Sary Khalifa Rezk

Abstract:

The problem of respect for human rights in Southeast Asia has emerged as a main situation and is attracting the attention of the international network. Basically, the affiliation of Southeast Asian Nations (ASEAN) made human rights certainly one of its main troubles inside the ASEAN constitution in 2008. In the end, the Intergovernmental Fee on Human Rights ASEAN Human Rights (AICHR) was set up. AICHR is the Southeast Asia Human Rights Enforcement fee charged with the duties, functions and powers to sell and defend human rights. However, at the cease of 2016, the protecting feature assigned to the AICHR was no longer fulfilled. That is shown via several instances of human rights violations, which can be nonetheless ongoing and have not been solved. One case that has these days come to light is human rights violations against the Rohingya people in Myanmar. Using a felony-normative method, the study examines the urgency of setting up a human rights tribunal in Southeast Asia able to decide binding on ASEAN members or responsible parties. Information indicates ASEAN desires regional courts to cope with human rights abuses in the ASEAN region. Furthermore, the look also highlights 3 critical elements that ASEAN ought to take into account whilst establishing a human rights tribunal, particularly quantity. A good sized distinction in phrases of democracy and human rights improvement a few of the participants, a consistent implementation of the principle of non-interference and the economic trouble of the continuation of the court docket.

Keywords: politics, human rights, humanities, mankind, law human rights, Nigerian legal provisions, shariah law, comparative study, charter

Procedia PDF Downloads 29
800 Optimizing a Hybrid Inventory System with Random Demand and Lead Time

Authors: Benga Ebouele, Thomas Tengen

Abstract:

Implementing either periodic or continuous inventory review model within most manufacturing-companies-supply chains as a management tool may incur higher costs. These high costs affect the system flexibility which in turn affects the level of service required to satisfy customers. However, these effects are not clearly understood because the parameters of both inventory review policies (protection demand interval, order quantity, etc.) are not designed to be fully utilized under different and uncertain conditions such as poor manufacturing, supplies and delivery performance. Coming up with a hybrid model which may combine in some sense the feature of both continuous and a periodic inventory review models should be useful. Therefore, there is a need to build and evaluate such hybrid model on the annual total cost, stock out probability and system’s flexibility in order to search for the most cost effective inventory review model. This work also seeks to find the optimal sets of parameters of inventory management under stochastic condition so as to optimise each policy independently. The results reveal that a continuous inventory system always incurs lesser cost than a periodic (R, S) inventory system, but this difference tends to decrease as time goes by. Although the hybrid inventory is the only one that can yield lesser cost over time, it is not always desirable but also natural to use it in order to help the system to meet high performance specification.

Keywords: demand and lead time randomness, hybrid Inventory model, optimization, supply chain

Procedia PDF Downloads 313
799 Joint Modeling of Longitudinal and Time-To-Event Data with Latent Variable

Authors: Xinyuan Y. Song, Kai Kang

Abstract:

Joint models for analyzing longitudinal and survival data are widely used to investigate the relationship between a failure time process and time-variant predictors. A common assumption in conventional joint models in the survival analysis literature is that all predictors are observable. However, this assumption may not always be supported because unobservable traits, namely, latent variables, which are indirectly observable and should be measured through multiple observed variables, are commonly encountered in the medical, behavioral, and financial research settings. In this study, a joint modeling approach to deal with this feature is proposed. The proposed model comprises three parts. The first part is a dynamic factor analysis model for characterizing latent variables through multiple observed indicators over time. The second part is a random coefficient trajectory model for describing the individual trajectories of latent variables. The third part is a proportional hazard model for examining the effects of time-invariant predictors and the longitudinal trajectories of time-variant latent risk factors on hazards of interest. A Bayesian approach coupled with a Markov chain Monte Carlo algorithm to perform statistical inference. An application of the proposed joint model to a study on the Alzheimer's disease neuroimaging Initiative is presented.

Keywords: Bayesian analysis, joint model, longitudinal data, time-to-event data

Procedia PDF Downloads 144
798 Enhancing Wayfinding and User Experience in Hospital Environments: A Study of University Medical Centre Ljubljana

Authors: Nastja Utrosa, Matevz Juvancic

Abstract:

Hospital buildings are complex public environments characterized by intricate functional arrangements and architectural layouts. Effective wayfinding is essential for patients, visitors, students, and staff. However, spatial orientation planning is often overlooked until after construction. While these environments meet functional needs, they frequently neglect the psychological aspects of user experience. This study investigates wayfinding within complex urban healthcare environments, focusing on the influences of spatial design, spatial cognition, and user experience. The inherent complexity of these environments, with extensive spatial dimensions and dispersed buildings, exacerbates the problem. Gradual expansions and additions contribute to disorientation and navigational difficulties for users. Effective route guidance in urban healthcare settings has become increasingly crucial. However, research on the environmental elements that influence wayfinding in such environments remains limited. To address this gap, we conducted a study at the University Medical Centre Ljubljana (UMCL), Slovenia's largest university hospital. Using a questionnaire, we assessed how individuals' perceptions and use of outdoor hospital spaces with a diverse sample (n=179). We evaluated the area’s usability by analyzing visit frequency, stops, modes of arrival, and parking patterns and examined the visitors' age distribution. Additionally, we investigated spatial aids and the use of color as an orientation element at three specific locations within the medical center. Our study explored the impact of color on entrance selection and the effectiveness of warm versus cool colors for wayfinding. Our findings highlight the significance of graphic adjustments in shaping perceptions of hospital outdoor spaces. Most participants preferred visually organized entrances, underscoring the importance of effective visual communication. Implementing these adaptations can substantially enhance the user experience, reducing stress and increasing satisfaction in hospital environments.

Keywords: hospital layout design, healthcare facilities, wayfinding, navigational aids, spatial orientation, color, signage

Procedia PDF Downloads 45
797 Using Deep Learning Real-Time Object Detection Convolution Neural Networks for Fast Fruit Recognition in the Tree

Authors: K. Bresilla, L. Manfrini, B. Morandi, A. Boini, G. Perulli, L. C. Grappadelli

Abstract:

Image/video processing for fruit in the tree using hard-coded feature extraction algorithms have shown high accuracy during recent years. While accurate, these approaches even with high-end hardware are computationally intensive and too slow for real-time systems. This paper details the use of deep convolution neural networks (CNNs), specifically an algorithm (YOLO - You Only Look Once) with 24+2 convolution layers. Using deep-learning techniques eliminated the need for hard-code specific features for specific fruit shapes, color and/or other attributes. This CNN is trained on more than 5000 images of apple and pear fruits on 960 cores GPU (Graphical Processing Unit). Testing set showed an accuracy of 90%. After this, trained data were transferred to an embedded device (Raspberry Pi gen.3) with camera for more portability. Based on correlation between number of visible fruits or detected fruits on one frame and the real number of fruits on one tree, a model was created to accommodate this error rate. Speed of processing and detection of the whole platform was higher than 40 frames per second. This speed is fast enough for any grasping/harvesting robotic arm or other real-time applications.

Keywords: artificial intelligence, computer vision, deep learning, fruit recognition, harvesting robot, precision agriculture

Procedia PDF Downloads 420
796 Visual Template Detection and Compositional Automatic Regular Expression Generation for Business Invoice Extraction

Authors: Anthony Proschka, Deepak Mishra, Merlyn Ramanan, Zurab Baratashvili

Abstract:

Small and medium-sized businesses receive over 160 billion invoices every year. Since these documents exhibit many subtle differences in layout and text, extracting structured fields such as sender name, amount, and VAT rate from them automatically is an open research question. In this paper, existing work in template-based document extraction is extended, and a system is devised that is able to reliably extract all required fields for up to 70% of all documents in the data set, more than any other previously reported method. The approaches are described for 1) detecting through visual features which template a given document belongs to, 2) automatically generating extraction rules for a given new template by composing regular expressions from multiple components, and 3) computing confidence scores that indicate the accuracy of the automatic extractions. The system can generate templates with as little as one training sample and only requires the ground truth field values instead of detailed annotations such as bounding boxes that are hard to obtain. The system is deployed and used inside a commercial accounting software.

Keywords: data mining, information retrieval, business, feature extraction, layout, business data processing, document handling, end-user trained information extraction, document archiving, scanned business documents, automated document processing, F1-measure, commercial accounting software

Procedia PDF Downloads 130
795 Exaptive Urbanism: Evolutionary Biology and the Regeneration of Mumbai’s Dhobighat

Authors: Piyush Bajpai, Sneha Pandey

Abstract:

Mumbai’s Dhobighat, 150 year old largest open laundry in the world, is the true live-work place and only source of income for some of Mumbai’s highest density ‘urban poor’ residents. The regeneration of Dhobighat, due to its ultra prime location and complex socio-political culture has been a complex issue. This once flourishing urban industrial core has been degrading for the past several decades mainly due to the decline of the open laundry business, the site’s over burdened infrastructure and conflicting socio-political and economic forces. The phenomena of ‘exaptation’ or ‘co-option’ has been observed by evolutionary biologists as a process responsible for producing highly tenacious and resilient offsprings within a species. The reddish egret uses its wings to cast shadow in shallow waters to attract small fish and hunt them. An unrelated feature used opportunistically to produce a very favorable result. How can this idea of co-option be applied to resolve the complex issue of Dhobighat’s regeneration? Our paper proposes a new methodology/approach for the regeneration of Dhobighat through the lens of evolutionary biology. Forces and systems (social, political, economic, cultural and ecological) that seem conflicting or unrelated by nature are opportunistically transformed into symbiotic and complimentary relationships that produce an inclusive, resilient and holistic solution for the regeneration of Dhobighat.

Keywords: urban regeneration, exaptation, resilience, Dhobighat, Mumbai

Procedia PDF Downloads 296
794 Wave State of Self: Findings of Synchronistic Patterns in the Collective Unconscious

Authors: R. Dimitri Halley

Abstract:

The research within Jungian Psychology presented here is on the wave state of Self. What has been discovered via shared dreaming, independently correlating dreams across dreamers, is beyond the Self stage into the deepest layer or the wave state Self: the very quantum ocean, the Self archetype is embedded in. A quantum wave or rhyming of meaning constituting synergy across several dreamers was discovered in dreams and in extensively shared dream work with small groups at a post therapy stage. Within the format of shared dreaming, we find synergy patterns beyond what Jung called the Self archetype. Jung led us up to the phase of Individuation and delivered the baton to Von Franz to work out the next synchronistic stage, here proposed as the finding of the quantum patterns making up the wave state of Self. These enfolded synchronistic patterns have been found in group format of shared dreaming of individuals approximating individuation, and the unfolding of it is carried by belief and faith. The reason for this format and operating system is because beyond therapy and of living reality, we find no science – no thinking or even awareness in the therapeutic sense – but rather a state of mental processing resembling more like that of spiritual attitude. Thinking as such is linear and cannot contain the deepest layer of Self, the quantum core of the human being. It is self reflection which is the container for the process at the wave state of Self. Observation locks us in an outside-in reactive flow from a first-person perspective and hence toward the surface we see to believe, whereas here, the direction of focus shifts to inside out/intrinsic. The operating system or language at the wave level of Self is thus belief and synchronicity. Belief has up to now been almost the sole province of organized religions but was viewed by Jung as an inherent property in the process of Individuation. The shared dreaming stage of the synchronistic patterns forms a larger story constituting a deep connectivity unfolding around individual Selves. Dreams of independent dreamers form larger patterns that come together as puzzles forming a larger story, and in this sense, this group work level builds on Jung as a post individuation collective stage. Shared dream correlations will be presented, illustrating a larger story in terms of trails of shared synchronicity.

Keywords: belief, shared dreaming, synchronistic patterns, wave state of self

Procedia PDF Downloads 196
793 Diversity Indices as a Tool for Evaluating Quality of Water Ways

Authors: Khadra Ahmed, Khaled Kheireldin

Abstract:

In this paper, we present a pedestrian detection descriptor called Fused Structure and Texture (FST) features based on the combination of the local phase information with the texture features. Since the phase of the signal conveys more structural information than the magnitude, the phase congruency concept is used to capture the structural features. On the other hand, the Center-Symmetric Local Binary Pattern (CSLBP) approach is used to capture the texture information of the image. The dimension less quantity of the phase congruency and the robustness of the CSLBP operator on the flat images, as well as the blur and illumination changes, lead the proposed descriptor to be more robust and less sensitive to the light variations. The proposed descriptor can be formed by extracting the phase congruency and the CSLBP values of each pixel of the image with respect to its neighborhood. The histogram of the oriented phase and the histogram of the CSLBP values for the local regions in the image are computed and concatenated to construct the FST descriptor. Several experiments were conducted on INRIA and the low resolution DaimlerChrysler datasets to evaluate the detection performance of the pedestrian detection system that is based on the FST descriptor. A linear Support Vector Machine (SVM) is used to train the pedestrian classifier. These experiments showed that the proposed FST descriptor has better detection performance over a set of state of the art feature extraction methodologies.

Keywords: planktons, diversity indices, water quality index, water ways

Procedia PDF Downloads 518
792 NanoFrazor Lithography for advanced 2D and 3D Nanodevices

Authors: Zhengming Wu

Abstract:

NanoFrazor lithography systems were developed as a first true alternative or extension to standard mask-less nanolithography methods like electron beam lithography (EBL). In contrast to EBL they are based on thermal scanning probe lithography (t-SPL). Here a heatable ultra-sharp probe tip with an apex of a few nm is used for patterning and simultaneously inspecting complex nanostructures. The heat impact from the probe on a thermal responsive resist generates those high-resolution nanostructures. The patterning depth of each individual pixel can be controlled with better than 1 nm precision using an integrated in-situ metrology method. Furthermore, the inherent imaging capability of the Nanofrazor technology allows for markerless overlay, which has been achieved with sub-5 nm accuracy as well as it supports stitching layout sections together with < 10 nm error. Pattern transfer from such resist features below 10 nm resolution were demonstrated. The technology has proven its value as an enabler of new kinds of ultra-high resolution nanodevices as well as for improving the performance of existing device concepts. The application range for this new nanolithography technique is very broad spanning from ultra-high resolution 2D and 3D patterning to chemical and physical modification of matter at the nanoscale. Nanometer-precise markerless overlay and non-invasiveness to sensitive materials are among the key strengths of the technology. However, while patterning at below 10 nm resolution is achieved, significantly increasing the patterning speed at the expense of resolution is not feasible by using the heated tip alone. Towards this end, an integrated laser write head for direct laser sublimation (DLS) of the thermal resist has been introduced for significantly faster patterning of micrometer to millimeter-scale features. Remarkably, the areas patterned by the tip and the laser are seamlessly stitched together and both processes work on the very same resist material enabling a true mix-and-match process with no developing or any other processing steps in between. The presentation will include examples for (i) high-quality metal contacting of 2D materials, (ii) tuning photonic molecules, (iii) generating nanofluidic devices and (iv) generating spintronic circuits. Some of these applications have been enabled only due to the various unique capabilities of NanoFrazor lithography like the absence of damage from a charged particle beam.

Keywords: nanofabrication, grayscale lithography, 2D materials device, nano-optics, photonics, spintronic circuits

Procedia PDF Downloads 72
791 ParkedGuard: An Efficient and Accurate Parked Domain Detection System Using Graphical Locality Analysis and Coarse-To-Fine Strategy

Authors: Chia-Min Lai, Wan-Ching Lin, Hahn-Ming Lee, Ching-Hao Mao

Abstract:

As world wild internet has non-stop developments, making profit by lending registered domain names emerges as a new business in recent years. Unfortunately, the larger the market scale of domain lending service becomes, the riskier that there exist malicious behaviors or malwares hiding behind parked domains will be. Also, previous work for differentiating parked domain suffers two main defects: 1) too much data-collecting effort and CPU latency needed for features engineering and 2) ineffectiveness when detecting parked domains containing external links that are usually abused by hackers, e.g., drive-by download attack. Aiming for alleviating above defects without sacrificing practical usability, this paper proposes ParkedGuard as an efficient and accurate parked domain detector. Several scripting behavioral features were analyzed, while those with special statistical significance are adopted in ParkedGuard to make feature engineering much more cost-efficient. On the other hand, finding memberships between external links and parked domains was modeled as a graph mining problem, and a coarse-to-fine strategy was elaborately designed by leverage the graphical locality such that ParkedGuard outperforms the state-of-the-art in terms of both recall and precision rates.

Keywords: coarse-to-fine strategy, domain parking service, graphical locality analysis, parked domain

Procedia PDF Downloads 408
790 A Psychophysiological Evaluation of an Effective Recognition Technique Using Interactive Dynamic Virtual Environments

Authors: Mohammadhossein Moghimi, Robert Stone, Pia Rotshtein

Abstract:

Recording psychological and physiological correlates of human performance within virtual environments and interpreting their impacts on human engagement, ‘immersion’ and related emotional or ‘effective’ states is both academically and technologically challenging. By exposing participants to an effective, real-time (game-like) virtual environment, designed and evaluated in an earlier study, a psychophysiological database containing the EEG, GSR and Heart Rate of 30 male and female gamers, exposed to 10 games, was constructed. Some 174 features were subsequently identified and extracted from a number of windows, with 28 different timing lengths (e.g. 2, 3, 5, etc. seconds). After reducing the number of features to 30, using a feature selection technique, K-Nearest Neighbour (KNN) and Support Vector Machine (SVM) methods were subsequently employed for the classification process. The classifiers categorised the psychophysiological database into four effective clusters (defined based on a 3-dimensional space – valence, arousal and dominance) and eight emotion labels (relaxed, content, happy, excited, angry, afraid, sad, and bored). The KNN and SVM classifiers achieved average cross-validation accuracies of 97.01% (±1.3%) and 92.84% (±3.67%), respectively. However, no significant differences were found in the classification process based on effective clusters or emotion labels.

Keywords: virtual reality, effective computing, effective VR, emotion-based effective physiological database

Procedia PDF Downloads 233
789 Unstructured-Data Content Search Based on Optimized EEG Signal Processing and Multi-Objective Feature Extraction

Authors: Qais M. Yousef, Yasmeen A. Alshaer

Abstract:

Over the last few years, the amount of data available on the globe has been increased rapidly. This came up with the emergence of recent concepts, such as the big data and the Internet of Things, which have furnished a suitable solution for the availability of data all over the world. However, managing this massive amount of data remains a challenge due to their large verity of types and distribution. Therefore, locating the required file particularly from the first trial turned to be a not easy task, due to the large similarities of names for different files distributed on the web. Consequently, the accuracy and speed of search have been negatively affected. This work presents a method using Electroencephalography signals to locate the files based on their contents. Giving the concept of natural mind waves processing, this work analyses the mind wave signals of different people, analyzing them and extracting their most appropriate features using multi-objective metaheuristic algorithm, and then classifying them using artificial neural network to distinguish among files with similar names. The aim of this work is to provide the ability to find the files based on their contents using human thoughts only. Implementing this approach and testing it on real people proved its ability to find the desired files accurately within noticeably shorter time and retrieve them as a first choice for the user.

Keywords: artificial intelligence, data contents search, human active memory, mind wave, multi-objective optimization

Procedia PDF Downloads 175
788 Principle Component Analysis on Colon Cancer Detection

Authors: N. K. Caecar Pratiwi, Yunendah Nur Fuadah, Rita Magdalena, R. D. Atmaja, Sofia Saidah, Ocky Tiaramukti

Abstract:

Colon cancer or colorectal cancer is a type of cancer that attacks the last part of the human digestive system. Lymphoma and carcinoma are types of cancer that attack human’s colon. Colon cancer causes deaths about half a million people every year. In Indonesia, colon cancer is the third largest cancer case for women and second in men. Unhealthy lifestyles such as minimum consumption of fiber, rarely exercising and lack of awareness for early detection are factors that cause high cases of colon cancer. The aim of this project is to produce a system that can detect and classify images into type of colon cancer lymphoma, carcinoma, or normal. The designed system used 198 data colon cancer tissue pathology, consist of 66 images for Lymphoma cancer, 66 images for carcinoma cancer and 66 for normal / healthy colon condition. This system will classify colon cancer starting from image preprocessing, feature extraction using Principal Component Analysis (PCA) and classification using K-Nearest Neighbor (K-NN) method. Several stages in preprocessing are resize, convert RGB image to grayscale, edge detection and last, histogram equalization. Tests will be done by trying some K-NN input parameter setting. The result of this project is an image processing system that can detect and classify the type of colon cancer with high accuracy and low computation time.

Keywords: carcinoma, colorectal cancer, k-nearest neighbor, lymphoma, principle component analysis

Procedia PDF Downloads 205
787 The Great Mimicker: A Case of Disseminated Tuberculosis

Authors: W. Ling, Mohamed Saufi Bin Awang

Abstract:

Introduction: Mycobacterium tuberculosis post a major health problem worldwide. Central nervous system (CNS) infection by mycobacterium tuberculosis is one of the most devastating complications of tuberculosis. Although with advancement in medical fields, we are yet to understand the pathophysiology of how mycobacterium tuberculosis was able to cross the blood-brain barrier (BBB) and infect the CNS. CNS TB may present with nonspecific clinical symptoms which can mimic other diseases/conditions; this is what makes the diagnosis relatively difficult and challenging. Public health has to be informed and educated about the spread of TB, and early identification of TB is important as it is a curable disease. Case Report: A young 21-year-old Malay gentleman was initially presented to us with symptoms of ear discharge, tinnitus, and right-sided headache for the past one year. Further history reveals that the symptoms have been mismanaged and neglected over the period of 1 year. Initial investigation reveals features of inflammation of the ear. Further imaging showed the feature of chronic inflammation of the otitis media and atypical right cerebral abscess, which has the same characteristic features and consistency. He further underwent a biopsy, and results reveal positive Mycobacterium tuberculosis of the otitis media. With the results and the available imaging, we were certain that this is likely a case of disseminated tuberculosis causing CNS TB. Conclusion: We aim to highlight the challenge and difficult face in our health care system and public health in early identification and treatment.

Keywords: central nervous system tuberculosis, intracranial tuberculosis, tuberculous encephalopathy, tuberculous meningitis

Procedia PDF Downloads 189
786 The Syntactic Features of Islamic Legal Texts and Their Implications for Translation

Authors: Rafat Y. Alwazna

Abstract:

Certain religious texts are deemed part of legal texts that are characterised by high sensitivity and sacredness. Amongst such religious texts are Islamic legal texts that are replete with Islamic legal terms that designate particular legal concepts peculiar to Islamic legal system and legal culture. However, from the syntactic perspective, Islamic legal texts prove lengthy, condensed and convoluted, with little use of punctuation system, but with an extensive use of subordinations and co-ordinations, which separate the main verb from the subject, and which, of course, carry a heavy load of legal detail. The present paper seeks to examine the syntactic features of Islamic legal texts through analysing a short text of Islamic jurisprudence in an attempt at exploring the syntactic features that characterise this type of legal text. A translation of this text into legal English is then exercised to find the translation implications that have emerged as a result of the English translation. Based on these implications, the paper compares and contrasts the syntactic features of Islamic legal texts to those of legal English texts. Finally, the present paper argues that there are a number of syntactic features of Islamic legal texts, such as nominalisation, passivisation, little use of punctuation system, the use of the Arabic cohesive device, etc., which are also possessed by English legal texts except for the last feature and with some variations. The paper also claims that when rendering an Islamic legal text into legal English, certain implications emerge, such as the necessity of a sentence break, the omission of the cohesive device concerned and the increase in the use of nominalisation, passivisation, passive participles, and so on.

Keywords: English legal texts, Islamic legal texts, nominalisation, participles, passivisation, syntactic features, translation implications

Procedia PDF Downloads 233
785 Football Smart Coach: Analyzing Corner Kicks Using Computer Vision

Authors: Arth Bohra, Marwa Mahmoud

Abstract:

In this paper, we utilize computer vision to develop a tool for youth coaches to formulate set-piece tactics for their players. We used the Soccernet database to extract the ResNet features and camera calibration data for over 3000 corner kick across 500 professional matches in the top 6 European leagues (English Premier League, UEFA Champions League, Ligue 1, La Liga, Serie A, Bundesliga). Leveraging the provided homography matrix, we construct a feature vector representing the formation of players on these corner kicks. Additionally, labeling the videos manually, we obtained the pass-trajectory of each of the 3000+ corner kicks by segmenting the field into four zones. Next, after determining the localization of the players and ball, we used event data to give the corner kicks a rating on a 1-4 scale. By employing a Convolutional Neural Network, our model managed to predict the success of a corner kick given the formations of players. This suggests that with the right formations, teams can optimize the way they approach corner kicks. By understanding this, we can help coaches formulate set-piece tactics for their own teams in order to maximize the success of their play. The proposed model can be easily extended; our method could be applied to even more game situations, from free kicks to counterattacks. This research project also gives insight into the myriad of possibilities that artificial intelligence possesses in transforming the domain of sports.

Keywords: soccer, corner kicks, AI, computer vision

Procedia PDF Downloads 173
784 Optical Characterization of Transition Metal Ion Doped ZnO Microspheres Synthesized via Laser Ablation in Air

Authors: Parvathy Anitha, Nilesh J. Vasa, M. S. Ramachandra Rao

Abstract:

ZnO is a semiconducting material with a direct wide band gap of 3.37 eV and a large exciton binding energy of 60 meV at room temperature. Microspheres with high sphericity and symmetry exhibit unique functionalities which makes them excellent omnidirectional optical resonators. Hence there is an advent interest in fabrication of single crystalline semiconductor microspheres especially magnetic ZnO microspheres, as ZnO is a promising material for semiconductor device applications. Also, ZnO is non-toxic and biocompatible, implying it is a potential material for biomedical applications. Room temperature Photoluminescence (PL) spectra of the fabricated ZnO microspheres were measured, at an excitation wavelength of 325 nm. The ultraviolet (UV) luminescence observed is attributed to the room-temperature free exciton related near-band-edge (NBE) emission in ZnO. Besides the NBE luminescence, weak and broad visible luminescence (~560nm) was also observed. This broad emission band in the visible range is associated with oxygen vacancies related to structural defects. In transition metal (TM) ion-doped ZnO, 3d levels emissions of TM ions will modify the inherent characteristic emissions of ZnO. A micron-sized ZnO crystal has generally a wurtzite structure with a natural hexagonal cross section, which will serve as a WGM (whispering gallery mode) lasing micro cavity due to its high refractive index (~2.2). But hexagonal cavities suffers more optical loss at their corners in comparison to spherical structures; hence spheres may be a better candidate to achieve effective light confinement. In our study, highly smooth spherical shaped micro particles with different diameters ranging from ~4 to 6 μm were grown on different substrates. SEM (Scanning Electron Microscopy) and AFM (Atomic Force Microscopy) images show the presence of uniform smooth surfaced spheres. Raman scattering measurements from the fabricated samples at 488 nm light excitation provide convincing supports for the wurtzite structure of the prepared ZnO microspheres. WGM lasing studies from TM-doped ZnO microparticles are in progress.

Keywords: laser ablation, microcavity, photoluminescence, ZnO microsphere

Procedia PDF Downloads 217
783 Comprehensive Evaluation of COVID-19 Through Chest Images

Authors: Parisa Mansour

Abstract:

The coronavirus disease 2019 (COVID-19) was discovered and rapidly spread to various countries around the world since the end of 2019. Computed tomography (CT) images have been used as an important alternative to the time-consuming RT. PCR test. However, manual segmentation of CT images alone is a major challenge as the number of suspected cases increases. Thus, accurate and automatic segmentation of COVID-19 infections is urgently needed. Because the imaging features of the COVID-19 infection are different and similar to the background, existing medical image segmentation methods cannot achieve satisfactory performance. In this work, we try to build a deep convolutional neural network adapted for the segmentation of chest CT images with COVID-19 infections. First, we maintain a large and novel chest CT image database containing 165,667 annotated chest CT images from 861 patients with confirmed COVID-19. Inspired by the observation that the boundary of an infected lung can be improved by global intensity adjustment, we introduce a feature variable block into the proposed deep CNN, which adjusts the global features of features to segment the COVID-19 infection. The proposed PV array can effectively and adaptively improve the performance of functions in different cases. We combine features of different scales by proposing a progressive atrocious space pyramid fusion scheme to deal with advanced infection regions with various aspects and shapes. We conducted experiments on data collected in China and Germany and showed that the proposed deep CNN can effectively produce impressive performance.

Keywords: chest, COVID-19, chest Image, coronavirus, CT image, chest CT

Procedia PDF Downloads 57
782 Complete Ensemble Empirical Mode Decomposition with Adaptive Noise Temporal Convolutional Network for Remaining Useful Life Prediction of Lithium Ion Batteries

Authors: Jing Zhao, Dayong Liu, Shihao Wang, Xinghua Zhu, Delong Li

Abstract:

Uhumanned Underwater Vehicles generally operate in the deep sea, which has its own unique working conditions. Lithium-ion power batteries should have the necessary stability and endurance for use as an underwater vehicle’s power source. Therefore, it is essential to accurately forecast how long lithium-ion batteries will last in order to maintain the system’s reliability and safety. In order to model and forecast lithium battery Remaining Useful Life (RUL), this research suggests a model based on Complete Ensemble Empirical Mode Decomposition with Adaptive noise-Temporal Convolutional Net (CEEMDAN-TCN). In this study, two datasets, NASA and CALCE, which have a specific gap in capacity data fluctuation, are used to verify the model and examine the experimental results in order to demonstrate the generalizability of the concept. The experiments demonstrate the network structure’s strong universality and ability to achieve good fitting outcomes on the test set for various battery dataset types. The evaluation metrics reveal that the CEEMDAN-TCN prediction performance of TCN is 25% to 35% better than that of a single neural network, proving that feature expansion and modal decomposition can both enhance the model’s generalizability and be extremely useful in industrial settings.

Keywords: lithium-ion battery, remaining useful life, complete EEMD with adaptive noise, temporal convolutional net

Procedia PDF Downloads 152
781 Dissimilarity Measure for General Histogram Data and Its Application to Hierarchical Clustering

Authors: K. Umbleja, M. Ichino

Abstract:

Symbolic data mining has been developed to analyze data in very large datasets. It is also useful in cases when entry specific details should remain hidden. Symbolic data mining is quickly gaining popularity as datasets in need of analyzing are becoming ever larger. One type of such symbolic data is a histogram, which enables to save huge amounts of information into a single variable with high-level of granularity. Other types of symbolic data can also be described in histograms, therefore making histogram a very important and general symbolic data type - a method developed for histograms - can also be applied to other types of symbolic data. Due to its complex structure, analyzing histograms is complicated. This paper proposes a method, which allows to compare two histogram-valued variables and therefore find a dissimilarity between two histograms. Proposed method uses the Ichino-Yaguchi dissimilarity measure for mixed feature-type data analysis as a base and develops a dissimilarity measure specifically for histogram data, which allows to compare histograms with different number of bins and bin widths (so called general histogram). Proposed dissimilarity measure is then used as a measure for clustering. Furthermore, linkage method based on weighted averages is proposed with the concept of cluster compactness to measure the quality of clustering. The method is then validated with application on real datasets. As a result, the proposed dissimilarity measure is found producing adequate and comparable results with general histograms without the loss of detail or need to transform the data.

Keywords: dissimilarity measure, hierarchical clustering, histograms, symbolic data analysis

Procedia PDF Downloads 162
780 Developing a Hybrid Method to Diagnose and Predict Sports Related Concussions with Machine Learning

Authors: Melody Yin

Abstract:

Concussions impact a large amount of adolescents; they make up as much as half of the diagnosed concussions in America. This research proposes a hybrid machine learning model based on the combination of human/knowledge-based domains and computer-generated feature rankings to improve the accuracy of diagnosing sports related concussion (SRC). Using a data set of symptoms collected on the sideline post-SRC events, the symptom selection criteria method has been developed by using Google AutoML's important score function to identify the top 10 symptom features. In addition, symptom domains have been introduced as another parameter, categorizing the symptoms into physical, cognitive, sleep, and emotional domains. The hybrid machine learning model has been trained with a combination of the top 10 symptoms and 4 domains. From the results, the hybrid model was the best performer for symptom resolution time prediction in 2 and 4-week thresholds. This research is a proof of concept study in the use of domains along with machine learning in order to improve concussion prediction accuracy. It is also possible that the use of domains can make the model more efficient due to reduced training time. This research examines the use of a hybrid method in predicting sports-related concussion. This achievement is based on data preprocessing, using a hybrid method to select criteria to achieve high performance.

Keywords: hybrid model, machine learning, sports related concussion, symptom resolution time

Procedia PDF Downloads 168
779 Effective Doping Engineering of Na₃V₂(PO₄)₂F₃ as a High-Performance Cathode Material for Sodium-Ion Batteries

Authors: Ramon Alberto Paredes Camacho, Li Lu

Abstract:

Sustainable batteries are possible through the development of cheaper and greener alternatives whose most feasible option is epitomized by Sodium-Ion Batteries (SIB). Na₃V₂(PO₄)₂F₃ (NVPF) an important member of the Na-superionic-conductor (NASICON) materials, has recently been in the spotlight due to its interesting electrochemical properties when used as cathode namely, high specific capacity of 128 mA h g-¹, high energy density of 507 W h Kg-¹, increased working potential at which vanadium redox couples can be activated (with an average value around 3.9 V), and small volume variation of less than 2%. These traits grant NVPF an excellent perspective as a cathode material for the next generation of sodium batteries. Unfortunately, because of its low inherent electrical conductivity and a high energy barrier that impedes the mobilization of all the available Na ions per formula, the overall electrochemical performance suffers substantial degradation, finally obstructing its industrial use. Many approaches have been developed to remediate these issues where nanostructural design, carbon coating, and ion doping are the most effective ones. This investigation is focused on enhancing the electrochemical response of NVPF by doping metal ions in the crystal lattice, substituting vanadium atoms. A facile sol-gel process is employed, with citric acid as the chelator and the carbon source. The optimized conditions circumvent fluorine sublimation, ratifying the material’s purity. One of the reasons behind the large ionic improvement is the attraction of extra Na ions into the crystalline structure due to a charge imbalance produced by the valence of the doped ions (+2), which is lower than the one of vanadium (+3). Superior stability (higher than 90% at a current density of 20C) and capacity retention at an extremely high current density of 50C are demonstrated by our doped NVPF. This material continues to retain high capacity values at low and high temperatures. In addition, full cell NVPF//Hard Carbon shows capacity values and high stability at -20 and 60ºC. Our doping strategy proves to significantly increase the ionic and electronic conductivity of NVPF even at extreme conditions, delivering outstanding electrochemical performance and paving the way for advanced high-potential cathode materials.

Keywords: sodium-ion batteries, cathode materials, NASICON, Na3V2(PO4)2F3, Ion doping

Procedia PDF Downloads 57
778 Mechanical, Physical and Durability Properties of Cement Mortars Added with Recycled PP/PE-Based Food Packaging Waste Material

Authors: Livia Guerini, Christian Paglia

Abstract:

In Switzerland, only a fraction of plastic waste from food packaging is collected and recycled for further use in the food industry. Therefore, reusing these waste plastics for building applications can be an attractive alternative to disposal in order to reduce the problem of waste management and to make up for the depletion of raw materials needed for construction. In this study, experiments were conducted on the mechanical properties (compressive and flexural strength, elastic modulus), physical properties (density, workability, porosity, and water permeability) and durability (freeze/thaw resistance) of cementitious mortars with additions of recycled low-/high-density polyethylene (LDPE/HDPE)/ polypropylene (PP) regrind (addition of 5% and 10% by weight) and LDPE sheets (addition of 0.5% and 1.5% by weight) coming from food packaging. The results show that as the addition of plastic material increases, the density and mechanical properties of the mortars decrease compared to conventional ones. Porosity is similar in all the mixtures made, while the workability and the permeability are affected not only by the amount added but also by the shape of the plastic aggregate. Freeze/thaw resistance, on the other hand, is significantly higher in mortars with plastic aggregates than in traditional mortar. This feature may be interesting for the realization of outdoor mortars in cold environments.

Keywords: food packaging waste, durability properties, mechanical properties, mortar, recycled PE, recycled PP

Procedia PDF Downloads 145
777 Surrogacy: A Comparative, Legal, Children’s Rights Perspective

Authors: Ronli Sifris

Abstract:

The last Australian Parliamentary inquiry into surrogacy took place in 2016. Since then, a number of countries have reviewed their surrogacy laws, including countries such as New Zealand and the United Kingdom, which traditionally have invoked similar legal approaches to Australia on a broad range of issues. The time is ripe to reform Australia’s surrogacy laws with a view to putting in place a system that best protects the rights of all parties to a surrogacy arrangement, and especially the rights of the child. There are two specific, linked issues which tend to be particularly contentious in the surrogacy context. The first relates to legal parentage. There are questions around whether the surrogate or the intended parents should be deemed the legal parents of a child born through surrogacy and what should be the process for any transfer of parentage. The second key issue relates to compensation and whether a surrogate should be compensated for the reproductive labour inherent in conceiving, gestating, and birthing a child. This paper will invoke a comparative analysis with a view to considering how different countries are regulating surrogacy and which approach best protects the rights all parties involved in the surrogacy arrangement, especially the rights of the children born through surrogacy. The specific countries to be considered are Australia, Canada, and California (United States). I have selected these countries for the following reasons: Australia is the jurisdiction where the author is based, it is, therefore, the jurisdiction with which she has the most familiarity. It allows altruistic surrogacy only and post-birth parentage orders in favour of the intended parents of children born through altruistic surrogacy California, as a jurisdiction allowing for compensated surrogacy and pre-birth parentage orders in favour of the intended parents, sits at the other end of the spectrum to Australia thereby providing an interesting point of comparison. Canada sits somewhere in the middle; it ostensibly allows only altruistic surrogacy, but in practice, many aspects of the Canadian process resemble compensated surrogacy. In addition to conducting a comparative analysis with other countries, the paper will also consider international human rights law as its overarching framework for determining the approach that best protects the rights of a child born through surrogacy. Particular attention will be paid to the United Nations Convention on the Rights of the Child as the key children’s rights treaty. The European Court of Human Rights will also be extensively considered as it has decided a number of cases relating to the rights of children born through surrogacy.

Keywords: surrogacy, children’s rights, australia, compensation, parentage

Procedia PDF Downloads 130
776 A Clustering Algorithm for Massive Texts

Authors: Ming Liu, Chong Wu, Bingquan Liu, Lei Chen

Abstract:

Internet users have to face the massive amount of textual data every day. Organizing texts into categories can help users dig the useful information from large-scale text collection. Clustering, in fact, is one of the most promising tools for categorizing texts due to its unsupervised characteristic. Unfortunately, most of traditional clustering algorithms lose their high qualities on large-scale text collection. This situation mainly attributes to the high- dimensional vectors generated from texts. To effectively and efficiently cluster large-scale text collection, this paper proposes a vector reconstruction based clustering algorithm. Only the features that can represent the cluster are preserved in cluster’s representative vector. This algorithm alternately repeats two sub-processes until it converges. One process is partial tuning sub-process, where feature’s weight is fine-tuned by iterative process. To accelerate clustering velocity, an intersection based similarity measurement and its corresponding neuron adjustment function are proposed and implemented in this sub-process. The other process is overall tuning sub-process, where the features are reallocated among different clusters. In this sub-process, the features useless to represent the cluster are removed from cluster’s representative vector. Experimental results on the three text collections (including two small-scale and one large-scale text collections) demonstrate that our algorithm obtains high quality on both small-scale and large-scale text collections.

Keywords: vector reconstruction, large-scale text clustering, partial tuning sub-process, overall tuning sub-process

Procedia PDF Downloads 435
775 Logistic Regression Based Model for Predicting Students’ Academic Performance in Higher Institutions

Authors: Emmanuel Osaze Oshoiribhor, Adetokunbo MacGregor John-Otumu

Abstract:

In recent years, there has been a desire to forecast student academic achievement prior to graduation. This is to help them improve their grades, particularly for individuals with poor performance. The goal of this study is to employ supervised learning techniques to construct a predictive model for student academic achievement. Many academics have already constructed models that predict student academic achievement based on factors such as smoking, demography, culture, social media, parent educational background, parent finances, and family background, to name a few. This feature and the model employed may not have correctly classified the students in terms of their academic performance. This model is built using a logistic regression classifier with basic features such as the previous semester's course score, attendance to class, class participation, and the total number of course materials or resources the student is able to cover per semester as a prerequisite to predict if the student will perform well in future on related courses. The model outperformed other classifiers such as Naive bayes, Support vector machine (SVM), Decision Tree, Random forest, and Adaboost, returning a 96.7% accuracy. This model is available as a desktop application, allowing both instructors and students to benefit from user-friendly interfaces for predicting student academic achievement. As a result, it is recommended that both students and professors use this tool to better forecast outcomes.

Keywords: artificial intelligence, ML, logistic regression, performance, prediction

Procedia PDF Downloads 97
774 A Comparative Analysis of Social Stratification in the Participation of Women in Agricultural Activity: A Case Study of District Khushab (Punjab) and D. I. Khan (KPK), Pakistan

Authors: Sohail Ahmad Umer

Abstract:

Since last few decades a question is raising on the subject of the importance of women in different societies of the world particularly in the developing societies of Asia and Africa. Female population constitutes almost 50% of the total population of the world and is playing a significant role in the economy with male population. In Pakistan, a developing country of Asia with majority of Muslim population, working women role is more focused. Women of rural background who are working as voluntary workers and their working hours are neither recorded nor recognized. Agricultural statistics shows that the female participation rate is below 40% while other sources claim them below 20%. Here in present study, another effort has been made to compare the women role in two different provinces of Pakistan to analyze the participation of women in agricultural activities like sowing, picking, irrigating the fields, harvesting and threshing of crops, caring and feeding of the animals, collecting the firewood and etc,as without these activities the farming would be incomplete. One hundred villages in the district Khushab (Punjab) and one hundred villages in district D.I.Khan (KPK) were selected and 33% of the families of each village have been interviewed to study their input in agriculture work. Another important feature is the social stratification therefore the contribution by different variables like the ownership, tenancy, education and caste has also been studied.

Keywords: caste, social stratification, tenancy, voluntary workers

Procedia PDF Downloads 370
773 Effect of Acid and Alkali Treatment on Physical and Surface Charge Properties of Clayey Soils

Authors: Nikhil John Kollannur, Dali Naidu Arnepalli

Abstract:

Most of the surface related phenomena in the case of fine-grained soil are attributed to their unique surface charge properties and specific surface area. The temporal variations in soil behavior, to some extent, can be credited to the changes in these properties. Among the multitude of factors that affect the charge and surface area of clay minerals, the inherent system chemistry occupies the cardinal position. The impact is more profound when the chemistry change is manifested in terms of the system pH. pH plays a significant role by modifying the edge charges of clay minerals and facilitating mineral dissolution. Hence there is a need to address the variations in physical and charge properties of fine-grained soils treated over a range of acidic as well as alkaline conditions. In the present study, three soils (two soils commercially procured and one natural soil) exhibiting distinct mineralogical compositions are subjected to different pH environment over a range of 2 to 13. The soil-solutions prepared at a definite liquid to solid ratio are adjusted to the required pH value by adding measured quantities of 0.1M HCl/0.1M NaOH. The studies are conducted over a range of interaction time, varying from 1 to 96 hours. The treated soils are then analyzed for their physical properties in terms of specific surface area and particle size characteristics. Further, modifications in surface morphology are evaluated from scanning electron microscope (SEM) imaging. Changes in the surface charge properties are assessed in terms of zeta potential measurements. Studies show significant variations in total surface area, probably because of the dissolution of clay minerals. This observation is further substantiated by the morphological analysis with SEM imaging. The zeta potential measurements on soils indicate noticeable variation upon pH treatment, which is partially ascribed to the modifications in the pH-dependant edge charges and partially due to the clay mineral dissolution. The results provide valuable insight into the role of pH in a clay-electrolyte system upon surface related phenomena such as species adsorption, fabric modification etc.

Keywords: acid and alkali treatment, mineral dissolution , specific surface area, zeta potential

Procedia PDF Downloads 184