Search results for: improved sparrow search algorithm
8044 Strength and Permeability of the Granular Pavement Materials Treated with Polyacrylamide Based Additive
Authors: Romel N. Georgees, Rayya A Hassan, Robert P. Evans, Piratheepan Jegatheesan
Abstract:
Among other traditional and non-traditional additives, polymers have shown an efficient performance in the field and improved sustainability. Polyacrylamide (PAM) is one such additive that has demonstrated many advantages including a reduction in permeability, an increase in durability and the provision of strength characteristics. However, information about its effect on the improved geotechnical characteristics is very limited to the field performance monitoring. Therefore, a laboratory investigation was carried out to examine the basic and engineering behaviors of three types of soils treated with a PAM additive. The results showed an increase in dry density and unconfined compressive strength for all the soils. The results further demonstrated an increase in unsoaked CBR and a reduction in permeability for all stabilized samples.Keywords: CBR, hydraulic conductivity, PAM, unconfined compressive strength
Procedia PDF Downloads 3748043 An Improved Method on Static Binary Analysis to Enhance the Context-Sensitive CFI
Authors: Qintao Shen, Lei Luo, Jun Ma, Jie Yu, Qingbo Wu, Yongqi Ma, Zhengji Liu
Abstract:
Control Flow Integrity (CFI) is one of the most promising technique to defend Code-Reuse Attacks (CRAs). Traditional CFI Systems and recent Context-Sensitive CFI use coarse control flow graphs (CFGs) to analyze whether the control flow hijack occurs, left vast space for attackers at indirect call-sites. Coarse CFGs make it difficult to decide which target to execute at indirect control-flow transfers, and weaken the existing CFI systems actually. It is an unsolved problem to extract CFGs precisely and perfectly from binaries now. In this paper, we present an algorithm to get a more precise CFG from binaries. Parameters are analyzed at indirect call-sites and functions firstly. By comparing counts of parameters prepared before call-sites and consumed by functions, targets of indirect calls are reduced. Then the control flow would be more constrained at indirect call-sites in runtime. Combined with CCFI, we implement our policy. Experimental results on some popular programs show that our approach is efficient. Further analysis show that it can mitigate COOP and other advanced attacks.Keywords: contex-sensitive, CFI, binary analysis, code reuse attack
Procedia PDF Downloads 3238042 Application of Bioreactors in Regenerative Dentistry: Literature Review
Authors: Neeraj Malhotra
Abstract:
Background: Bioreactors in tissue engineering are used as devices that apply mechanical means to influence biological processes. They are commonly employed for stem cell culturing, growth and expansion as well as in 3D tissue culture. Contemporarily there use is well established and is tested extensively in the medical sciences, for tissue-regeneration and tissue engineering of organs like bone, cartilage, blood vessels, skin grafts, cardiac muscle etc. Methodology: Literature search, both electronic and hand search, was done using the following MeSH and keywords: bioreactors, bioreactors and dentistry, bioreactors & dental tissue engineering, bioreactors and regenerative dentistry. Articles published only in English language were included for review. Results: Bioreactors like, spinner flask-, rotating wall-, flow perfusion-, and micro-bioreactors and in-vivo bioreactor have been employed and tested for the regeneration of dental and like-tissues. These include gingival tissue, periodontal ligament, alveolar bone, mucosa, cementum and blood vessels. Based on their working dynamics they can be customized in future for regeneration of pulp tissue and whole tooth regeneration. Apart from this, they have been successfully used in testing the clinical efficacy and biological safety of dental biomaterials. Conclusion: Bioreactors have potential use in testing dental biomaterials and tissue engineering approaches aimed at regenerative dentistry.Keywords: bioreactors, biological process, mechanical stimulation, regenerative dentistry, stem cells
Procedia PDF Downloads 2098041 Parametric Analysis and Optimal Design of Functionally Graded Plates Using Particle Swarm Optimization Algorithm and a Hybrid Meshless Method
Authors: Foad Nazari, Seyed Mahmood Hosseini, Mohammad Hossein Abolbashari, Mohammad Hassan Abolbashari
Abstract:
The present study is concerned with the optimal design of functionally graded plates using particle swarm optimization (PSO) algorithm. In this study, meshless local Petrov-Galerkin (MLPG) method is employed to obtain the functionally graded (FG) plate’s natural frequencies. Effects of two parameters including thickness to height ratio and volume fraction index on the natural frequencies and total mass of plate are studied by using the MLPG results. Then the first natural frequency of the plate, for different conditions where MLPG data are not available, is predicted by an artificial neural network (ANN) approach which is trained by back-error propagation (BEP) technique. The ANN results show that the predicted data are in good agreement with the actual one. To maximize the first natural frequency and minimize the mass of FG plate simultaneously, the weighted sum optimization approach and PSO algorithm are used. However, the proposed optimization process of this study can provide the designers of FG plates with useful data.Keywords: optimal design, natural frequency, FG plate, hybrid meshless method, MLPG method, ANN approach, particle swarm optimization
Procedia PDF Downloads 3678040 Prediction of Bariatric Surgery Publications by Using Different Machine Learning Algorithms
Authors: Senol Dogan, Gunay Karli
Abstract:
Identification of relevant publications based on a Medline query is time-consuming and error-prone. An all based process has the potential to solve this problem without any manual work. To the best of our knowledge, our study is the first to investigate the ability of machine learning to identify relevant articles accurately. 5 different machine learning algorithms were tested using 23 predictors based on several metadata fields attached to publications. We find that the Boosted model is the best-performing algorithm and its overall accuracy is 96%. In addition, specificity and sensitivity of the algorithm is 97 and 93%, respectively. As a result of the work, we understood that we can apply the same procedure to understand cancer gene expression big data.Keywords: prediction of publications, machine learning, algorithms, bariatric surgery, comparison of algorithms, boosted, tree, logistic regression, ANN model
Procedia PDF Downloads 2098039 Debriefing Practices and Models: An Integrative Review
Authors: Judson P. LaGrone
Abstract:
Simulation-based education in curricula was once a luxurious component of nursing programs but now serves as a vital element of an individual’s learning experience. A debriefing occurs after the simulation scenario or clinical experience is completed to allow the instructor(s) or trained professional(s) to act as a debriefer to guide a reflection with a purpose of acknowledging, assessing, and synthesizing the thought process, decision-making process, and actions/behaviors performed during the scenario or clinical experience. Debriefing is a vital component of the simulation process and educational experience to allow the learner(s) to progressively build upon past experiences and current scenarios within a safe and welcoming environment with a guided dialog to enhance future practice. The aim of this integrative review was to assess current practices of debriefing models in simulation-based education for health care professionals and students. The following databases were utilized for the search: CINAHL Plus, Cochrane Database of Systemic Reviews, EBSCO (ERIC), PsycINFO (Ovid), and Google Scholar. The advanced search option was useful to narrow down the search of articles (full text, Boolean operators, English language, peer-reviewed, published in the past five years). Key terms included debrief, debriefing, debriefing model, debriefing intervention, psychological debriefing, simulation, simulation-based education, simulation pedagogy, health care professional, nursing student, and learning process. Included studies focus on debriefing after clinical scenarios of nursing students, medical students, and interprofessional teams conducted between 2015 and 2020. Common themes were identified after the analysis of articles matching the search criteria. Several debriefing models are addressed in the literature with similarities of effectiveness for participants in clinical simulation-based pedagogy. Themes identified included (a) importance of debriefing in simulation-based pedagogy, (b) environment for which debriefing takes place is an important consideration, (c) individuals who should conduct the debrief, (d) length of debrief, and (e) methodology of the debrief. Debriefing models supported by theoretical frameworks and facilitated by trained staff are vital for a successful debriefing experience. Models differed from self-debriefing, facilitator-led debriefing, video-assisted debriefing, rapid cycle deliberate practice, and reflective debriefing. A reoccurring finding was centered around the emphasis of continued research for systematic tool development and analysis of the validity and effectiveness of current debriefing practices. There is a lack of consistency of debriefing models among nursing curriculum with an increasing rate of ill-prepared faculty to facilitate the debriefing phase of the simulation.Keywords: debriefing model, debriefing intervention, health care professional, simulation-based education
Procedia PDF Downloads 1428038 Implications of Optimisation Algorithm on the Forecast Performance of Artificial Neural Network for Streamflow Modelling
Authors: Martins Y. Otache, John J. Musa, Abayomi I. Kuti, Mustapha Mohammed
Abstract:
The performance of an artificial neural network (ANN) is contingent on a host of factors, for instance, the network optimisation scheme. In view of this, the study examined the general implications of the ANN training optimisation algorithm on its forecast performance. To this end, the Bayesian regularisation (Br), Levenberg-Marquardt (LM), and the adaptive learning gradient descent: GDM (with momentum) algorithms were employed under different ANN structural configurations: (1) single-hidden layer, and (2) double-hidden layer feedforward back propagation network. Results obtained revealed generally that the gradient descent with momentum (GDM) optimisation algorithm, with its adaptive learning capability, used a relatively shorter time in both training and validation phases as compared to the Levenberg- Marquardt (LM) and Bayesian Regularisation (Br) algorithms though learning may not be consummated; i.e., in all instances considering also the prediction of extreme flow conditions for 1-day and 5-day ahead, respectively especially using the ANN model. In specific statistical terms on the average, model performance efficiency using the coefficient of efficiency (CE) statistic were Br: 98%, 94%; LM: 98 %, 95 %, and GDM: 96 %, 96% respectively for training and validation phases. However, on the basis of relative error distribution statistics (MAE, MAPE, and MSRE), GDM performed better than the others overall. Based on the findings, it is imperative to state that the adoption of ANN for real-time forecasting should employ training algorithms that do not have computational overhead like the case of LM that requires the computation of the Hessian matrix, protracted time, and sensitivity to initial conditions; to this end, Br and other forms of the gradient descent with momentum should be adopted considering overall time expenditure and quality of the forecast as well as mitigation of network overfitting. On the whole, it is recommended that evaluation should consider implications of (i) data quality and quantity and (ii) transfer functions on the overall network forecast performance.Keywords: streamflow, neural network, optimisation, algorithm
Procedia PDF Downloads 1528037 CFD-Parametric Study in Stator Heat Transfer of an Axial Flux Permanent Magnet Machine
Authors: Alireza Rasekh, Peter Sergeant, Jan Vierendeels
Abstract:
This paper copes with the numerical simulation for convective heat transfer in the stator disk of an axial flux permanent magnet (AFPM) electrical machine. Overheating is one of the main issues in the design of AFMPs, which mainly occurs in the stator disk, so that it needs to be prevented. A rotor-stator configuration with 16 magnets at the periphery of the rotor is considered. Air is allowed to flow through openings in the rotor disk and channels being formed between the magnets and in the gap region between the magnets and the stator surface. The rotating channels between the magnets act as a driving force for the air flow. The significant non-dimensional parameters are the rotational Reynolds number, the gap size ratio, the magnet thickness ratio, and the magnet angle ratio. The goal is to find correlations for the Nusselt number on the stator disk according to these non-dimensional numbers. Therefore, CFD simulations have been performed with the multiple reference frame (MRF) technique to model the rotary motion of the rotor and the flow around and inside the machine. A minimization method is introduced by a pattern-search algorithm to find the appropriate values of the reference temperature. It is found that the correlations are fast, robust and is capable of predicting the stator heat transfer with a good accuracy. The results reveal that the magnet angle ratio diminishes the stator heat transfer, whereas the rotational Reynolds number and the magnet thickness ratio improve the convective heat transfer. On the other hand, there a certain gap size ratio at which the stator heat transfer reaches a maximum.Keywords: AFPM, CFD, magnet parameters, stator heat transfer
Procedia PDF Downloads 2508036 Portfolio Optimization with Reward-Risk Ratio Measure Based on the Mean Absolute Deviation
Authors: Wlodzimierz Ogryczak, Michal Przyluski, Tomasz Sliwinski
Abstract:
In problems of portfolio selection, the reward-risk ratio criterion is optimized to search for a risky portfolio with the maximum increase of the mean return in proportion to the risk measure increase when compared to the risk-free investments. In the classical model, following Markowitz, the risk is measured by the variance thus representing the Sharpe ratio optimization and leading to the quadratic optimization problems. Several Linear Programming (LP) computable risk measures have been introduced and applied in portfolio optimization. In particular, the Mean Absolute Deviation (MAD) measure has been widely recognized. The reward-risk ratio optimization with the MAD measure can be transformed into the LP formulation with the number of constraints proportional to the number of scenarios and the number of variables proportional to the total of the number of scenarios and the number of instruments. This may lead to the LP models with huge number of variables and constraints in the case of real-life financial decisions based on several thousands scenarios, thus decreasing their computational efficiency and making them hardly solvable by general LP tools. We show that the computational efficiency can be then dramatically improved by an alternative model based on the inverse risk-reward ratio minimization and by taking advantages of the LP duality. In the introduced LP model the number of structural constraints is proportional to the number of instruments thus not affecting seriously the simplex method efficiency by the number of scenarios and therefore guaranteeing easy solvability. Moreover, we show that under natural restriction on the target value the MAD risk-reward ratio optimization is consistent with the second order stochastic dominance rules.Keywords: portfolio optimization, reward-risk ratio, mean absolute deviation, linear programming
Procedia PDF Downloads 4078035 Equalization Algorithm for the Optical OFDM System Based on the Fractional Fourier Transform
Authors: A. Cherifi, B. Bouazza, A. O. Dahmane, B. Yagoubi
Abstract:
Transmission over Optical channels will introduce inter-symbol interference (ISI) as well as inter-channel (or inter-carrier) interference (ICI). To decrease the effects of ICI, this paper proposes equalizer for the Optical OFDM system based on the fractional Fourier transform (FrFFT). In this FrFT-OFDM system, traditional Fourier transform is replaced by fractional Fourier transform to modulate and demodulate the data symbols. The equalizer proposed consists of sampling the received signal in the different time per time symbol. Theoretical analysis and numerical simulation are discussed.Keywords: OFDM, (FrFT) fractional fourier transform, optical OFDM, equalization algorithm
Procedia PDF Downloads 4308034 Genetic Algorithms for Parameter Identification of DC Motor ARMAX Model and Optimal Control
Authors: A. Mansouri, F. Krim
Abstract:
This paper presents two techniques for DC motor parameters identification. We propose a numerical method using the adaptive extensive recursive least squares (AERLS) algorithm for real time parameters estimation. This algorithm, based on minimization of quadratic criterion, is realized in simulation for parameters identification of DC motor autoregressive moving average with extra inputs (ARMAX). As advanced technique, we use genetic algorithms (GA) identification with biased estimation for high dynamic performance speed regulation. DC motors are extensively used in variable speed drives, for robot and solar panel trajectory control. GA effectiveness is derived through comparison of the two approaches.Keywords: ARMAX model, DC motor, AERLS, GA, optimization, parameter identification, PID speed regulation
Procedia PDF Downloads 3808033 Advanced Machine Learning Algorithm for Credit Card Fraud Detection
Authors: Manpreet Kaur
Abstract:
When legitimate credit card users are mistakenly labelled as fraudulent in numerous financial delated applications, there are numerous ethical problems. The innovative machine learning approach we have suggested in this research outperforms the current models and shows how to model a data set for credit card fraud detection while minimizing false positives. As a result, we advise using random forests as the best machine learning method for predicting and identifying credit card transaction fraud. The majority of victims of these fraudulent transactions were discovered to be credit card users over the age of 60, with a higher percentage of fraudulent transactions taking place between the specific hours.Keywords: automated fraud detection, isolation forest method, local outlier factor, ML algorithm, credit card
Procedia PDF Downloads 1138032 Radiomics: Approach to Enable Early Diagnosis of Non-Specific Breast Nodules in Contrast-Enhanced Magnetic Resonance Imaging
Authors: N. D'Amico, E. Grossi, B. Colombo, F. Rigiroli, M. Buscema, D. Fazzini, G. Cornalba, S. Papa
Abstract:
Purpose: To characterize, through a radiomic approach, the nature of nodules considered non-specific by expert radiologists, recognized in magnetic resonance mammography (MRm) with T1-weighted (T1w) sequences with paramagnetic contrast. Material and Methods: 47 cases out of 1200 undergoing MRm, in which the MRm assessment gave uncertain classification (non-specific nodules), were admitted to the study. The clinical outcome of the non-specific nodules was later found through follow-up or further exams (biopsy), finding 35 benign and 12 malignant. All MR Images were acquired at 1.5T, a first basal T1w sequence and then four T1w acquisitions after the paramagnetic contrast injection. After a manual segmentation of the lesions, done by a radiologist, and the extraction of 150 radiomic features (30 features per 5 subsequent times) a machine learning (ML) approach was used. An evolutionary algorithm (TWIST system based on KNN algorithm) was used to subdivide the dataset into training and validation test and to select features yielding the maximal amount of information. After this pre-processing, different machine learning systems were applied to develop a predictive model based on a training-testing crossover procedure. 10 cases with a benign nodule (follow-up older than 5 years) and 18 with an evident malignant tumor (clear malignant histological exam) were added to the dataset in order to allow the ML system to better learn from data. Results: NaiveBayes algorithm working on 79 features selected by a TWIST system, resulted to be the best performing ML system with a sensitivity of 96% and a specificity of 78% and a global accuracy of 87% (average values of two training-testing procedures ab-ba). The results showed that in the subset of 47 non-specific nodules, the algorithm predicted the outcome of 45 nodules which an expert radiologist could not identify. Conclusion: In this pilot study we identified a radiomic approach allowing ML systems to perform well in the diagnosis of a non-specific nodule at MR mammography. This algorithm could be a great support for the early diagnosis of malignant breast tumor, in the event the radiologist is not able to identify the kind of lesion and reduces the necessity for long follow-up. Clinical Relevance: This machine learning algorithm could be essential to support the radiologist in early diagnosis of non-specific nodules, in order to avoid strenuous follow-up and painful biopsy for the patient.Keywords: breast, machine learning, MRI, radiomics
Procedia PDF Downloads 2678031 Farmer-Participatory Variety Trials for Tomato and Chili Pepper in East Java
Authors: Hanik Anggraeni, Evy Latifah, Putu Bagus, Joko Mariyono
Abstract:
This study is to test the adaptation capacity of several selected lines and varieties of chili and tomato in farmers’ lands. Five improved lines and varieties of tomato and chili were selected based on the best performance in previous trials. Two participating farmers managed the trials. Agronomic aspects were used as performance indicators. The results show that several improved lines of tomato and chili performed better than others. However, the performance was dependent on the altitude and season. Lines performed better and high altitude could not do the same in low altitude, and vice versa. This is the same case as different season. Farmers were expected to select the best lines according to the locations.Keywords: variety trials, tomato and chili, participatory farmers, East Java
Procedia PDF Downloads 2348030 Scientific Linux Cluster for BIG-DATA Analysis (SLBD): A Case of Fayoum University
Authors: Hassan S. Hussein, Rania A. Abul Seoud, Amr M. Refaat
Abstract:
Scientific researchers face in the analysis of very large data sets that is increasing noticeable rate in today’s and tomorrow’s technologies. Hadoop and Spark are types of software that developed frameworks. Hadoop framework is suitable for many Different hardware platforms. In this research, a scientific Linux cluster for Big Data analysis (SLBD) is presented. SLBD runs open source software with large computational capacity and high performance cluster infrastructure. SLBD composed of one cluster contains identical, commodity-grade computers interconnected via a small LAN. SLBD consists of a fast switch and Gigabit-Ethernet card which connect four (nodes). Cloudera Manager is used to configure and manage an Apache Hadoop stack. Hadoop is a framework allows storing and processing big data across the cluster by using MapReduce algorithm. MapReduce algorithm divides the task into smaller tasks which to be assigned to the network nodes. Algorithm then collects the results and form the final result dataset. SLBD clustering system allows fast and efficient processing of large amount of data resulting from different applications. SLBD also provides high performance, high throughput, high availability, expandability and cluster scalability.Keywords: big data platforms, cloudera manager, Hadoop, MapReduce
Procedia PDF Downloads 3588029 Improved Blood Glucose-Insulin Monitoring with Dual-Layer Predictive Control Design
Authors: Vahid Nademi
Abstract:
In response to widely used wearable medical devices equipped with a continuous glucose monitor (CGM) and insulin pump, the advanced control methods are still demanding to get the full benefit of these devices. Unlike costly clinical trials, implementing effective insulin-glucose control strategies can provide significant contributions to the patients suffering from chronic diseases such as diabetes. This study deals with a key role of two-layer insulin-glucose regulator based on model-predictive-control (MPC) scheme so that the patient’s predicted glucose profile is in compliance with the insulin level injected through insulin pump automatically. It is achieved by iterative optimization algorithm which is called an integrated perturbation analysis and sequential quadratic programming (IPA-SQP) solver for handling uncertainties due to unexpected variations in glucose-insulin values and body’s characteristics. The feasibility evaluation of the discussed control approach is also studied by means of numerical simulations of two case scenarios via measured data. The obtained results are presented to verify the superior and reliable performance of the proposed control scheme with no negative impact on patient safety.Keywords: blood glucose monitoring, insulin pump, predictive control, optimization
Procedia PDF Downloads 1368028 A Method for Solving a Bi-Objective Transportation Problem under Fuzzy Environment
Authors: Sukhveer Singh, Sandeep Singh
Abstract:
A bi-objective fuzzy transportation problem with the objectives to minimize the total fuzzy cost and fuzzy time of transportation without according priorities to them is considered. To the best of our knowledge, there is no method in the literature to find efficient solutions of the bi-objective transportation problem under uncertainty. In this paper, a bi-objective transportation problem in an uncertain environment has been formulated. An algorithm has been proposed to find efficient solutions of the bi-objective transportation problem under uncertainty. The proposed algorithm avoids the degeneracy and gives the optimal solution faster than other existing algorithms for the given uncertain transportation problem.Keywords: uncertain transportation problem, efficient solution, ranking function, fuzzy transportation problem
Procedia PDF Downloads 5258027 Alternating Expectation-Maximization Algorithm for a Bilinear Model in Isoform Quantification from RNA-Seq Data
Authors: Wenjiang Deng, Tian Mou, Yudi Pawitan, Trung Nghia Vu
Abstract:
Estimation of isoform-level gene expression from RNA-seq data depends on simplifying assumptions, such as uniform reads distribution, that are easily violated in real data. Such violations typically lead to biased estimates. Most existing methods provide a bias correction step(s), which is based on biological considerations, such as GC content–and applied in single samples separately. The main problem is that not all biases are known. For example, new technologies such as single-cell RNA-seq (scRNA-seq) may introduce new sources of bias not seen in bulk-cell data. This study introduces a method called XAEM based on a more flexible and robust statistical model. Existing methods are essentially based on a linear model Xβ, where the design matrix X is known and derived based on the simplifying assumptions. In contrast, XAEM considers Xβ as a bilinear model with both X and β unknown. Joint estimation of X and β is made possible by simultaneous analysis of multi-sample RNA-seq data. Compared to existing methods, XAEM automatically performs empirical correction of potentially unknown biases. XAEM implements an alternating expectation-maximization (AEM) algorithm, alternating between estimation of X and β. For speed XAEM utilizes quasi-mapping for read alignment, thus leading to a fast algorithm. Overall XAEM performs favorably compared to other recent advanced methods. For simulated datasets, XAEM obtains higher accuracy for multiple-isoform genes, particularly for paralogs. In a differential-expression analysis of a real scRNA-seq dataset, XAEM achieves substantially greater rediscovery rates in an independent validation set.Keywords: alternating EM algorithm, bias correction, bilinear model, gene expression, RNA-seq
Procedia PDF Downloads 1428026 A Crop Growth Subroutine for Watershed Resources Management (WRM) Model 1: Description
Authors: Kingsley Nnaemeka Ogbu, Constantine Mbajiorgu
Abstract:
Vegetation has a marked effect on runoff and has become an important component in hydrologic model. The watershed Resources Management (WRM) model, a process-based, continuous, distributed parameter simulation model developed for hydrologic and soil erosion studies at the watershed scale lack a crop growth component. As such, this model assumes a constant parameter values for vegetation and hydraulic parameters throughout the duration of hydrologic simulation. Our approach is to develop a crop growth algorithm based on the original plant growth model used in the Environmental Policy Integrated Climate Model (EPIC) model. This paper describes the development of a single crop growth model which has the capability of simulating all crops using unique parameter values for each crop. Simulated crop growth processes will reflect the vegetative seasonality of the natural watershed system. An existing model was employed for evaluating vegetative resistance by hydraulic and vegetative parameters incorporated into the WRM model. The improved WRM model will have the ability to evaluate the seasonal variation of the vegetative roughness coefficient with depth of flow and further enhance the hydrologic model’s capability for accurate hydrologic studies.Keywords: runoff, roughness coefficient, PAR, WRM model
Procedia PDF Downloads 3788025 MapReduce Algorithm for Geometric and Topological Information Extraction from 3D CAD Models
Authors: Ahmed Fradi
Abstract:
In a digital world in perpetual evolution and acceleration, data more and more voluminous, rich and varied, the new software solutions emerged with the Big Data phenomenon offer new opportunities to the company enabling it not only to optimize its business and to evolve its production model, but also to reorganize itself to increase competitiveness and to identify new strategic axes. Design and manufacturing industrial companies, like the others, face these challenges, data represent a major asset, provided that they know how to capture, refine, combine and analyze them. The objective of our paper is to propose a solution allowing geometric and topological information extraction from 3D CAD model (precisely STEP files) databases, with specific algorithm based on the programming paradigm MapReduce. Our proposal is the first step of our future approach to 3D CAD object retrieval.Keywords: Big Data, MapReduce, 3D object retrieval, CAD, STEP format
Procedia PDF Downloads 5408024 Development of Evolutionary Algorithm by Combining Optimization and Imitation Approach for Machine Learning in Gaming
Authors: Rohit Mittal, Bright Keswani, Amit Mithal
Abstract:
This paper provides a sense about the application of computational intelligence techniques used to develop computer games, especially car racing. For the deep sense and knowledge of artificial intelligence, this paper is divided into various sections that is optimization, imitation, innovation and combining approach of optimization and imitation. This paper is mainly concerned with combining approach which tells different aspects of using fitness measures and supervised learning techniques used to imitate aspects of behavior. The main achievement of this paper is based on modelling player behaviour and evolving new game content such as racing tracks as single car racing on single track.Keywords: evolution algorithm, genetic, optimization, imitation, racing, innovation, gaming
Procedia PDF Downloads 6468023 Fabrication of Gold Nanoparticles Self-Assembled Functionalized Improved Graphene on Carbon Paste Electrode for Electrochemical Determination of Levodopa in the Presence of Ascorbic Acid
Authors: Mohammad Ali Karimi, Hossein Tavallali, Abdolhamid Hatefi-Mehrjardi
Abstract:
In this study, an electrochemical sensor based on gold nanoparticles (AuNPs) functionalized improved graphene (AuNPs-IGE) was fabricated for selective determination of L-dopa in the presence of ascorbic acid by a novel self-assembly method. The AuNP IGE modified carbon paste electrode (AuNPs-IGE/CPE) utilized for investigation of the electrochemical behavior of L-dopa in phosphate buffer solution. Compared to bare CPE, AuNPs-IGE/CPE shows novel properties towards the electrochemical redox of levodopa (L-dopa) in phosphate buffer solution at pH 4.0. The oxidation potential of L-dopa shows a significant decrease at the AuNPs-IGE/CPE. The oxidation current of L-dopa is higher than that of the unmodified CPE. AuNPs-IG/CPE shows excellent electrocatalytic activity for the oxidation of ascorbic acid (AA). Using differential pulse voltammetry (DPV) method, the oxidation current is well linear with L-dopa concentration in the range of 0.4–50 µmol L-1, with a detection limit of about 1.41 nmol L-1 (S/N = 3). Therefore, it was applied to measure L-dopa from real samples that recoveries are 94.6-106.2%. The proposed electrode can also effectively avoid the interference of ascorbic acid, making the proposed sensor suitable for the accurate determination of L-dopa in both pharmaceutical preparations and human body fluids.Keywords: gold nanoparticles, improved graphene, L-dopa, self-assembly
Procedia PDF Downloads 2218022 Nelder-Mead Parametric Optimization of Elastic Metamaterials with Artificial Neural Network Surrogate Model
Authors: Jiaqi Dong, Qing-Hua Qin, Yi Xiao
Abstract:
Some of the most fundamental challenges of elastic metamaterials (EMMs) optimization can be attributed to the high consumption of computational power resulted from finite element analysis (FEA) simulations that render the optimization process inefficient. Furthermore, due to the inherent mesh dependence of FEA, minuscule geometry features, which often emerge during the later stages of optimization, induce very fine elements, resulting in enormously high time consumption, particularly when repetitive solutions are needed for computing the objective function. In this study, a surrogate modelling algorithm is developed to reduce computational time in structural optimization of EMMs. The surrogate model is constructed based on a multilayer feedforward artificial neural network (ANN) architecture, trained with prepopulated eigenfrequency data prepopulated from FEA simulation and optimized through regime selection with genetic algorithm (GA) to improve its accuracy in predicting the location and width of the primary elastic band gap. With the optimized ANN surrogate at the core, a Nelder-Mead (NM) algorithm is established and its performance inspected in comparison to the FEA solution. The ANNNM model shows remarkable accuracy in predicting the band gap width and a reduction of time consumption by 47%.Keywords: artificial neural network, machine learning, mechanical metamaterials, Nelder-Mead optimization
Procedia PDF Downloads 1288021 A Laundry Algorithm for Colored Textiles
Authors: H. E. Budak, B. Arslan-Ilkiz, N. Cakmakci, I. Gocek, U. K. Sahin, H. Acikgoz-Tufan, M. H. Arslan
Abstract:
The aim of this study is to design a novel laundry algorithm for colored textiles which have significant decoloring problem. During the experimental work, bleached knitted single jersey fabric made of 100% cotton and dyed with reactive dyestuff was utilized, since according to a conducted survey textiles made of cotton are the most demanded textile products in the textile market by the textile consumers and for coloration of textiles reactive dyestuffs are the ones that are the most commonly used in the textile industry for dyeing cotton-made products. Therefore, the fabric used in this study was selected and purchased in accordance with the survey results. The fabric samples cut out of this fabric were dyed with different dyeing parameters by using Remazol Brilliant Red 3BS dyestuff in Gyrowash machine at laboratory conditions. From the alternative reactive-dyed cotton fabric samples, the ones that have high tendency to color loss were determined and examined. Accordingly, the parameters of the dyeing process used for these fabric samples were evaluated and the dyeing process which was chosen to be used for causing high tendency to color loss for the cotton fabrics was determined in order to reveal the level of improvement in color loss during this study clearly. Afterwards, all of the untreated fabric samples cut out of the fabric purchased were dyed with the dyeing process selected. When dyeing process was completed, an experimental design was created for the laundering process by using Minitab® program considering temperature, time and mechanical action as parameters. All of the washing experiments were performed in domestic washing machine. 16 washing experiments were performed with 8 different experimental conditions and 2 repeats for each condition. After each of the washing experiments, water samples of the main wash of the laundering process were measured with UV spectrophotometer. The values obtained were compared with the calibration curve of the materials used for the dyeing process. The results of the washing experiments were statistically analyzed with Minitab® program. According to the results, the most suitable washing algorithm to be used in terms of the parameters temperature, time and mechanical action for domestic washing machines for minimizing fabric color loss was chosen. The laundry algorithm proposed in this study have the ability of minimalizing the problem of color loss of colored textiles in washing machines by eliminating the negative effects of the parameters of laundering process on color of textiles without compromising the fundamental effects of basic cleaning action being performed properly. Therefore, since fabric color loss is minimized with this washing algorithm, dyestuff residuals will definitely be lower in the grey water released from the laundering process. In addition to this, with this laundry algorithm it is possible to wash and clean other types of textile products with proper cleaning effect and minimized color loss.Keywords: color loss, laundry algorithm, textiles, domestic washing process
Procedia PDF Downloads 3578020 Computer Aided Diagnosis Bringing Changes in Breast Cancer Detection
Authors: Devadrita Dey Sarkar
Abstract:
Regardless of the many technologic advances in the past decade, increased training and experience, and the obvious benefits of uniform standards, the false-negative rate in screening mammography remains unacceptably high .A computer aided neural network classification of regions of suspicion (ROS) on digitized mammograms is presented in this abstract which employs features extracted by a new technique based on independent component analysis. CAD is a concept established by taking into account equally the roles of physicians and computers, whereas automated computer diagnosis is a concept based on computer algorithms only. With CAD, the performance by computers does not have to be comparable to or better than that by physicians, but needs to be complementary to that by physicians. In fact, a large number of CAD systems have been employed for assisting physicians in the early detection of breast cancers on mammograms. A CAD scheme that makes use of lateral breast images has the potential to improve the overall performance in the detection of breast lumps. Because breast lumps can be detected reliably by computer on lateral breast mammographs, radiologists’ accuracy in the detection of breast lumps would be improved by the use of CAD, and thus early diagnosis of breast cancer would become possible. In the future, many CAD schemes could be assembled as packages and implemented as a part of PACS. For example, the package for breast CAD may include the computerized detection of breast nodules, as well as the computerized classification of benign and malignant nodules. In order to assist in the differential diagnosis, it would be possible to search for and retrieve images (or lesions) with these CAD systems, which would be reliable and useful method for quantifying the similarity of a pair of images for visual comparison by radiologists.Keywords: CAD(computer-aided design), lesions, neural network, ROS(region of suspicion)
Procedia PDF Downloads 4568019 Monocular Visual Odometry for Three Different View Angles by Intel Realsense T265 with the Measurement of Remote
Authors: Heru Syah Putra, Aji Tri Pamungkas Nurcahyo, Chuang-Jan Chang
Abstract:
MOIL-SDK method refers to the spatial angle that forms a view with a different perspective from the Fisheye image. Visual Odometry forms a trusted application for extending projects by tracking using image sequences. A real-time, precise, and persistent approach that is able to contribute to the work when taking datasets and generate ground truth as a reference for the estimates of each image using the FAST Algorithm method in finding Keypoints that are evaluated during the tracking process with the 5-point Algorithm with RANSAC, as well as produce accurate estimates the camera trajectory for each rotational, translational movement on the X, Y, and Z axes.Keywords: MOIL-SDK, intel realsense T265, Fisheye image, monocular visual odometry
Procedia PDF Downloads 1348018 A Multifactorial Algorithm to Automate Screening of Drug-Induced Liver Injury Cases in Clinical and Post-Marketing Settings
Authors: Osman Turkoglu, Alvin Estilo, Ritu Gupta, Liliam Pineda-Salgado, Rajesh Pandey
Abstract:
Background: Hepatotoxicity can be linked to a variety of clinical symptoms and histopathological signs, posing a great challenge in the surveillance of suspected drug-induced liver injury (DILI) cases in the safety database. Additionally, the majority of such cases are rare, idiosyncratic, highly unpredictable, and tend to demonstrate unique individual susceptibility; these qualities, in turn, lend to a pharmacovigilance monitoring process that is often tedious and time-consuming. Objective: Develop a multifactorial algorithm to assist pharmacovigilance physicians in identifying high-risk hepatotoxicity cases associated with DILI from the sponsor’s safety database (Argus). Methods: Multifactorial selection criteria were established using Structured Query Language (SQL) and the TIBCO Spotfire® visualization tool, via a combination of word fragments, wildcard strings, and mathematical constructs, based on Hy’s law criteria and pattern of injury (R-value). These criteria excluded non-eligible cases from monthly line listings mined from the Argus safety database. The capabilities and limitations of these criteria were verified by comparing a manual review of all monthly cases with system-generated monthly listings over six months. Results: On an average, over a period of six months, the algorithm accurately identified 92% of DILI cases meeting established criteria. The automated process easily compared liver enzyme elevations with baseline values, reducing the screening time to under 15 minutes as opposed to multiple hours exhausted using a cognitively laborious, manual process. Limitations of the algorithm include its inability to identify cases associated with non-standard laboratory tests, naming conventions, and/or incomplete/incorrectly entered laboratory values. Conclusions: The newly developed multifactorial algorithm proved to be extremely useful in detecting potential DILI cases, while heightening the vigilance of the drug safety department. Additionally, the application of this algorithm may be useful in identifying a potential signal for DILI in drugs not yet known to cause liver injury (e.g., drugs in the initial phases of development). This algorithm also carries the potential for universal application, due to its product-agnostic data and keyword mining features. Plans for the tool include improving it into a fully automated application, thereby completely eliminating a manual screening process.Keywords: automation, drug-induced liver injury, pharmacovigilance, post-marketing
Procedia PDF Downloads 1528017 Compressed Sensing of Fetal Electrocardiogram Signals Based on Joint Block Multi-Orthogonal Least Squares Algorithm
Authors: Xiang Jianhong, Wang Cong, Wang Linyu
Abstract:
With the rise of medical IoT technologies, Wireless body area networks (WBANs) can collect fetal electrocardiogram (FECG) signals to support telemedicine analysis. The compressed sensing (CS)-based WBANs system can avoid the sampling of a large amount of redundant information and reduce the complexity and computing time of data processing, but the existing algorithms have poor signal compression and reconstruction performance. In this paper, a Joint block multi-orthogonal least squares (JBMOLS) algorithm is proposed. We apply the FECG signal to the Joint block sparse model (JBSM), and a comparative study of sparse transformation and measurement matrices is carried out. A FECG signal compression transmission mode based on Rbio5.5 wavelet, Bernoulli measurement matrix, and JBMOLS algorithm is proposed to improve the compression and reconstruction performance of FECG signal by CS-based WBANs. Experimental results show that the compression ratio (CR) required for accurate reconstruction of this transmission mode is increased by nearly 10%, and the runtime is saved by about 30%.Keywords: telemedicine, fetal ECG, compressed sensing, joint sparse reconstruction, block sparse signal
Procedia PDF Downloads 1288016 Design and Implementation of DC-DC Converter with Inc-Cond Algorithm
Authors: Mustafa Engin Başoğlu, Bekir Çakır
Abstract:
The most important component affecting the efficiency of photovoltaic power systems are solar panels. Efficiency of these systems are significantly affected because of being low efficiency of solar panel. Therefore, solar panels should be operated under maximum power point conditions through a power converter. In this study, design boost converter with maximum power point tracking (MPPT) operation has been designed and performed with Incremental Conductance (Inc-Cond) algorithm by using direct duty control. Furthermore, it is shown that performance of boost converter with MPPT operation fails under low load resistance connection.Keywords: boost converter, incremental conductance (Inc-Cond), MPPT, solar panel
Procedia PDF Downloads 10468015 Measuring the Height of a Person in Closed Circuit Television Video Footage Using 3D Human Body Model
Authors: Dojoon Jung, Kiwoong Moon, Joong Lee
Abstract:
The height of criminals is one of the important clues that can determine the scope of the suspect's search or exclude the suspect from the search target. Although measuring the height of criminals by video alone is limited by various reasons, the 3D data of the scene and the Closed Circuit Television (CCTV) footage are matched, the height of the criminal can be measured. However, it is still difficult to measure the height of CCTV footage in the non-contact type measurement method because of variables such as position, posture, and head shape of criminals. In this paper, we propose a method of matching the CCTV footage with the 3D data on the crime scene and measuring the height of the person using the 3D human body model in the matched data. In the proposed method, the height is measured by using 3D human model in various scenes of the person in the CCTV footage, and the measurement value of the target person is corrected by the measurement error of the replay CCTV footage of the reference person. We tested for 20 people's walking CCTV footage captured from an indoor and an outdoor and corrected the measurement values with 5 reference persons. Experimental results show that the measurement error (true value-measured value) average is 0.45 cm, and this method is effective for the measurement of the person's height in CCTV footage.Keywords: human height, CCTV footage, 2D/3D matching, 3D human body model
Procedia PDF Downloads 248