Search results for: efficient technologies
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8106

Search results for: efficient technologies

6696 An Integrated Fuzzy Inference System and Technique for Order of Preference by Similarity to Ideal Solution Approach for Evaluation of Lean Healthcare Systems

Authors: Aydin M. Torkabadi, Ehsan Pourjavad

Abstract:

A decade after the introduction of Lean in Saskatchewan’s public healthcare system, its effectiveness remains a controversial subject among health researchers, workers, managers, and politicians. Therefore, developing a framework to quantitatively assess the Lean achievements is significant. This study investigates the success of initiatives across Saskatchewan health regions by recognizing the Lean healthcare criteria, measuring the success levels, comparing the regions, and identifying the areas for improvements. This study proposes an integrated intelligent computing approach by applying Fuzzy Inference System (FIS) and Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS). FIS is used as an efficient approach to assess the Lean healthcare criteria, and TOPSIS is applied for ranking the values in regards to the level of leanness. Due to the innate uncertainty in decision maker judgments on criteria, principals of the fuzzy theory are applied. Finally, FIS-TOPSIS was established as an efficient technique in determining the lean merit in healthcare systems.

Keywords: lean healthcare, intelligent computing, fuzzy inference system, healthcare evaluation, technique for order of preference by similarity to ideal solution, multi-criteria decision making, MCDM

Procedia PDF Downloads 162
6695 Radio-Frequency Technologies for Sensing and Imaging

Authors: Cam Nguyen

Abstract:

Rapid, accurate, and safe sensing and imaging of physical quantities or structures finds many applications and is of significant interest to society. Sensing and imaging using radio-frequency (RF) techniques, particularly, has gone through significant development and subsequently established itself as a unique territory in the sensing world. RF sensing and imaging has played a critical role in providing us many sensing and imaging abilities beyond our human capabilities, benefiting both civilian and military applications - for example, from sensing abnormal conditions underneath some structures’ surfaces to detection and classification of concealed items, hidden activities, and buried objects. We present the developments of several sensing and imaging systems implementing RF technologies like ultra-wide band (UWB), synthetic-pulse, and interferometry. These systems are fabricated completely using RF integrated circuits. The UWB impulse system operates over multiple pulse durations from 450 to 1170 ps with 5.5-GHz RF bandwidth. It performs well through tests of various samples, demonstrating its usefulness for subsurface sensing. The synthetic-pulse system operating from 0.6 to 5.6 GHz can assess accurately subsurface structures. The synthetic-pulse system operating from 29.72-37.7 GHz demonstrates abilities for various surface and near-surface sensing such as profile mapping, liquid-level monitoring, and anti-personnel mine locating. The interferometric system operating at 35.6 GHz demonstrates its multi-functional capability for measurement of displacements and slow velocities. These RF sensors are attractive and useful for various surface and subsurface sensing applications. This paper was made possible by NPRP grant # 6-241-2-102 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors.

Keywords: RF sensors, radars, surface sensing, subsurface sensing

Procedia PDF Downloads 316
6694 Predictive Maintenance of Industrial Shredders: Efficient Operation through Real-Time Monitoring Using Statistical Machine Learning

Authors: Federico Pittino, Thomas Arnold

Abstract:

The shredding of waste materials is a key step in the recycling process towards the circular economy. Industrial shredders for waste processing operate in very harsh operating conditions, leading to the need for frequent maintenance of critical components. Maintenance optimization is particularly important also to increase the machine’s efficiency, thereby reducing the operational costs. In this work, a monitoring system has been developed and deployed on an industrial shredder located at a waste recycling plant in Austria. The machine has been monitored for one year, and methods for predictive maintenance have been developed for two key components: the cutting knives and the drive belt. The large amount of collected data is leveraged by statistical machine learning techniques, thereby not requiring very detailed knowledge of the machine or its live operating conditions. The results show that, despite the wide range of operating conditions, a reliable estimate of the optimal time for maintenance can be derived. Moreover, the trade-off between the cost of maintenance and the increase in power consumption due to the wear state of the monitored components of the machine is investigated. This work proves the benefits of real-time monitoring system for the efficient operation of industrial shredders.

Keywords: predictive maintenance, circular economy, industrial shredder, cost optimization, statistical machine learning

Procedia PDF Downloads 124
6693 High-Performance Supercapacitors with Activated Carbon and Nickel Sulfide Composite

Authors: Sarita Sindhu, Vinay Kumar

Abstract:

The growing demand for efficient energy storage in applications such as portable electronics, electric vehicles, and renewable energy systems has emphasized the need for advanced energy storage materials. This study addresses the pressing need for efficient energy storage materials by exploring the synthesis and application of a composite of activated carbon (AC) and nickel sulfide (NiS) for supercapacitors. Activated carbon, possessing high surface area and excellent electrochemical stability, was combined with nickel sulfide, a transition metal sulfide with high theoretical capacitance, to enhance the electrochemical performance of the composite material. Characterization techniques, including scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR), were employed to analyze the morphology, crystalline structure, and bonding characteristics, confirming the successful formation of a uniformly distributed AC/NiS composite. Electrochemical evaluations revealed that the AC/NiS composite exhibited superior capacitance, excellent rate capability, and enhanced cycling stability compared to pure AC and NiS. The synergistic effect of the large surface area from activated carbon and redox-active sites of nickel sulfide provided an improved energy storage capacity, making this composite a promising electrode material for high-performance supercapacitors.

Keywords: activated carbon, energy storage, sulfide, surface area

Procedia PDF Downloads 11
6692 The Photocatalytic Degradation of Acid Blue 25 Dye by Polypyrrole/Titanium Dioxide and Polypyrrole/Zinc Oxide Composites

Authors: Ljerka Kratofil Krehula, Martina Perlog, Jasmina Stjepanović, Vanja Gilja, Marijana Kraljić Roković, Zlata Hrnjak-Murgić

Abstract:

The composite preparation of titanium dioxide and zinc oxide photocatalysts with the conductive polymers gives the opportunity to carry out the catalysis reactions not only under UV light but also under visible light. Such processes may efficiently use sunlight in degradation of different organic pollutants and present new design for wastewater treatment. The paper presents the preparation procedure, material characteristics and photocatalytic efficiency of polypyrrole/titanium dioxide and polypyrrole/zinc oxide composites (PPy/TiO2 and PPy/ZnO). The obtained composite samples were characterized by Fourier transform infrared spectroscopy (FTIR), UV-Vis spectroscopy and thermogravimetric analysis (TGA). The photocatalytic efficiency of the samples was determined following the decomposition of Acid Blue 25 dye (AB 25) under UV and visible light by UV/Vis spectroscopy. The efficiency of degradation is determined by total organic carbon content (TOC) after photocatalysis processes. The results show enhanced photocatalytic efficiency of the samples under visible light, so the prepared composite samples are recognized as efficient catalysts in degradation process of AB 25 dye. It can be concluded that the preparation of TiO2 or ZnO composites with PPy can serve as a very efficient method for the improvement of TiO2 and ZnO photocatalytic performance under visible light.

Keywords: composite, photocatalysis, polypyrrole, titanium dioxide, zinc oxide

Procedia PDF Downloads 486
6691 NextCovps: Design and Stress Analysis of Dome Composite Overwrapped Pressure Vessels using Geodesic Trajectory Approach

Authors: Ammar Maziz, Prateek Gupta, Thiago Vasconcellos Birro, Benoit Gely

Abstract:

Hydrogen as a sustainable fuel has the highest energy density per mass as compared to conventional non-renewable sources. As the world looks to move towards sustainability, especially in the sectors of aviation and automotive, it becomes important to address the issue of storage of hydrogen as compressed gas in high-pressure tanks. To improve the design for the efficient storage and transportation of Hydrogen, this paper presents the design and stress analysis of Dome Composite Overwrapped Pressure Vessels (COPVs) using the geodesic trajectory approach. The geodesic trajectory approach is used to optimize the dome design, resulting in a lightweight and efficient structure. Python scripting is employed to implement the mathematical modeling of the COPV, and after validating the model by comparison to the published paper, stress analysis is conducted using Abaqus commercial code. The results demonstrate the effectiveness of the geodesic trajectory approach in achieving a lightweight and structurally sound dome design, as well as the accuracy and reliability of the stress analysis using Abaqus commercial code. This study provides insights into the design and analysis of COPVs for aerospace applications, with the potential for further optimization and application in other industries.

Keywords: composite overwrapped pressure vessels, carbon fiber, geodesic trajectory approach, dome design, stress analysis, plugin python

Procedia PDF Downloads 92
6690 Renewable Energy Integration in Cities of Developing Countries: The Case Study of Tema City, Ghana

Authors: Marriette Sakah, Christoph Kuhn, Samuel Gyamfi

Abstract:

Global electricity demand of households in 2005 is estimated to double by 2025 and nearly double again in 2030. The residential sector promises considerable demand growth through infrastructural and equipment investments, the majority of which is projected to occur in developing countries. This lays bare the urgency for enhanced efficiency in all energy systems combined with exploitation of local potential for renewable energy systems. This study explores options for reducing energy consumption, particularly in residential buildings and providing robust, decentralized and renewable energy supply for African cities. The potential of energy efficiency measures and the potential of harnessing local resources for renewable energy supply are quantitatively assessed. The scale of research specifically addresses the city level, which is regulated by local authorities. Local authorities can actively promote the transition to a renewable-based energy supply system by promoting energy efficiency and the use of alternative renewable fuels in existing buildings, and particularly in planning and development of new settlement areas through the use of incentives, regulations, and demonstration projects. They can also support a more sustainable development by shaping local land use and development patterns in such ways that reduce per capita energy consumption and are benign to the environment. The subject of the current case study, Tema, is Ghana´s main industrial hub, a port city and home to 77,000 families. Residential buildings in Tema consumed 112 GWh of electricity in 2013 or 1.45 MWh per household. If average household electricity demand were to decline at an annual rate of just 2 %, by 2035 Tema would consume only 134 GWh of electricity despite an expected increase in the number of households by 84 %. The work is based on a ground survey of the city’s residential sector. The results show that efficient technologies and decentralized renewable energy systems have great potential for meeting the rapidly growing energy demand of cities in developing countries.

Keywords: energy efficiency, energy saving potential, renewable energy integration, residential buildings, urban Africa

Procedia PDF Downloads 286
6689 Synthesis of Montmorillonite/CuxCd1-xS Nanocomposites and Their Application to the Photodegradation of Methylene Blue

Authors: H. Boukhatem, L. Djouadi, H. Khalaf, R. M. Navarro, F. V. Ganzalez

Abstract:

Synthetic organic dyes are used in various industries, such as textile industry, leather tanning industry, paper production, hair dye production, etc. Wastewaters containing these dyes may be harmful to the environment and living organisms. Therefore, it is very important to remove or degrade these dyes before discharging them into the environment. In addition to standard technologies for the degradation and/or removal of dyes, several new specific technologies, the so-called advanced oxidation processes (AOPs), have been developed to eliminate dangerous compounds from polluted waters. AOPs are all characterized by the same chemical feature: production of radicals (•OH) through a multistep process, although different reaction systems are used. These radicals show little selectivity of attack and are able to oxidize various organic pollutants due to their high oxidative capacity (reduction potential of HO• Eo = 2.8 V). Heterogeneous photocatalysis, as one of the AOPs, could be effective in the oxidation/degradation of organic dyes. A major advantage of using heterogeneous photocatalysis for this purpose is the total mineralization of organic dyes, which results in CO2, H2O and corresponding mineral acids. In this study, nanomaterials based on montmorillonite and CuxCd1-xS with different Cu concentration (0.3 < x < 0.7) were utilized for the degradation of the commercial cationic textile dye Methylene blue (MB), used as a model pollutant. The synthesized nanomaterials were characterized by fourier transform infrared (FTIR) and thermogravimetric-differential thermal analysis (TG–DTA). Test results of photocatalysis of methylene blue under UV-Visible irradiation show that the photoactivity of nanomaterials montmorillonite/ CuxCd1-xS increases with the increasing of Cu concentration. The kinetics of the degradation of the MB dye was described with the Langmuir–Hinshelwood (L–H) kinetic model.

Keywords: heterogeneous photocatalysis, methylene blue, montmorillonite, nanomaterial

Procedia PDF Downloads 373
6688 Development of a PJWF Cleaning Method for Wet Electrostatic Precipitators

Authors: Hsueh-Hsing Lu, Thi-Cuc Le, Tung-Sheng Tsai, Chuen-Jinn Tsai

Abstract:

This study designed and tested a novel wet electrostatic precipitators (WEP) system featuring a Pulse-Air-Jet-Assisted Water Flow (PJWF) to shorten water cleaning time, reduce water usage, and maintain high particle removal efficiency. The PJWF injected cleaning water tangentially at the cylinder wall, rapidly enhancing the momentum of the water flow for efficient dust cake removal. Each PJWF cycle uses approximately 4.8 liters of cleaning water in 18 seconds. Comprehensive laboratory tests were conducted using a single-tube WEP prototype within a flow rate range of 3.0 to 6.0 cubic meters per minute(CMM), operating voltages between -35 to -55 kV, and high-frequency power supply. The prototype, consisting of 72 sets of double-spike rigid discharge electrodes, demonstrated that with the PJWF, -35 kV, and 3.0 CMM, the PM2.5 collection efficiency remained as high as the initial value of 88.02±0.92% after loading with Al2O3 particles at 35.75± 2.54 mg/Nm3 for 20-hr continuous operation. In contrast, without the PJWF, the PM2.5 collection efficiency drastically dropped from 87.4% to 53.5%. Theoretical modeling closely matched experimental results, confirming the robustness of the system's design and its scalability for larger industrial applications. Future research will focus on optimizing the PJWF system, exploring its performance with various particulate matter, and ensuring long-term operational stability and reliability under diverse environmental conditions. Recently, this WEP was combined with a preceding CT (cooling tower) and a HWS (honeycomb wet scrubber) and pilot-tested (40 CMM) to remove SO2 and PM2.5 emissions in a sintering plant of an integrated steel making plant. Pilot-test results showed that the removal efficiencies for SO2 and PM2.5 emissions are as high as 99.7 and 99.3 %, respectively, with ultralow emitted concentrations of 0.3 ppm and 0.07 mg/m3, respectively, while the white smoke is also eliminated at the same time. These new technologies are being used in the industry and the application in different fields is expected to be expanded to reduce air pollutant emissions substantially for a better ambient air quality.

Keywords: wet electrostatic precipitator, pulse-air-jet-assisted water flow, particle removal efficiency, air pollution control

Procedia PDF Downloads 19
6687 Digital Repository as a Service: Enhancing Access and Preservation of Cultural Heritage Artefacts

Authors: Lefteris Tsipis, Demosthenes Vouyioukas, George Loumos, Antonis Kargas, Dimitris Varoutas

Abstract:

The employment of technology and digitization is crucial for cultural organizations to establish and sustain digital repositories for their cultural heritage artefacts. This utilization is also essential in facilitating the presentation of cultural works and exhibits to a broader audience. Consequently, in this work, we propose a digital repository that functions as Software as a Service (SaaS), primarily promoting the safe storage, display, and sharing of cultural materials, enhancing accessibility, and fostering a deeper understanding and appreciation of cultural heritage. Moreover, the proposed digital repository service is designed as a multitenant architecture, which enables organizations to expand their reach, enhance accessibility, foster collaboration, and ensure the preservation of their content. Specifically, this project aims to assist each cultural institution in organizing its digital cultural assets into collections and feeding other digital platforms, including educational, museum, pedagogical, and games, through appropriate interfaces. Moreover, the creation of this digital repository offers a cutting-edge and effective open-access laboratory solution. It allows organizations to have a significant influence on their audiences by fostering cultural understanding and appreciation. Additionally, it facilitates the connection between different digital repositories and national/European aggregators, promoting collaboration and information sharing. By embracing this solution, cultural institutions can benefit from shared resources and features, such as system updates, backup and recovery services, and data analytics tools, that are provided by the platform.

Keywords: cultural technologies, gaming technologies, web sharing, digital repository

Procedia PDF Downloads 79
6686 A Method of Manufacturing Low Cost Utility Robots and Vehicles

Authors: Gregory E. Ofili

Abstract:

Introduction and Objective: Climate change and a global economy mean farmers must adapt and gain access to affordable and reliable automation technologies. Key barriers include a lack of transportation, electricity, and internet service, coupled with costly enabling technologies and limited local subject matter expertise. Methodology/Approach: Resourcefulness is essential to mechanization on a farm. This runs contrary to the tech industry practice of planned obsolescence and disposal. One solution is plug-and-play hardware that allows farmer to assemble, repair, program, and service their own fleet of industrial machines. To that end, we developed a method of manufacturing low-cost utility robots, transport vehicles, and solar/wind energy harvesting systems, all running on an open-source Robot Operating System (ROS). We demonstrate this technology by fabricating a utility robot and an all-terrain (4X4) utility vehicle. Constructed of aluminum trusses and weighing just 40 pounds, yet capable of transporting 200 pounds of cargo, on sale for less than $2,000. Conclusions & Policy Implications: Electricity, internet, and automation are essential for productivity and competitiveness. With planned obsolescence, the priorities of technology suppliers are not aligned with the farmer’s realities. This patent-pending method of manufacturing low-cost industrial robots and electric vehicles has met its objective. To create low-cost machines, the farmer can assemble, program, and repair with basic hand tools.

Keywords: automation, robotics, utility robot, small-hold farm, robot operating system

Procedia PDF Downloads 70
6685 Efficient Model Order Reduction of Descriptor Systems Using Iterative Rational Krylov Algorithm

Authors: Muhammad Anwar, Ameen Ullah, Intakhab Alam Qadri

Abstract:

This study presents a technique utilizing the Iterative Rational Krylov Algorithm (IRKA) to reduce the order of large-scale descriptor systems. Descriptor systems, which incorporate differential and algebraic components, pose unique challenges in Model Order Reduction (MOR). The proposed method partitions the descriptor system into polynomial and strictly proper parts to minimize approximation errors, applying IRKA exclusively to the strictly adequate component. This approach circumvents the unbounded errors that arise when IRKA is directly applied to the entire system. A comparative analysis demonstrates the high accuracy of the reduced model and a significant reduction in computational burden. The reduced model enables more efficient simulations and streamlined controller designs. The study highlights IRKA-based MOR’s effectiveness in optimizing complex systems’ performance across various engineering applications. The proposed methodology offers a promising solution for reducing the complexity of large-scale descriptor systems while maintaining their essential characteristics and facilitating their analysis, simulation, and control design.

Keywords: model order reduction, descriptor systems, iterative rational Krylov algorithm, interpolatory model reduction, computational efficiency, projection methods, H₂-optimal model reduction

Procedia PDF Downloads 31
6684 ORR Electrocatalyst for Batteries and Fuel Cells Development with SIO₂/Carbon Black Based Composite Nanomaterials

Authors: Maryam Kiani

Abstract:

This study focuses on the development of composite nanomaterials based on SiO₂ and carbon black for oxygen reduction reaction (ORR) electrocatalysts in batteries and fuel cells. The aim was to explore the potential of these composite materials as efficient catalysts for ORR, which is a critical process in energy conversion devices. The SiO₂/carbon black composite nanomaterials were synthesized using a facile and scalable method. The morphology, structure, and electrochemical properties of the materials were characterized using various techniques including scanning electron microscopy (SEM), X-ray diffraction (XRD), and electrochemical measurements. The results demonstrated that the incorporation of SiO₂ into the carbon black matrix enhanced the ORR performance of the composite material. The composite nanomaterials exhibited improved electrocatalytic activity, enhanced stability, and increased durability compared to pure carbon black. The presence of SiO₂ facilitated the formation of active sites, improved electron transfer, and increased the surface area available for ORR. This study contributes to the advancement of battery and fuel cell technology by offering a promising approach for the development of high-performance ORR electrocatalysts. The SiO₂/carbon black composite nanomaterials show great potential for improving the efficiency and durability of energy conversion devices, leading to more sustainable and efficient energy solutions.

Keywords: ORR, fuel cells, batteries, electrocatalyst

Procedia PDF Downloads 113
6683 Participatory Testing of Precision Fertilizer Management Technologies in Mid-Hills of Nepal

Authors: Kedar Nath Nepal, Dyutiman Choudhary, Naba Raj Pandit, Yam Gahire

Abstract:

Crop fertilizer recommendations are outdated as these are based on the response trails conducted over half a century ago. Further, these recommendations were based on the response trials conducted over large geographical area ignoring the large spatial variability in indigenous nutrient supplying capacity of soils typical of most smallholder systems. Application of fertilizer following such blanket recommendation in fields with varying native nutrient supply capacity leads to under application in some places and over application in others leading to reduced nutrient-use-efficiency (NUE), loss of profitability, and increased environmental risks associated with loss of unutilized nutrient through emissions or leaching. Opportunities exist to further increase yield and profitability through a significant gain in fertilizer use efficiency with commercialization of affordable and precise application technologies. We conducted participatory trails in Maize (Zea Mays), Cauliflower (Brassica oleracea var. botrytis) and Tomato (Solanum lycopersicum) in Mid Hills of Nepal to evaluate the efficacy of Urea Deep Placement (UDP and Polymer Coated Urea (PCU);. UDP contains 46% of N having individual briquette size 2.7 gm each and PCU contains 44% of N . Both PCU and urea briquette applied at reduced amount (100 kg N/ha) during planting produced similar yields (p>0.05) compared with regular urea (200 Kg N/ha). . These fertilizers also reduced N fertilizer by 35 - 50% over government blanket recommendations. Further, PCU and urea briquette increased farmer’s net income by USD 60 to 80.

Keywords: high efficiency fertilizers, urea deep placement, briquette polymer coated urea, zea mays, brassica, lycopersicum, Nepal

Procedia PDF Downloads 172
6682 Integrating Computer-Aided Manufacturing and Computer-Aided Design for Streamlined Carpentry Production in Ghana

Authors: Benson Tette, Thomas Mensah

Abstract:

As a developing country, Ghana has a high potential to harness the economic value of every industry. Two of the industries that produce below capacity are handicrafts (for instance, carpentry) and information technology (i.e., computer science). To boost production and maintain competitiveness, the carpentry sector in Ghana needs more effective manufacturing procedures that are also more affordable. This issue can be resolved using computer-aided manufacturing (CAM) technology, which automates the fabrication process and decreases the amount of time and labor needed to make wood goods. Yet, the integration of CAM in carpentry-related production is rarely explored. To streamline the manufacturing process, this research investigates the equipment and technology that are currently used in the Ghanaian carpentry sector for automated fabrication. The research looks at the various CAM technologies, such as Computer Numerical Control routers, laser cutters, and plasma cutters, that are accessible to Ghanaian carpenters yet unexplored. We also investigate their potential to enhance the production process. To achieve the objective, 150 carpenters, 15 software engineers, and 10 policymakers were interviewed using structured questionnaires. The responses provided by the 175 respondents were processed to eliminate outliers and omissions were corrected using multiple imputations techniques. The processed responses were analyzed through thematic analysis. The findings showed that adaptation and integration of CAD software with CAM technologies would speed up the design-to-manufacturing process for carpenters. It must be noted that achieving such results entails first; examining the capabilities of current CAD software, then determining what new functions and resources are required to improve the software's suitability for carpentry tasks. Responses from both carpenters and computer scientists showed that it is highly practical and achievable to streamline the design-to-manufacturing process through processes such as modifying and combining CAD software with CAM technology. Making the carpentry-software integration program more useful for carpentry projects would necessitate investigating the capabilities of the current CAD software and identifying additional features in the Ghanaian ecosystem and tools that are required. In conclusion, the Ghanaian carpentry sector has a chance to increase productivity and competitiveness through the integration of CAM technology with CAD software. Carpentry companies may lower labor costs and boost production capacity by automating the fabrication process, giving them a competitive advantage. This study offers implementation-ready and representative recommendations for successful implementation as well as important insights into the equipment and technologies available for automated fabrication in the Ghanaian carpentry sector.

Keywords: carpentry, computer-aided manufacturing (CAM), Ghana, information technology(IT)

Procedia PDF Downloads 98
6681 Modern Information Security Management and Digital Technologies: A Comprehensive Approach to Data Protection

Authors: Mahshid Arabi

Abstract:

With the rapid expansion of digital technologies and the internet, information security has become a critical priority for organizations and individuals. The widespread use of digital tools such as smartphones and internet networks facilitates the storage of vast amounts of data, but simultaneously, vulnerabilities and security threats have significantly increased. The aim of this study is to examine and analyze modern methods of information security management and to develop a comprehensive model to counteract threats and information misuse. This study employs a mixed-methods approach, including both qualitative and quantitative analyses. Initially, a systematic review of previous articles and research in the field of information security was conducted. Then, using the Delphi method, interviews with 30 information security experts were conducted to gather their insights on security challenges and solutions. Based on the results of these interviews, a comprehensive model for information security management was developed. The proposed model includes advanced encryption techniques, machine learning-based intrusion detection systems, and network security protocols. AES and RSA encryption algorithms were used for data protection, and machine learning models such as Random Forest and Neural Networks were utilized for intrusion detection. Statistical analyses were performed using SPSS software. To evaluate the effectiveness of the proposed model, T-Test and ANOVA statistical tests were employed, and results were measured using accuracy, sensitivity, and specificity indicators of the models. Additionally, multiple regression analysis was conducted to examine the impact of various variables on information security. The findings of this study indicate that the comprehensive proposed model reduced cyber-attacks by an average of 85%. Statistical analysis showed that the combined use of encryption techniques and intrusion detection systems significantly improves information security. Based on the obtained results, it is recommended that organizations continuously update their information security systems and use a combination of multiple security methods to protect their data. Additionally, educating employees and raising public awareness about information security can serve as an effective tool in reducing security risks. This research demonstrates that effective and up-to-date information security management requires a comprehensive and coordinated approach, including the development and implementation of advanced techniques and continuous training of human resources.

Keywords: data protection, digital technologies, information security, modern management

Procedia PDF Downloads 29
6680 Intellectual Property Law as a Tool to Enhance and Sustain Museums in Digital Era

Authors: Nayira Ahmed Galal Elden Hassan, Amr Mostafa Awad Kassem

Abstract:

The management of Intellectual Property (IP) in museums can be complex and challenging, as it requires balancing access and control. On the one hand, museums must ensure that they have balanced permissions to display works in their collections and make them accessible to the public. On the other hand, they must also protect the rights of creators and owners of works and ensure that they are not infringing on IP rights. Intellectual property has become an increasingly important aspect of museum operations in the digital age. Museums hold a vast array of cultural assets in their collections, many of which have significant value as IP assets. The balanced management of IP in museums can help to generate additional revenue and promote cultural heritage, while also protecting the rights of the museum and its collections. Digital technologies have greatly impacted the way museums manage IP, providing new opportunities for revenue generation through e-commerce and licensing, while also presenting new challenges related to IP protection and management. Museums must take a comprehensive approach to IP management, leveraging digital technologies, protecting IP rights, and engaging in licensing and e-commerce activities to maximize income and the economy of countries through the strong management of cultural institutions. Overall, the balanced management of IP in museums is crucial for ensuring the sustainability of museum operations and for preserving cultural heritage for future generations. By taking a balanced approach to identifying museum IP assets, museums can generate revenues and secure their financial sustainability to ensure the long-term preservation of their cultural heritage. We can divide IP assets in museums to two kinds, collection IP and Museum generated IP. Certain museums become confused and lose sight of their mission when trying to leverage collections-based IP. This was the case at the German state Museum in Berlin when the museum made 100 replicas from Nefertiti bust which is an Egyptian artifacts and wrote under the replicas all rights reserved to the Berlin museum and issued a certificate to prevent any person or Institution from reproducing any replica from this bust. The implications of IP in museums are far-reaching and can have significant impacts on the preservation of cultural heritage, the dissemination of information, and the development of educational programs. As such, it is important for museums to have a comprehensive understanding of IP laws and regulations, and to properly manage IP to avoid legal liability, damage to reputation, and loss of revenue. The research aims to highlight the importance and role of intellectual property in museums and provide some illustrative examples of this.

Keywords: intellectual property, museums, cultural assets, IP management, digital technologies, revenue generation, licensing, IP protection, sustainability, cultural heritage

Procedia PDF Downloads 3
6679 MXene Quantum Dots Decorated Double-Shelled Ceo₂ Hollow Spheres for Efficient Electrocatalytic Nitrogen Oxidation

Authors: Quan Li, Dongcai Shen, Zhengting Xiao, Xin Liu Mingrui Wu, Licheng Liu, Qin Li, Xianguo Li, Wentai Wang

Abstract:

Direct electrocatalytic nitrogen oxidation (NOR) provides a promising alternative strategy for synthesizing high-value-added nitric acid from widespread N₂, which overcomes the disadvantages of the Haber-Bosch-Ostwald process. However, the NOR process suffers from the limitation of high N≡N bonding energy (941 kJ mol− ¹), sluggish kinetics, low efficiency and yield. It is a prerequisite to develop more efficient electrocatalysts for NOR. Herein, we synthesized double-shelled CeO₂ hollow spheres (D-CeO₂) and further modified with Ti₃C₂ MXene quantum dots (MQDs) for electrocatalytic N₂ oxidation, which exhibited a NO₃− yield of 71.25 μg h− ¹ mgcat− ¹ and FE of 31.80% at 1.7 V. The unique quantum size effect and abundant edge active sites lead to a more effective capture of nitrogen. Moreover, the double-shelled hollow structure is favorable for N₂ fixation and gathers intermediate products in the interlayer of the core-shell. The in-situ infrared Fourier transform spectroscopy confirmed the formation of *NO and NO₃− species during the NOR reaction, and the kinetics and possible pathways of NOR were calculated by density functional theory (DFT). In addition, a Zn-N₂ reaction device was assembled with D-CeO₂/MQDs as anode and Zn plate as cathode, obtaining an extremely high NO₃− yield of 104.57 μg h− ¹ mgcat− ¹ at 1 mA cm− ².

Keywords: electrocatalytic N₂ oxidation, nitrate production, CeO₂, MXene quantum dots, double-shelled hollow spheres

Procedia PDF Downloads 69
6678 Integration of GIS with Remote Sensing and GPS for Disaster Mitigation

Authors: Sikander Nawaz Khan

Abstract:

Natural disasters like flood, earthquake, cyclone, volcanic eruption and others are causing immense losses to the property and lives every year. Current status and actual loss information of natural hazards can be determined and also prediction for next probable disasters can be made using different remote sensing and mapping technologies. Global Positioning System (GPS) calculates the exact position of damage. It can also communicate with wireless sensor nodes embedded in potentially dangerous places. GPS provide precise and accurate locations and other related information like speed, track, direction and distance of target object to emergency responders. Remote Sensing facilitates to map damages without having physical contact with target area. Now with the addition of more remote sensing satellites and other advancements, early warning system is used very efficiently. Remote sensing is being used both at local and global scale. High Resolution Satellite Imagery (HRSI), airborne remote sensing and space-borne remote sensing is playing vital role in disaster management. Early on Geographic Information System (GIS) was used to collect, arrange, and map the spatial information but now it has capability to analyze spatial data. This analytical ability of GIS is the main cause of its adaption by different emergency services providers like police and ambulance service. Full potential of these so called 3S technologies cannot be used in alone. Integration of GPS and other remote sensing techniques with GIS has pointed new horizons in modeling of earth science activities. Many remote sensing cases including Asian Ocean Tsunami in 2004, Mount Mangart landslides and Pakistan-India earthquake in 2005 are described in this paper.

Keywords: disaster mitigation, GIS, GPS, remote sensing

Procedia PDF Downloads 481
6677 Dynamic Cellular Remanufacturing System (DCRS) Design

Authors: Tariq Aljuneidi, Akif Asil Bulgak

Abstract:

Remanufacturing may be defined as the process of bringing used products to “like-new” functional state with warranty to match, and it is one of the most popular product end-of-life scenarios. An efficient remanufacturing network lead to an efficient design of sustainable manufacturing enterprise. In remanufacturing network, products are collected from the customer zone, disassembled and remanufactured at a suitable remanufacturing facility. In this respect, another issue to consider is how the returned product to be remanufactured, in other words, what is the best layout for such facility. In order to achieve a sustainable manufacturing system, Cellular Manufacturing System (CMS) designs are highly recommended, CMSs combine high throughput rates of line layouts with the flexibility offered by functional layouts (job shop). Introducing the CMS while designing a remanufacturing network will benefit the utilization of such a network. This paper presents and analyzes a comprehensive mathematical model for the design of Dynamic Cellular Remanufacturing Systems (DCRSs). In this paper, the proposed model is the first one to date that consider CMS and remanufacturing system simultaneously. The proposed DCRS model considers several manufacturing attributes such as multi-period production planning, dynamic system reconfiguration, duplicate machines, machine capacity, available time for workers, worker assignments, and machine procurement, where the demand is totally satisfied from a returned product. A numerical example is presented to illustrate the proposed model.

Keywords: cellular manufacturing system, remanufacturing, mathematical programming, sustainability

Procedia PDF Downloads 378
6676 An Energy Efficient Spectrum Shaping Scheme for Substrate Integrated Waveguides Based on Spread Reshaping Code

Authors: Yu Zhao, Rainer Gruenheid, Gerhard Bauch

Abstract:

In the microwave and millimeter-wave transmission region, substrate-integrated waveguide (SIW) is a very promising candidate for the development of circuits and components. It facilitates the transmission at the data rates in excess of 200 Gbit/s. An SIW mimics a rectangular waveguide by approximating the closed sidewalls with a via fence. This structure suppresses the low frequency components and makes the channel of the SIW a bandpass or high pass filter. This channel characteristic impedes the conventional baseband transmission using non-return-to-zero (NRZ) pulse shaping scheme. Therefore, mixers are commonly proposed to be used as carrier modulator and demodulator in order to facilitate a passband transmission. However, carrier modulation is not an energy efficient solution, because modulation and demodulation at high frequencies consume a lot of energy. For the first time to our knowledge, this paper proposes a spectrum shaping scheme of low complexity for the channel of SIW, namely spread reshaping code. It aims at matching the spectrum of the transmit signal to the channel frequency response. It facilitates the transmission through the SIW channel while it avoids using carrier modulation. In some cases, it even does not need equalization. Simulations reveal a good performance of this scheme, such that, as a result, eye opening is achieved without any equalization or modulation for the respective transmission channels.

Keywords: bandpass channel, eye-opening, switching frequency, substrate-integrated waveguide, spectrum shaping scheme, spread reshaping code

Procedia PDF Downloads 160
6675 Fluorescence Quenching as an Efficient Tool for Sensing Application: Study on the Fluorescence Quenching of Naphthalimide Dye by Graphene Oxide

Authors: Sanaz Seraj, Shohre Rouhani

Abstract:

Recently, graphene has gained much attention because of its unique optical, mechanical, electrical, and thermal properties. Graphene has been used as a key material in the technological applications in various areas such as sensors, drug delivery, super capacitors, transparent conductor, and solar cell. It has a superior quenching efficiency for various fluorophores. Based on these unique properties, the optical sensors with graphene materials as the energy acceptors have demonstrated great success in recent years. During quenching, the emission of a fluorophore is perturbed by a quencher which can be a substrate or biomolecule, and due to this phenomenon, fluorophore-quencher has been used for selective detection of target molecules. Among fluorescence dyes, 1,8-naphthalimide is well known for its typical intramolecular charge transfer (ICT) and photo-induced charge transfer (PET) fluorophore, strong absorption and emission in the visible region, high photo stability, and large Stokes shift. Derivatives of 1,8-naphthalimides have found applications in some areas, especially fluorescence sensors. Herein, the fluorescence quenching of graphene oxide has been carried out on a naphthalimide dye as a fluorescent probe model. The quenching ability of graphene oxide on naphthalimide dye was studied by UV-VIS and fluorescence spectroscopy. This study showed that graphene is an efficient quencher for fluorescent dyes. Therefore, it can be used as a suitable candidate sensing platform. To the best of our knowledge, studies on the quenching and absorption of naphthalimide dyes by graphene oxide are rare.

Keywords: fluorescence, graphene oxide, naphthalimide dye, quenching

Procedia PDF Downloads 591
6674 Determining the Information Technologies Usage and Learning Preferences of Construction

Authors: Naci Büyükkaracığan, Yıldırım Akyol

Abstract:

Information technology is called the technology which provides transmission of information elsewhere regardless of time, location, distance. Today, information technology is providing the occurrence of ground breaking changes in all areas of our daily lives. Information can be reached quickly to millions of people with help of information technology. In this Study, effects of information technology on students for educations and their learning preferences were demonstrated with using data obtained from questionnaires administered to students of 2015-2016 academic year at Selcuk University Kadınhanı Faik İçil Vocational School Construction Department. The data was obtained by questionnaire consisting of 30 questions that was prepared by the researchers. SPSS 21.00 package programme was used for statistical analysis of data. Chi-square tests, Mann-Whitney U test, Kruskal-Wallis and Kolmogorov-Smirnov tests were used in the data analysis for Descriptiving statistics. In a study conducted with the participation of 61 students, 93.4% of students' reputation of their own information communication device (computer, smart phone, etc.) That have been shown to be at the same rate and to the internet. These are just a computer of itself, then 45.90% of the students. The main reasons for the students' use of the Internet, social networking sites are 85.24%, 13.11% following the news of the site, as seen. All student assignments in information technology, have stated that they use in the preparation of the project. When students acquire scientific knowledge in the profession regarding their preferred sources evaluated were seen exactly when their preferred internet. Male students showed that daily use of information technology while compared to female students was statistically significantly less. Construction Package program where students are eager to learn about the reputation of 72.13% and 91.80% identified in the well which they agreed that an indispensable element in the professional advancement of information technology.

Keywords: information technologies, computer, construction, internet, learning systems

Procedia PDF Downloads 298
6673 Virtual and Augmented Reality Based Heritage Gamification: Basilica of Smyrna in Turkey

Authors: Tugba Saricaoglu

Abstract:

This study argues about the potential representation and interpretation of Basilica of Smyrna through gamification. Representation can be defined as a key which plays a role as a converter in order to provide interpretation of something according to the person who perceives. Representation of cultural heritage is a hypothetical and factual approach in terms of its sustainable conservation. Today, both site interpreters and public of cultural heritage have varying perspectives due to their different demographic, social, and even cultural backgrounds. Additionally, gamification application offers diversion of methods suchlike video games to improve user perspective of non-game platforms, contexts, and issues. Hence, cultural heritage and video game decided to be analyzed. Moreover, there are basically different ways of representation of cultural heritage such as digital, physical, and virtual methods in terms of conservation. Virtual reality (VR) and augmented reality (AR) technologies are two of the contemporary digital methods of heritage conservation. In this study, 3D documented ruins of the Basilica will be presented in the virtual and augmented reality based technology as a theoretical gamification sample. Also, this paper will focus on two sub-topics: First, evaluation of the video-game platforms applied to cultural heritage sites, and second, potentials of cultural heritage to be represented in video game platforms. The former will cover the analysis of some case(s) with regard to the concepts and representational aspects of cultural heritage. The latter will include the investigation of cultural heritage sites which carry such a potential and their sustainable conversation. Consequently, after mutual collection of information from cultural heritage and video game platforms, a perspective will be provided in terms of interpretation of representation of cultural heritage by sampling that on Basilica of Smyrna by using VR and AR based technologies.

Keywords: Basilica of Smyrna, cultural heritage, digital heritage, gamification

Procedia PDF Downloads 466
6672 Electrospray Plume Characterisation of a Single Source Cone-Jet for Micro-Electronic Cooling

Authors: M. J. Gibbons, A. J. Robinson

Abstract:

Increasing expectations on small form factor electronics to be more compact while increasing performance has driven conventional cooling technologies to a thermal management threshold. An emerging solution to this problem is electrospray (ES) cooling. ES cooling enables two phase cooling by utilising Coulomb forces for energy efficient fluid atomization. Generated charged droplets are accelerated to the grounded target surface by the applied electric field and surrounding gravitational force. While in transit the like charged droplets enable plume dispersion and inhibit droplet coalescence. If the electric field is increased in the cone-jet regime, a subsequent increase in the plume spray angle has been shown. Droplet segregation in the spray plume has been observed, with primary droplets in the plume core and satellite droplets positioned on the periphery of the plume. This segregation is facilitated by inertial and electrostatic effects. This result has been corroborated by numerous authors. These satellite droplets are usually more densely charged and move at a lower relative velocity to that of the spray core due to the radial decay of the electric field. Previous experimental research by Gomez and Tang has shown that the number of droplets deposited on the periphery can be up to twice that of the spray core. This result has been substantiated by a numerical models derived by Wilhelm et al., Oh et al. and Yang et al. Yang et al. showed from their numerical model, that by varying the extractor potential the dispersion radius of the plume also varies proportionally. This research aims to investigate this dispersion density and the role it plays in the local heat transfer coefficient profile (h) of ES cooling. This will be carried out for different extractor – target separation heights (H2), working fluid flow rates (Q), and extractor applied potential (V2). The plume dispersion will be recorded by spraying a 25 µm thick, joule heated steel foil and by recording the thermal footprint of the ES plume using a Flir A-40 thermal imaging camera. The recorded results will then be analysed by in-house developed MATLAB code.

Keywords: electronic cooling, electrospray, electrospray plume dispersion, spray cooling

Procedia PDF Downloads 397
6671 Subsea Processing: Deepwater Operation and Production

Authors: Md Imtiaz, Sanchita Dei, Shubham Damke

Abstract:

In recent years, there has been a rapidly accelerating shift from traditional surface processing operations to subsea processing operation. This shift has been driven by a number of factors including the depletion of shallow fields around the world, technological advances in subsea processing equipment, the need for production from marginal fields, and lower initial upfront investment costs compared to traditional production facilities. Moving production facilities to the seafloor offers a number of advantage, including a reduction in field development costs, increased production rates from subsea wells, reduction in the need for chemical injection, minimization of risks to worker ,reduction in spills due to hurricane damage, and increased in oil production by enabling production from marginal fields. Subsea processing consists of a range of technologies for separation, pumping, compression that enables production from offshore well without the need for surface facilities. At present, there are two primary technologies being used for subsea processing: subsea multiphase pumping and subsea separation. Multiphase pumping is the most basic subsea processing technology. Multiphase pumping involves the use of boosting system to transport the multiphase mixture through pipelines to floating production vessels. The separation system is combined with single phase pumps or water would be removed and either pumped to the surface, re-injected, or discharged to the sea. Subsea processing can allow for an entire topside facility to be decommissioned and the processed fluids to be tied back to a new, more distant, host. This type of application reduces costs and increased both overall facility and integrity and recoverable reserve. In future, full subsea processing could be possible, thereby eliminating the need for surface facilities.

Keywords: FPSO, marginal field, Subsea processing, SWAG

Procedia PDF Downloads 413
6670 Screening and Optimization of Pretreatments for Rice Straw and Their Utilization for Bioethanol Production Using Developed Yeast Strain

Authors: Ganesh Dattatraya Saratale, Min Kyu Oh

Abstract:

Rice straw is one of the most abundant lignocellulosic waste materials and its annual production is about 731 Mt in the world. This study treats the subject of effective utilization of this waste biomass for biofuels production. We have showed a comparative assessment of numerous pretreatment strategies for rice straw, comprising of major physical, chemical and physicochemical methods. Among the different methods employed for pretreatment alkaline pretreatment in combination with sodium chlorite/acetic acid delignification found efficient pretreatment with significant improvement in the enzymatic digestibility of rice straw. A cellulase dose of 20 filter paper units (FPU) released a maximum 63.21 g/L of reducing sugar with 94.45% hydrolysis yield and 64.64% glucose yield from rice straw, respectively. The effects of different pretreatment methods on biomass structure and complexity were investigated by FTIR, XRD and SEM analytical techniques. Finally the enzymatic hydrolysate of rice straw was used for ethanol production using developed Saccharomyces cerevisiae SR8. The developed yeast strain enabled efficient fermentation of xylose and glucose and produced higher ethanol production. Thus development of bioethanol production from lignocellulosic waste biomass is generic, applicable methodology and have great implication for using ‘green raw materials’ and producing ‘green products’ much needed today.

Keywords: rice straw, pretreatment, enzymatic hydrolysis, FPU, Saccharomyces cerevisiae SR8, ethanol fermentation

Procedia PDF Downloads 538
6669 The Techno-Economic Comparison of Solar Power Generation Methods for Turkish Republic of North Cyprus

Authors: Mustafa Dagbasi, Olusola Bamisile, Adii Chinedum

Abstract:

The objective of this work is to examine and compare the economic and environmental feasibility of 40MW photovoltaic (PV) power plant and 40MW parabolic trough (PT) power plant to be installed in two different cities, namely Nicosia and Famagusta in Turkish Republic of Northern Cyprus (TRNC). The need for using solar power technology around the world is also emphasized. Solar radiation and sunshine data for Nicosia and Famagusta are considered and analyzed to assess the distribution of solar radiation, sunshine duration, and air temperature. Also, these two different technologies with same rated power of 40MW will be compared with the performance of the proposed Solar Power Plant at Bari, Italy. The project viability analysis is performed using System Advisor Model (SAM) through Annual Energy Production and economic parameters for both cities. It is found that for the two cities; Nicosia and Famagusta, the investment is feasible for both 40MW PV power plant and 40MW PT power plant. From the techno-economic analysis of these two different solar power technologies having same rated power and under the same environmental conditions, PT plants produce more energy than PV plant. It is also seen that if a PT plant is installed near an existing steam turbine power plant, the steam from the PT system can be used to run this turbine which makes it more feasible to invest. The high temperatures that are used to produce steam for the turbines in the PT plant system can be supplemented with a secondary plant based on natural gas or other biofuels and can be used as backup. Although the initial investment of PT plant is higher, it has higher economic return and occupies smaller area compared to PV plant of the same capacity.

Keywords: solar power, photovoltaic plant, parabolic trough plant, techno-economic analysis

Procedia PDF Downloads 283
6668 Safe and Efficient Deep Reinforcement Learning Control Model: A Hydroponics Case Study

Authors: Almutasim Billa A. Alanazi, Hal S. Tharp

Abstract:

Safe performance and efficient energy consumption are essential factors for designing a control system. This paper presents a reinforcement learning (RL) model that can be applied to control applications to improve safety and reduce energy consumption. As hardware constraints and environmental disturbances are imprecise and unpredictable, conventional control methods may not always be effective in optimizing control designs. However, RL has demonstrated its value in several artificial intelligence (AI) applications, especially in the field of control systems. The proposed model intelligently monitors a system's success by observing the rewards from the environment, with positive rewards counting as a success when the controlled reference is within the desired operating zone. Thus, the model can determine whether the system is safe to continue operating based on the designer/user specifications, which can be adjusted as needed. Additionally, the controller keeps track of energy consumption to improve energy efficiency by enabling the idle mode when the controlled reference is within the desired operating zone, thus reducing the system energy consumption during the controlling operation. Water temperature control for a hydroponic system is taken as a case study for the RL model, adjusting the variance of disturbances to show the model’s robustness and efficiency. On average, the model showed safety improvement by up to 15% and energy efficiency improvements by 35%- 40% compared to a traditional RL model.

Keywords: control system, hydroponics, machine learning, reinforcement learning

Procedia PDF Downloads 185
6667 Ingenious Eco-Technology for Transforming Food and Tanneries Waste into a Soil Bio-Conditioner and Fertilizer Product Used for Recovery and Enhancement of the Productive Capacity of the Soil

Authors: Petre Voicu, Mircea Oaida, Radu Vasiu, Catalin Gheorghiu, Aurel Dumitru

Abstract:

The present work deals with the way in which food and tobacco waste can be used in agriculture. As a result of the lack of efficient technologies for their recycling, we are currently faced with the appearance of appreciable quantities of residual organic residues that find their use only very rarely and only after long storage in landfills. The main disadvantages of long storage of organic waste are the unpleasant smell, the high content of pathogenic agents, and the high content in the water. The release of these enormous amounts imperatively demands the finding of solutions to ensure the avoidance of environmental pollution. The measure practiced by us consists of the processing of this waste in special installations, testing in pilot experimental perimeters, and later administration on agricultural lands without harming the quality of the soil, agricultural crops, and the environment. The current crisis of raw materials and energy also raises special problems in the field of organic waste valorization, an activity that takes place with low energy consumption. At the same time, their composition recommends them as useful secondary sources in agriculture. The transformation of food scraps and other residues concentrated organics thus acquires a new orientation, in which these materials are seen as important secondary resources. The utilization of food and tobacco waste in agriculture is also stimulated by the increasing lack of chemical fertilizers and the continuous increase in their price, under the conditions that the soil requires increased amounts of fertilizers in order to obtain high, stable, and profitable production. The need to maintain and increase the humus content of the soil is also taken into account, as an essential factor of its fertility, as a source and reserve of nutrients and microelements, as an important factor in increasing the buffering capacity of the soil, and the more reserved use of chemical fertilizers, improving the structure and permeability for water with positive effects on the quality of agricultural works and preventing the excess and/or deficit of moisture in the soil.

Keywords: ecology, soil, organic waste, fertility

Procedia PDF Downloads 80