Search results for: dimensional accuracy of holes drilled in composites
5451 Discovering Word-Class Deficits in Persons with Aphasia
Authors: Yashaswini Channabasavegowda, Hema Nagaraj
Abstract:
Aim: The current study aims at discovering word-class deficits concerning the noun-verb ratio in confrontation naming, picture description, and picture-word matching tasks. A total of ten persons with aphasia (PWA) and ten age-matched neurotypical individuals (NTI) were recruited for the study. The research includes both behavioural and objective measures to assess the word class deficits in PWA. Objective: The main objective of the research is to identify word class deficits seen in persons with aphasia, using various speech eliciting tasks. Method: The study was conducted in the L1 of the participants, considered to be Kannada. Action naming test and Boston naming test adapted to the Kannada version are administered to the participants; also, a picture description task is carried out. Picture-word matching task was carried out using e-prime software (version 2) to measure the accuracy and reaction time with respect to identification verbs and nouns. The stimulus was presented through auditory and visual modes. Data were analysed to identify errors noticed in the naming of nouns versus verbs, with respect to the Boston naming test and action naming test and also usage of nouns and verbs in the picture description task. Reaction time and accuracy for picture-word matching were extracted from the software. Results: PWA showed a significant difference in sentence structure compared to age-matched NTI. Also, PWA showed impairment in syntactic measures in the picture description task, with fewer correct grammatical sentences and fewer correct usage of verbs and nouns, and they produced a greater proportion of nouns compared to verbs. PWA had poorer accuracy and lesser reaction time in the picture-word matching task compared to NTI, and accuracy was higher for nouns compared to verbs in PWA. The deficits were noticed irrespective of the cause leading to aphasia.Keywords: nouns, verbs, aphasia, naming, description
Procedia PDF Downloads 1015450 Filled Polymer Composite
Authors: Adishirin Mammadov
Abstract:
Polymers and polymer composites play vital roles in diverse industries, including food and beverage packaging, transportation innovations, and medical advancements. However, the advancements in polymer technology bring certain risks, particularly concerning water and soil pollution due to the presence of polymers. The creation of new polymers is a critical aspect of this field. While the primary focus is on improving their physical and chemical properties, ensuring their ecological compatibility is equally important. An advanced method for developing innovative polymer types involves integrating fillers with diverse characteristics, offering advantages such as cost reduction and improved quality indicators. In the conducted research, efforts were made to enhance environmental aspects by employing waste fillers. Specifically, low-density polyethylene (LDPE) was used as the polymer, and waste from cocoon factories was chosen as the filler. Following a process of cleaning, drying, and crushing the filler to specific dimensions, it was incorporated into polyethylene through a mechanical-chemical method under laboratory conditions. The varied rheological properties of the resulting polyethylene compositions examined at temperatures ranging from 145 to 165 degrees Celsius. These compositions demonstrated different rheological properties at various temperature intervals. Achieving homogeneity in the obtained compositions is crucial in the polymers mechanochemical process. Beyond rheological properties, swelling rates in different environments and percentages of mass loss at different temperatures learned using the differential thermal analysis method. The research revealed that, to a certain extent, the physico-chemical properties of polyethylene were not significantly affected by the polymer compositions. This suggests that incorporating cocoon waste enables cost reduction in composite production while positively impacting the environment.Keywords: polyethylene, polymer, composites, filler, reology
Procedia PDF Downloads 545449 Automatic Measurement of Garment Sizes Using Deep Learning
Authors: Maulik Parmar, Sumeet Sandhu
Abstract:
The online fashion industry experiences high product return rates. Many returns are because of size/fit mismatches -the size scale on labels can vary across brands, the size parameters may not capture all fit measurements, or the product may have manufacturing defects. Warehouse quality check of garment sizes can be semi-automated to improve speed and accuracy. This paper presents an approach for automatically measuring garment sizes from a single image of the garment -using Deep Learning to learn garment keypoints. The paper focuses on the waist size measurement of jeans and can be easily extended to other garment types and measurements. Experimental results show that this approach can greatly improve the speed and accuracy of today’s manual measurement process.Keywords: convolutional neural networks, deep learning, distortion, garment measurements, image warping, keypoints
Procedia PDF Downloads 3075448 Minimum-Fuel Optimal Trajectory for Reusable First-Stage Rocket Landing Using Particle Swarm Optimization
Authors: Kevin Spencer G. Anglim, Zhenyu Zhang, Qingbin Gao
Abstract:
Reusable launch vehicles (RLVs) present a more environmentally-friendly approach to accessing space when compared to traditional launch vehicles that are discarded after each flight. This paper studies the recyclable nature of RLVs by presenting a solution method for determining minimum-fuel optimal trajectories using principles from optimal control theory and particle swarm optimization (PSO). This problem is formulated as a minimum-landing error powered descent problem where it is desired to move the RLV from a fixed set of initial conditions to three different sets of terminal conditions. However, unlike other powered descent studies, this paper considers the highly nonlinear effects caused by atmospheric drag, which are often ignored for studies on the Moon or on Mars. Rather than optimizing the controls directly, the throttle control is assumed to be bang-off-bang with a predetermined thrust direction for each phase of flight. The PSO method is verified in a one-dimensional comparison study, and it is then applied to the two-dimensional cases, the results of which are illustrated.Keywords: minimum-fuel optimal trajectory, particle swarm optimization, reusable rocket, SpaceX
Procedia PDF Downloads 2775447 Wire Localization Procedures in Non-Palpable Breast Cancers: An Audit Report and Review of Literature
Authors: Waqas Ahmad, Eisha Tahir, Shahper Aqeel, Imran Khalid Niazi, Amjad Iqbal
Abstract:
Background: Breast conservation surgery applies a number of techniques for accurate localization of lesions. Wire localization remains the method of choice in non-palpable breast cancers post-neoadjuvant chemotherapy. Objective: The aim of our study was to determine the accuracy of wire localization procedures in our department and compare it with internationally set protocols as per the Royal College of Radiologists. Post wire mammography, as well as the margin status of the postoperative specimen, assessed the accuracy of the procedure. Methods: We retrospectively reviewed the data of 225 patients who presented to our department from May 2014 to June 2015 post neoadjuvant chemotherapy with non-palpable cancers. These patients are candidates for wire localized lumpectomies either under ultrasound or stereotactic guidance. Metallic marker was placed in all the patients at the time of biopsy. Post wire mammogram was performed in all the patients and the distance of the wire tip from the marker was calculated. The presence or absence of the metallic clip in the postoperative specimen, as well as the marginal status of the postoperative specimen, was noted. Results: 157 sonographic and 68 stereotactic wire localization procedures were performed. 95% of the wire tips were within 1 cm of the metallic marker. Marginal status was negative in 94% of the patients in histopathological specimen. Conclusion: Our audit report declares more than 95% accuracy of image guided wire localization in successful excision of non-palpable breast lesions.Keywords: breast, cancer, non-palpable, wire localization
Procedia PDF Downloads 3055446 Documents Emotions Classification Model Based on TF-IDF Weighting Measure
Authors: Amr Mansour Mohsen, Hesham Ahmed Hassan, Amira M. Idrees
Abstract:
Emotions classification of text documents is applied to reveal if the document expresses a determined emotion from its writer. As different supervised methods are previously used for emotion documents’ classification, in this research we present a novel model that supports the classification algorithms for more accurate results by the support of TF-IDF measure. Different experiments have been applied to reveal the applicability of the proposed model, the model succeeds in raising the accuracy percentage according to the determined metrics (precision, recall, and f-measure) based on applying the refinement of the lexicon, integration of lexicons using different perspectives, and applying the TF-IDF weighting measure over the classifying features. The proposed model has also been compared with other research to prove its competence in raising the results’ accuracy.Keywords: emotion detection, TF-IDF, WEKA tool, classification algorithms
Procedia PDF Downloads 4825445 An Automatic Speech Recognition Tool for the Filipino Language Using the HTK System
Authors: John Lorenzo Bautista, Yoon-Joong Kim
Abstract:
This paper presents the development of a Filipino speech recognition tool using the HTK System. The system was trained from a subset of the Filipino Speech Corpus developed by the DSP Laboratory of the University of the Philippines-Diliman. The speech corpus was both used in training and testing the system by estimating the parameters for phonetic HMM-based (Hidden-Markov Model) acoustic models. Experiments on different mixture-weights were incorporated in the study. The phoneme-level word-based recognition of a 5-state HMM resulted in an average accuracy rate of 80.13 for a single-Gaussian mixture model, 81.13 after implementing a phoneme-alignment, and 87.19 for the increased Gaussian-mixture weight model. The highest accuracy rate of 88.70% was obtained from a 5-state model with 6 Gaussian mixtures.Keywords: Filipino language, Hidden Markov Model, HTK system, speech recognition
Procedia PDF Downloads 4785444 An Observation Approach of Reading Order for Single Column and Two Column Layout Template
Authors: In-Tsang Lin, Chiching Wei
Abstract:
Reading order is an important task in many digitization scenarios involving the preservation of the logical structure of a document. From the paper survey, it finds that the state-of-the-art algorithm could not fulfill to get the accurate reading order in the portable document format (PDF) files with rich formats, diverse layout arrangement. In recent years, most of the studies on the analysis of reading order have targeted the specific problem of associating layout components with logical labels, while less attention has been paid to the problem of extracting relationships the problem of detecting the reading order relationship between logical components, such as cross-references. Over 3 years of development, the company Foxit has demonstrated the layout recognition (LR) engine in revision 20601 to eager for the accuracy of the reading order. The bounding box of each paragraph can be obtained correctly by the Foxit LR engine, but the result of reading-order is not always correct for single-column, and two-column layout format due to the table issue, formula issue, and multiple mini separated bounding box and footer issue. Thus, the algorithm is developed to improve the accuracy of the reading order based on the Foxit LR structure. In this paper, a creative observation method (Here called the MESH method) is provided here to open a new chance in the research of the reading-order field. Here two important parameters are introduced, one parameter is the number of the bounding box on the right side of the present bounding box (NRight), and another parameter is the number of the bounding box under the present bounding box (Nunder). And the normalized x-value (x/the whole width), the normalized y-value (y/the whole height) of each bounding box, the x-, and y- position of each bounding box were also put into consideration. Initial experimental results of single column layout format demonstrate a 19.33% absolute improvement in accuracy of the reading-order over 7 PDF files (total 150 pages) using our proposed method based on the LR structure over the baseline method using the LR structure in 20601 revision, which its accuracy of the reading-order is 72%. And for two-column layout format, the preliminary results demonstrate a 44.44% absolute improvement in accuracy of the reading-order over 2 PDF files (total 18 pages) using our proposed method based on the LR structure over the baseline method using the LR structure in 20601 revision, which its accuracy of the reading-order is 0%. Until now, the footer issue and a part of multiple mini separated bounding box issue can be solved by using the MESH method. However, there are still three issues that cannot be solved, such as the table issue, formula issue, and the random multiple mini separated bounding boxes. But the detection of the table position and the recognition of the table structure are out of the scope in this paper, and there is needed another research. In the future, the tasks are chosen- how to detect the table position in the page and to extract the content of the table.Keywords: document processing, reading order, observation method, layout recognition
Procedia PDF Downloads 1795443 Electroencephalogram Based Alzheimer Disease Classification using Machine and Deep Learning Methods
Authors: Carlos Roncero-Parra, Alfonso Parreño-Torres, Jorge Mateo Sotos, Alejandro L. Borja
Abstract:
In this research, different methods based on machine/deep learning algorithms are presented for the classification and diagnosis of patients with mental disorders such as alzheimer. For this purpose, the signals obtained from 32 unipolar electrodes identified by non-invasive EEG were examined, and their basic properties were obtained. More specifically, different well-known machine learning based classifiers have been used, i.e., support vector machine (SVM), Bayesian linear discriminant analysis (BLDA), decision tree (DT), Gaussian Naïve Bayes (GNB), K-nearest neighbor (KNN) and Convolutional Neural Network (CNN). A total of 668 patients from five different hospitals have been studied in the period from 2011 to 2021. The best accuracy is obtained was around 93 % in both ADM and ADA classifications. It can be concluded that such a classification will enable the training of algorithms that can be used to identify and classify different mental disorders with high accuracy.Keywords: alzheimer, machine learning, deep learning, EEG
Procedia PDF Downloads 1255442 Evaluating the Tracking Abilities of Microsoft HoloLens-1 for Small-Scale Industrial Processes
Authors: Kuhelee Chandel, Julia Åhlén, Stefan Seipel
Abstract:
This study evaluates the accuracy of Microsoft HoloLens (Version 1) for small-scale industrial activities, comparing its measurements to ground truth data from a Kuka Robotics arm. Two experiments were conducted to assess its position-tracking capabilities, revealing that the HoloLens device is effective for measuring the position of dynamic objects with small dimensions. However, its precision is affected by the velocity of the trajectory and its position within the device's field of view. While the HoloLens device may be suitable for small-scale tasks, its limitations for more complex and demanding applications requiring high precision and accuracy must be considered. The findings can guide the use of HoloLens devices in industrial applications and contribute to the development of more effective and reliable position-tracking systems.Keywords: augmented reality (AR), Microsoft HoloLens, object tracking, industrial processes, manufacturing processes
Procedia PDF Downloads 1335441 Time Efficient Color Coding for Structured-Light 3D Scanner
Authors: Po-Hao Huang, Pei-Ju Chiang
Abstract:
The structured light 3D scanner is commonly used for measuring the 3D shape of an object. Through projecting designed light patterns on the object, deformed patterns can be obtained and used for the geometric shape reconstruction. At present, Gray code is the most reliable and commonly used light pattern in the structured light 3D scanner. However, the trade-off between scanning efficiency and accuracy is a long-standing and challenging problem. The design of light patterns plays a significant role in the scanning efficiency and accuracy. Thereby, we proposed a novel encoding method integrating color information and Gray-code to improve the scanning efficiency. We will demonstrate that with the proposed method, the scanning time can be reduced to approximate half of the one needed by Gray-code without reduction of precision.Keywords: gray-code, structured light scanner, 3D shape acquisition, 3D reconstruction
Procedia PDF Downloads 4565440 In-Situ Formation of Particle Reinforced Aluminium Matrix Composites by Laser Powder Bed Fusion of Fe₂O₃/AlSi12 Powder Mixture Using Consecutive Laser Melting+Remelting Strategy
Authors: Qimin Shi, Yi Sun, Constantinus Politis, Shoufeng Yang
Abstract:
In-situ preparation of particle-reinforced aluminium matrix composites (PRAMCs) by laser powder bed fusion (LPBF) additive manufacturing is a promising strategy to strengthen traditional Al-based alloys. The laser-driven thermite reaction can be a practical mechanism to in-situ synthesize PRAMCs. However, introducing oxygen elements through adding Fe₂O₃ makes the powder mixture highly sensitive to form porosity and Al₂O₃ film during LPBF, bringing challenges to producing dense Al-based materials. Therefore, this work develops a processing strategy combined with consecutive high-energy laser melting scanning and low-energy laser remelting scanning to prepare PRAMCs from a Fe₂O₃/AlSi12 powder mixture. The powder mixture consists of 5 wt% Fe₂O₃ and the remainder AlSi12 powder. The addition of 5 wt% Fe₂O₃ aims to achieve balanced strength and ductility. A high relative density (98.2 ± 0.55 %) was successfully obtained by optimizing laser melting (Emelting) and laser remelting surface energy density (Eremelting) to Emelting = 35 J/mm² and Eremelting = 5 J/mm². Results further reveal the necessity of increasing Emelting, to improve metal liquid’s spreading/wetting by breaking up the Al₂O₃ films surrounding the molten pools; however, the high-energy laser melting produced much porosity, including H₂₋, O₂₋ and keyhole-induced pores. The subsequent low-energy laser remelting could close the resulting internal pores, backfill open gaps and smoothen solidified surfaces. As a result, the material was densified by repeating laser melting and laser remelting layer by layer. Although with two-times laser scanning, the microstructure still shows fine cellular Si networks with Al grains inside (grain size of about 370 nm) and in-situ nano-precipitates (Al₂O₃, Si, and Al-Fe(-Si) intermetallics). Finally, the fine microstructure, nano-structured dispersion strengthening, and high-level densification strengthened the in-situ PRAMCs, reaching yield strength of 426 ± 4 MPa and tensile strength of 473 ± 6 MPa. Furthermore, the results can expect to provide valuable information to process other powder mixtures with severe porosity/oxide-film formation potential, considering the evidenced contribution of laser melting/remelting strategy to densify material and obtain good mechanical properties during LPBF.Keywords: densification, laser powder bed fusion, metal matrix composites, microstructures, mechanical properties
Procedia PDF Downloads 1555439 Preparation and Electro-Optic Characteristics of Polymer Network Liquid Crystals Based On Polymethylvinilpirydine and Polyethylene Glycol
Authors: T. D. Ibragimov, A. R. Imamaliyev, G. M. Bayramov
Abstract:
The polymer network liquid crystals based on the liquid crystals Н37 and 5CB with polymethylvinilpirydine (PMVP) and polyethylene glycol (PEG) have been developed. Mesogene substance 4-n-heptyoxibenzoic acid (HOBA) is served for stabilization of obtaining composites. Kinetics of network formation is investigated by methods of polarization microscopy and integrated small-angle scattering. It is shown that gel-like states of the composite H-37 + PMVP + HOBA and 5CB+PEG+HOBA are formed at polymer concentration above 7 % and 9 %, correspondingly. At slow cooling, the system separates into a liquid crystal –rich phase and a liquid crystal-poor phase. At this case, transition of these phases in the H-37 + PMVP + HOBA (87 % + 12 % + 1 %) composite to an anisotropic state occurs at 49 оС and и 41 оС, accordingly, while the composite 5CB+PEG+HOBA (85% +13 % +2%) passes to anisotropic state at 36 оС corresponding to the isotropic-nematic transition of pure 5CB. The basic electro-optic parameters of the obtained composites are determined at room temperature. It is shown that the threshold voltage of the composite H-37 + PMVP + HOBA increase in comparison with pure H-37 and, accordingly, there is a shift of voltage dependence of rise times to the high voltage region. The contrast ratio worsens while decay time improves in comparison with the pure liquid crystal at all applied voltage. The switching times of the composite 5CB + PEG + HOBA (85% +13 % +2%) show anomalous behavior connected with incompleteness of the transition to an anisotropic state. Experimental results are explained by phase separation of the system, diminution of a working area of electro-optical effects and influence of areas with the high polymer concentration on areas with their low concentration.Keywords: liquid crystals, polymers, small-angle scattering, optical properties
Procedia PDF Downloads 6165438 Three-Dimensional, Non-Linear Finite Element Analysis of Bullet Penetration through Thin AISI 4340 Steel Target Plate
Authors: Abhishek Soni, A. Kumaraswamy, M. S. Mahesh
Abstract:
Bullet penetration in steel plate is investigated with the help of three-dimensional, non-linear, transient, dynamic, finite elements analysis using explicit time integration code LSDYNA. The effect of large strain, strain-rate and temperature at very high velocity regime was studied from number of simulations of semi-spherical nose shape bullet penetration through single layered circular plate with 2 mm thickness at impact velocities of 500, 1000, and 1500 m/s with the help of Johnson Cook material model. Mie-Gruneisen equation of state is used in conjunction with Johnson Cook material model to determine pressure-volume relationship at various points of interests. Two material models viz. Plastic-Kinematic and Johnson- Cook resulted in different deformation patterns in steel plate. It is observed from the simulation results that the velocity drop and loss of kinetic energy occurred very quickly up to perforation of plate, after that the change in velocity and changes in kinetic energy are negligibly small. The physics behind this kind of behaviour is presented in the paper.Keywords: AISI 4340 steel, ballistic impact simulation, bullet penetration, non-linear FEM
Procedia PDF Downloads 2075437 Terrestrial Laser Scans to Assess Aerial LiDAR Data
Authors: J. F. Reinoso-Gordo, F. J. Ariza-López, A. Mozas-Calvache, J. L. García-Balboa, S. Eddargani
Abstract:
The DEMs quality may depend on several factors such as data source, capture method, processing type used to derive them, or the cell size of the DEM. The two most important capture methods to produce regional-sized DEMs are photogrammetry and LiDAR; DEMs covering entire countries have been obtained with these methods. The quality of these DEMs has traditionally been evaluated by the national cartographic agencies through punctual sampling that focused on its vertical component. For this type of evaluation there are standards such as NMAS and ASPRS Positional Accuracy Standards for Digital Geospatial Data. However, it seems more appropriate to carry out this evaluation by means of a method that takes into account the superficial nature of the DEM and, therefore, its sampling is superficial and not punctual. This work is part of the Research Project "Functional Quality of Digital Elevation Models in Engineering" where it is necessary to control the quality of a DEM whose data source is an experimental LiDAR flight with a density of 14 points per square meter to which we call Point Cloud Product (PCpro). In the present work it is described the capture data on the ground and the postprocessing tasks until getting the point cloud that will be used as reference (PCref) to evaluate the PCpro quality. Each PCref consists of a patch 50x50 m size coming from a registration of 4 different scan stations. The area studied was the Spanish region of Navarra that covers an area of 10,391 km2; 30 patches homogeneously distributed were necessary to sample the entire surface. The patches have been captured using a Leica BLK360 terrestrial laser scanner mounted on a pole that reached heights of up to 7 meters; the position of the scanner was inverted so that the characteristic shadow circle does not exist when the scanner is in direct position. To ensure that the accuracy of the PCref is greater than that of the PCpro, the georeferencing of the PCref has been carried out with real-time GNSS, and its accuracy positioning was better than 4 cm; this accuracy is much better than the altimetric mean square error estimated for the PCpro (<15 cm); The kind of DEM of interest is the corresponding to the bare earth, so that it was necessary to apply a filter to eliminate vegetation and auxiliary elements such as poles, tripods, etc. After the postprocessing tasks the PCref is ready to be compared with the PCpro using different techniques: cloud to cloud or after a resampling process DEM to DEM.Keywords: data quality, DEM, LiDAR, terrestrial laser scanner, accuracy
Procedia PDF Downloads 995436 Enabling Non-invasive Diagnosis of Thyroid Nodules with High Specificity and Sensitivity
Authors: Sai Maniveer Adapa, Sai Guptha Perla, Adithya Reddy P.
Abstract:
Thyroid nodules can often be diagnosed with ultrasound imaging, although differentiating between benign and malignant nodules can be challenging for medical professionals. This work suggests a novel approach to increase the precision of thyroid nodule identification by combining machine learning and deep learning. The new approach first extracts information from the ultrasound pictures using a deep learning method known as a convolutional autoencoder. A support vector machine, a type of machine learning model, is then trained using these features. With an accuracy of 92.52%, the support vector machine can differentiate between benign and malignant nodules. This innovative technique may decrease the need for pointless biopsies and increase the accuracy of thyroid nodule detection.Keywords: thyroid tumor diagnosis, ultrasound images, deep learning, machine learning, convolutional auto-encoder, support vector machine
Procedia PDF Downloads 565435 Automatic Reporting System for Transcriptome Indel Identification and Annotation Based on Snapshot of Next-Generation Sequencing Reads Alignment
Authors: Shuo Mu, Guangzhi Jiang, Jinsa Chen
Abstract:
The analysis of Indel for RNA sequencing of clinical samples is easily affected by sequencing experiment errors and software selection. In order to improve the efficiency and accuracy of analysis, we developed an automatic reporting system for Indel recognition and annotation based on image snapshot of transcriptome reads alignment. This system includes sequence local-assembly and realignment, target point snapshot, and image-based recognition processes. We integrated high-confidence Indel dataset from several known databases as a training set to improve the accuracy of image processing and added a bioinformatical processing module to annotate and filter Indel artifacts. Subsequently, the system will automatically generate data, including data quality levels and images results report. Sanger sequencing verification of the reference Indel mutation of cell line NA12878 showed that the process can achieve 83% sensitivity and 96% specificity. Analysis of the collected clinical samples showed that the interpretation accuracy of the process was equivalent to that of manual inspection, and the processing efficiency showed a significant improvement. This work shows the feasibility of accurate Indel analysis of clinical next-generation sequencing (NGS) transcriptome. This result may be useful for RNA study for clinical samples with microsatellite instability in immunotherapy in the future.Keywords: automatic reporting, indel, next-generation sequencing, NGS, transcriptome
Procedia PDF Downloads 1905434 A Case Study of Bee Algorithm for Ready Mixed Concrete Problem
Authors: Wuthichai Wongthatsanekorn, Nuntana Matheekrieangkrai
Abstract:
This research proposes Bee Algorithm (BA) to optimize Ready Mixed Concrete (RMC) truck scheduling problem from single batch plant to multiple construction sites. This problem is considered as an NP-hard constrained combinatorial optimization problem. This paper provides the details of the RMC dispatching process and its related constraints. BA was then developed to minimize total waiting time of RMC trucks while satisfying all constraints. The performance of BA is then evaluated on two benchmark problems (3 and 5construction sites) according to previous researchers. The simulation results of BA are compared in term of efficiency and accuracy with Genetic Algorithm (GA) and all problems show that BA approach outperforms GA in term of efficiency and accuracy to obtain optimal solution. Hence, BA approach could be practically implemented to obtain the best schedule.Keywords: bee colony optimization, ready mixed concrete problem, ruck scheduling, multiple construction sites
Procedia PDF Downloads 3845433 Effect of Cantilever Sheet Pile Wall to Adjacent Buildings
Authors: Ahmed A. Mohamed Aly
Abstract:
Ground movements induced from excavations is a major cause of deformation and damage to the adjacent buildings and utilities. With the increasing rate of construction work in urban area, this problem is growing more significant and has become the cause of numerous legal disputes. This problem is investigated numerically in the present study using finite element method. Five-story reinforced concrete building rests on raft foundation is idealized as two dimensional model. The building is considered to be constructed adjacent to excavation affected by an adjacent excavation in medium sand. Excavation is supported using sheet pile wall. Two dimensional plane strain program PLAXIS is used in this study. 15 nodes triangular element is used to idealize soil with Mohr-Coulomb model. Five nodes isoperimetric beam element is used to idealize sheet pile and building. Interface element is used to represent the contact between beam element and soil. Two parameters were studied, the first is the foundation depth and the second is the building distance from the excavation. Nodal displacements and elements straining actions were obtained and studied from the analyzed finite element model results.Keywords: excavation, relative distance, effective stresses, lateral deformation, relative depth
Procedia PDF Downloads 1375432 Acid Injection PTFE Internal Lining in Raw Water System
Authors: Fikri Suwaileh
Abstract:
In the reverse osmosis (RO) water treatment plant, operation was suffering from several leaks on the acid injection point spool and downstream spools, due to insufficient injection monitoring and the coating failure leading to pin holes. The paper will go over the background of the leaks in the acid injection point, the process in the RO plant, the material, and coating used in the existing spools, the impact of these repeated leaks, the type of damage mechanism that occurred in the system due to the manner of acid injection and the heat in the spools, which lead to coating failure, leaks and water release. This paper will also look at the analysis, both the short- and long-term recommendations, and the utilization of Teflon internal lining to stop the leaks. Sharing this case study will enhance the knowledge of the importance of taking all factors that will lead to leaks in the acid injection points, along with the importance of utilizing the appropriate coating material lining to enhance the full system.Keywords: corrosion, coating, raw water, lining
Procedia PDF Downloads 195431 Passive Attenuation with Multiple Resonator Rings for Musical Instruments Equalization
Authors: Lorenzo Bonoldi, Gianluca Memoli, Abdelhalim Azbaid El Ouahabi
Abstract:
In this paper, a series of ring-shaped attenuators utilizing Helmholtz and quarter wavelength resonators in variable, fixed, and combined configurations have been manufactured using a 3D printer. We illustrate possible uses by incorporating such devices into musical instruments (e.g. in acoustic guitar sound holes) and audio speakers with a view to controlling such devices tonal emissions without electronic equalization systems. Numerical investigations into the transmission loss values of these ring-shaped attenuators using finite element method simulations (COMSOL Multiphysics) have been presented in the frequency range of 100– 1000 Hz. We compare such results for each attenuator model with experimental measurements using different driving sources such as white noise, a maximum-length sequence (MLS), square and sine sweep pulses, and point scans in the frequency domain. Finally, we present a preliminary discussion on the comparison of numerical and experimental results.Keywords: equaliser, metamaterials, musical, instruments
Procedia PDF Downloads 1725430 Prediction and Reduction of Cracking Issue in Precision Forging of Engine Valves Using Finite Element Method
Authors: Xi Yang, Bulent Chavdar, Alan Vonseggern, Taylan Altan
Abstract:
Fracture in hot precision forging of engine valves was investigated in this paper. The entire valve forging procedure was described and the possible cause of the fracture was proposed. Finite Element simulation was conducted for the forging process, with commercial Finite Element code DEFORMTM. The effects of material properties, the effect of strain rate and temperature were considered in the FE simulation. Two fracture criteria were discussed and compared, based on the accuracy and reliability of the FE simulation results. The selected criterion predicted the fracture location and shows the trend of damage increasing with good accuracy, which matches the experimental observation. Additional modification of the punch shapes was proposed to further reduce the tendency of fracture in forging. Finite Element comparison shows a great potential of such application in the mass production.Keywords: hotforging, engine valve, fracture, tooling
Procedia PDF Downloads 2765429 A Monopole Intravascular Antenna with Three Parasitic Elements Optimized for Higher Tesla MRI Systems
Authors: Mohammad Mohammadzadeh, Alireza Ghasempour
Abstract:
In this paper, a new design of monopole antenna has been proposed that increases the contrast of intravascular magnetic resonance images through increasing the homogeneity of the intrinsic signal-to-noise ratio (ISNR) distribution around the antenna. The antenna is made of a coaxial cable with three parasitic elements. Lengths and positions of the elements are optimized by the improved genetic algorithm (IGA) for 1.5, 3, 4.7, and 7Tesla MRI systems based on a defined cost function. Simulations were also conducted to verify the performance of the designed antenna. Our simulation results show that each time IGA is executed different values for the parasitic elements are obtained so that the cost functions of those antennas are high. According to the obtained results, IGA can also find the best values for the parasitic elements (regarding cost function) in the next executions. Additionally, two dimensional and one-dimensional maps of ISNR were drawn for the proposed antenna and compared to the previously published monopole antenna with one parasitic element at the frequency of 64MHz inside a saline phantom. Results verified that in spite of ISNR decreasing, there is a considerable improvement in the homogeneity of ISNR distribution of the proposed antenna so that their multiplication increases.Keywords: intravascular MR antenna, monopole antenna, parasitic elements, signal-to-noise ratio (SNR), genetic algorithm
Procedia PDF Downloads 2975428 Livestock Activity Monitoring Using Movement Rate Based on Subtract Image
Authors: Keunho Park, Sunghwan Jeong
Abstract:
The 4th Industrial Revolution, the next-generation industrial revolution, which is made up of convergence of information and communication technology (ICT), is no exception to the livestock industry, and various studies are being conducted to apply the livestock smart farm. In order to monitor livestock using sensors, it is necessary to drill holes in the organs such as the nose, ears, and even the stomach of the livestock to wear or insert the sensor into the livestock. This increases the stress of livestock, which in turn lowers the quality of livestock products or raises the issue of animal ethics, which has become a major issue in recent years. In this paper, we conducted a study to monitor livestock activity based on vision technology, effectively monitoring livestock activity without increasing animal stress and violating animal ethics. The movement rate was calculated based on the difference images between the frames, and the livestock activity was evaluated. As a result, the average F1-score was 96.67.Keywords: barn monitoring, livestock, machine vision, smart farm
Procedia PDF Downloads 1215427 An Ensemble-based Method for Vehicle Color Recognition
Authors: Saeedeh Barzegar Khalilsaraei, Manoocheher Kelarestaghi, Farshad Eshghi
Abstract:
The vehicle color, as a prominent and stable feature, helps to identify a vehicle more accurately. As a result, vehicle color recognition is of great importance in intelligent transportation systems. Unlike conventional methods which use only a single Convolutional Neural Network (CNN) for feature extraction or classification, in this paper, four CNNs, with different architectures well-performing in different classes, are trained to extract various features from the input image. To take advantage of the distinct capability of each network, the multiple outputs are combined using a stack generalization algorithm as an ensemble technique. As a result, the final model performs better than each CNN individually in vehicle color identification. The evaluation results in terms of overall average accuracy and accuracy variance show the proposed method’s outperformance compared to the state-of-the-art rivals.Keywords: Vehicle Color Recognition, Ensemble Algorithm, Stack Generalization, Convolutional Neural Network
Procedia PDF Downloads 815426 Discrimination of Bio-Analytes by Using Two-Dimensional Nano Sensor Array
Authors: P. Behera, K. K. Singh, D. K. Saini, M. De
Abstract:
Implementation of 2D materials in the detection of bio analytes is highly advantageous in the field of sensing because of its high surface to volume ratio. We have designed our sensor array with different cationic two-dimensional MoS₂, where surface modification was achieved by cationic thiol ligands with different functionality. Green fluorescent protein (GFP) was chosen as signal transducers for its biocompatibility and anionic nature, which can bind to the cationic MoS₂ surface easily, followed by fluorescence quenching. The addition of bio-analyte to the sensor can decomplex the cationic MoS₂ and GFP conjugates, followed by the regeneration of GFP fluorescence. The fluorescence response pattern belongs to various analytes collected and transformed to linear discriminant analysis (LDA) for classification. At first, 15 different proteins having wide range of molecular weight and isoelectric points were successfully discriminated at 50 nM with detection limit of 1 nM. The sensor system was also executed in biofluids such as serum, where 10 different proteins at 2.5 μM were well separated. After successful discrimination of protein analytes, the sensor array was implemented for bacteria sensing. Six different bacteria were successfully classified at OD = 0.05 with a detection limit corresponding to OD = 0.005. The optimized sensor array was able to classify uropathogens from non-uropathogens in urine medium. Further, the technique was applied for discrimination of bacteria possessing resistance to different types and amounts of drugs. We found out the mechanism of sensing through optical and electrodynamic studies, which indicates the interaction between bacteria with the sensor system was mainly due to electrostatic force of interactions, but the separation of native bacteria from their drug resistant variant was due to Van der Waals forces. There are two ways bacteria can be detected, i.e., through bacterial cells and lysates. The bacterial lysates contain intracellular information and also safe to analysis as it does not contain live cells. Lysates of different drug resistant bacteria were patterned effectively from the native strain. From unknown sample analysis, we found that discrimination of bacterial cells is more sensitive than that of lysates. But the analyst can prefer bacterial lysates over live cells for safer analysis.Keywords: array-based sensing, drug resistant bacteria, linear discriminant analysis, two-dimensional MoS₂
Procedia PDF Downloads 1425425 Accuracy of Small Field of View CBCT in Determining Endodontic Working Length
Authors: N. L. S. Ahmad, Y. L. Thong, P. Nambiar
Abstract:
An in vitro study was carried out to evaluate the feasibility of small field of view (FOV) cone beam computed tomography (CBCT) in determining endodontic working length. The objectives were to determine the accuracy of CBCT in measuring the estimated preoperative working lengths (EPWL), endodontic working lengths (EWL) and file lengths. Access cavities were prepared in 27 molars. For each root canal, the baseline electronic working length was determined using an EAL (Raypex 5). The teeth were then divided into overextended, non-modified and underextended groups and the lengths were adjusted accordingly. Imaging and measurements were made using the respective software of the RVG (Kodak RVG 6100) and CBCT units (Kodak 9000 3D). Root apices were then shaved and the apical constrictions viewed under magnification to measure the control working lengths. The paired t-test showed a statistically significant difference between CBCT EPWL and control length but the difference was too small to be clinically significant. From the Bland Altman analysis, the CBCT method had the widest range of 95% limits of agreement, reflecting its greater potential of error. In measuring file lengths, RVG had a bigger window of 95% limits of agreement compared to CBCT. Conclusions: (1) The clinically insignificant underestimation of the preoperative working length using small FOV CBCT showed that it is acceptable for use in the estimation of preoperative working length. (2) Small FOV CBCT may be used in working length determination but it is not as accurate as the currently practiced method of using the EAL. (3) It is also more accurate than RVG in measuring file lengths.Keywords: accuracy, CBCT, endodontics, measurement
Procedia PDF Downloads 3075424 Identification of Breast Anomalies Based on Deep Convolutional Neural Networks and K-Nearest Neighbors
Authors: Ayyaz Hussain, Tariq Sadad
Abstract:
Breast cancer (BC) is one of the widespread ailments among females globally. The early prognosis of BC can decrease the mortality rate. Exact findings of benign tumors can avoid unnecessary biopsies and further treatments of patients under investigation. However, due to variations in images, it is a tough job to isolate cancerous cases from normal and benign ones. The machine learning technique is widely employed in the classification of BC pattern and prognosis. In this research, a deep convolution neural network (DCNN) called AlexNet architecture is employed to get more discriminative features from breast tissues. To achieve higher accuracy, K-nearest neighbor (KNN) classifiers are employed as a substitute for the softmax layer in deep learning. The proposed model is tested on a widely used breast image database called MIAS dataset for experimental purposes and achieved 99% accuracy.Keywords: breast cancer, DCNN, KNN, mammography
Procedia PDF Downloads 1355423 Level Set and Morphological Operation Techniques in Application of Dental Image Segmentation
Authors: Abdolvahab Ehsani Rad, Mohd Shafry Mohd Rahim, Alireza Norouzi
Abstract:
Medical image analysis is one of the great effects of computer image processing. There are several processes to analysis the medical images which the segmentation process is one of the challenging and most important step. In this paper the segmentation method proposed in order to segment the dental radiograph images. Thresholding method has been applied to simplify the images and to morphologically open binary image technique performed to eliminate the unnecessary regions on images. Furthermore, horizontal and vertical integral projection techniques used to extract the each individual tooth from radiograph images. Segmentation process has been done by applying the level set method on each extracted images. Nevertheless, the experiments results by 90% accuracy demonstrate that proposed method achieves high accuracy and promising result.Keywords: integral production, level set method, morphological operation, segmentation
Procedia PDF Downloads 3155422 Reinforcement Learning for Classification of Low-Resolution Satellite Images
Authors: Khadija Bouzaachane, El Mahdi El Guarmah
Abstract:
The classification of low-resolution satellite images has been a worthwhile and fertile field that attracts plenty of researchers due to its importance in monitoring geographical areas. It could be used for several purposes such as disaster management, military surveillance, agricultural monitoring. The main objective of this work is to classify efficiently and accurately low-resolution satellite images by using novel technics of deep learning and reinforcement learning. The images include roads, residential areas, industrial areas, rivers, sea lakes, and vegetation. To achieve that goal, we carried out experiments on the sentinel-2 images considering both high accuracy and efficiency classification. Our proposed model achieved a 91% accuracy on the testing dataset besides a good classification for land cover. Focus on the parameter precision; we have obtained 93% for the river, 92% for residential, 97% for residential, 96% for the forest, 87% for annual crop, 84% for herbaceous vegetation, 85% for pasture, 78% highway and 100% for Sea Lake.Keywords: classification, deep learning, reinforcement learning, satellite imagery
Procedia PDF Downloads 211