Search results for: current efficiency
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14711

Search results for: current efficiency

13301 Technology Blending as an Innovative Construction Mechanism in the Global South

Authors: Janet Kaningen, Richard N. Kaningen, Jonas Kaningen

Abstract:

This paper aims to discover the best ways to improve production efficiency, cost efficiency, community cohesion, and long-term sustainability in Ghana's housing delivery. Advanced Construction Technologies (ACTs) are set to become the sustainable mainstay of the construction industry due to the demand for innovative housing solutions. Advances in material science, building component production, and assembly technologies are leading to the development of next-generation materials such as polymeric-fiber-based products, light-metal alloys, and eco-materials. Modular housing construction has become more efficient and cost-effective than traditional building methods and is becoming increasingly popular for commercial, industrial, and residential projects. Effective project management and logistics will be imperative in the future speed and cost of modular construction housing.

Keywords: technology blending, sustainability, housing, Ghana

Procedia PDF Downloads 87
13300 Photo Catalytic Treatment of Wastewater from Processing Poultry by-Products

Authors: J. Franco Macías, E. Montes Alba, A. López Vásquez

Abstract:

The growing development in the poultry industry has generated a strong and adverse impact on quality and availability of water resources. Inside this industry, is finding out the treatment of by-products such as feathers, viscera and blood demanding highly water consumption, generating contaminant discharges as well. As one of current of treatment of by-products is the effluent of cooking condensate steam that has contaminant organic load; therefore, it is necessary to implement removal treatments before discharging it toward water sources. The photo catalysis appears as a promising alternative of treatment due to the different advantages it has, among others, includes low cost, easily operation, high efficiency and elimination of a wide variety of contaminants in a watery environment. This study has evaluated a heterogeneous photo catalytic treatment for removal contaminant organic load. This process was developed in oxidation and reduction conditions. It was analyzed the effect of factors such as pH, catalyst and sacrifice agent concentration. Finally, good conditions to removal contaminant organic load were achieved to determine percentage of contaminant organic load by means of response surface methodology.

Keywords: poultry industry, advanced oxidation process, photocatalysis, photodegradation, TiO2

Procedia PDF Downloads 404
13299 Cascade Multilevel Inverter-Based Grid-Tie Single-Phase and Three-Phase-Photovoltaic Power System Controlling and Modeling

Authors: Syed Masood Hussain

Abstract:

An effective control method, including system-level control and pulse width modulation for quasi-Z-source cascade multilevel inverter (qZS-CMI) based grid-tie photovoltaic (PV) power system is proposed. The system-level control achieves the grid-tie current injection, independent maximum power point tracking (MPPT) for separate PV panels, and dc-link voltage balance for all quasi-Z-source H-bridge inverter (qZS-HBI) modules. A recent upsurge in the study of photovoltaic (PV) power generation emerges, since they directly convert the solar radiation into electric power without hampering the environment. However, the stochastic fluctuation of solar power is inconsistent with the desired stable power injected to the grid, owing to variations of solar irradiation and temperature. To fully exploit the solar energy, extracting the PV panels’ maximum power and feeding them into grids at unity power factor become the most important. The contributions have been made by the cascade multilevel inverter (CMI). Nevertheless, the H-bridge inverter (HBI) module lacks boost function so that the inverter KVA rating requirement has to be increased twice with a PV voltage range of 1:2; and the different PV panel output voltages result in imbalanced dc-link voltages. However, each HBI module is a two-stage inverter, and many extra dc–dc converters not only increase the complexity of the power circuit and control and the system cost, but also decrease the efficiency. Recently, the Z-source/quasi-Z-source cascade multilevel inverter (ZS/qZS-CMI)-based PV systems were proposed. They possess the advantages of both traditional CMI and Z-source topologies. In order to properly operate the ZS/qZS-CMI, the power injection, independent control of dc-link voltages, and the pulse width modulation (PWM) are necessary. The main contributions of this paper include: 1) a novel multilevel space vector modulation (SVM) technique for the single phase qZS-CMI is proposed, which is implemented without additional resources; 2) a grid-connected control for the qZS-CMI based PV system is proposed, where the all PV panel voltage references from their independent MPPTs are used to control the grid-tie current; the dual-loop dc-link peak voltage control.

Keywords: Quzi-Z source inverter, Photo voltaic power system, space vector modulation, cascade multilevel inverter

Procedia PDF Downloads 546
13298 Dust Particle Removal from Air in a Self-Priming Submerged Venturi Scrubber

Authors: Manisha Bal, Remya Chinnamma Jose, B.C. Meikap

Abstract:

Dust particles suspended in air are a major source of air pollution. A self-priming submerged venturi scrubber proven very effective in cases of handling nuclear power plant accidents is an efficient device to remove dust particles from the air and thus aids in pollution control. Venturi scrubbers are compact, have a simple mode of operation, no moving parts, easy to install and maintain when compared to other pollution control devices and can handle high temperatures and corrosive and flammable gases and dust particles. In the present paper, fly ash particles recognized as a high air pollutant substance emitted mostly from thermal power plants is considered as the dust particle. Its exposure through skin contact, inhalation and indigestion can lead to health risks and in severe cases can even root to lung cancer. The main focus of this study is on the removal of fly ash particles from polluted air using a self-priming venturi scrubber in submerged conditions using water as the scrubbing liquid. The venturi scrubber comprising of three sections: converging section, throat and diverging section is submerged inside a water tank. The liquid enters the throat due to the pressure difference composed of the hydrostatic pressure of the liquid and static pressure of the gas. The high velocity dust particles atomize the liquid droplets at the throat and this interaction leads to its absorption into water and thus removal of fly ash from the air. Detailed investigation on the scrubbing of fly ash has been done in this literature. Experiments were conducted at different throat gas velocities, water levels and fly ash inlet concentrations to study the fly ash removal efficiency. From the experimental results, the highest fly ash removal efficiency of 99.78% is achieved at the throat gas velocity of 58 m/s, water level of height 0.77m with fly ash inlet concentration of 0.3 x10⁻³ kg/Nm³ in the submerged condition. The effect of throat gas velocity, water level and fly ash inlet concentration on the removal efficiency has also been evaluated. Furthermore, experimental results of removal efficiency are validated with the developed empirical model.

Keywords: dust particles, fly ash, pollution control, self-priming venturi scrubber

Procedia PDF Downloads 164
13297 Integrating Virtual Reality and Building Information Model-Based Quantity Takeoffs for Supporting Construction Management

Authors: Chin-Yu Lin, Kun-Chi Wang, Shih-Hsu Wang, Wei-Chih Wang

Abstract:

A construction superintendent needs to know not only the amount of quantities of cost items or materials completed to develop a daily report or calculate the daily progress (earned value) in each day, but also the amount of quantities of materials (e.g., reinforced steel and concrete) to be ordered (or moved into the jobsite) for performing the in-progress or ready-to-start construction activities (e.g., erection of reinforced steel and concrete pouring). These daily construction management tasks require great effort in extracting accurate quantities in a short time (usually must be completed right before getting off work every day). As a result, most superintendents can only provide these quantity data based on either what they see on the site (high inaccuracy) or the extraction of quantities from two-dimension (2D) construction drawings (high time consumption). Hence, the current practice of providing the amount of quantity data completed in each day needs improvement in terms of more accuracy and efficiency. Recently, a three-dimension (3D)-based building information model (BIM) technique has been widely applied to support construction quantity takeoffs (QTO) process. The capability of virtual reality (VR) allows to view a building from the first person's viewpoint. Thus, this study proposes an innovative system by integrating VR (using 'Unity') and BIM (using 'Revit') to extract quantities to support the above daily construction management tasks. The use of VR allows a system user to be present in a virtual building to more objectively assess the construction progress in the office. This VR- and BIM-based system is also facilitated by an integrated database (consisting of the information and data associated with the BIM model, QTO, and costs). In each day, a superintendent can work through a BIM-based virtual building to quickly identify (via a developed VR shooting function) the building components (or objects) that are in-progress or finished in the jobsite. And he then specifies a percentage (e.g., 20%, 50% or 100%) of completion of each identified building object based on his observation on the jobsite. Next, the system will generate the completed quantities that day by multiplying the specified percentage by the full quantities of the cost items (or materials) associated with the identified object. A building construction project located in northern Taiwan is used as a case study to test the benefits (i.e., accuracy and efficiency) of the proposed system in quantity extraction for supporting the development of daily reports and the orders of construction materials.

Keywords: building information model, construction management, quantity takeoffs, virtual reality

Procedia PDF Downloads 132
13296 Double Negative Differential Resistance Features in GaN-Based Bipolar Resonance Tunneling Diodes

Authors: Renjie Liu, Junshuai Xue, Jiajia Yao, Guanlin Wu, Zumao L, Xueyan Yang, Fang Liu, Zhuang Guo

Abstract:

Here, we report the study of the performance of AlN/GaN bipolar resonance tunneling diodes (BRTDs) using numerical simulations. The I-V characteristics of BRTDs show double negative differential resistance regions, which exhibit similar peak current density and peak-to-valley current ratio (PVCR). Investigations show that the PVCR can approach 4.6 for the first and 5.75 for the second negative resistance region. The appearance of the two negative differential resistance regions is realized by changing the collector material of conventional GaN RTD to P-doped GaN. As the bias increases, holes in the P-region and electrons in the N-region undergo resonant tunneling, respectively, resulting in two negative resistance regions. The appearance of two negative resistance regions benefits from the high AlN barrier and the precise regulation of the potential well thickness. This result shows the promise of GaN BRTDs in the development of multi-valued logic circuits.

Keywords: GaN bipolar resonant tunneling diode, double negative differential resistance regions, peak to valley current ratio, multi-valued logic

Procedia PDF Downloads 162
13295 Evaluation of Corrosion in Steel Reinforced Concrete with Brick Waste

Authors: Julieta Daniela Chelaru, Maria Gorea

Abstract:

The massive demolition of old buildings in recent years has generated tons of waste, especially brick waste. Thus, a concern of recent research is the use of this waste for the production of environmentally friendly concrete. At the same time, corrosion in classical concrete is a current problem. In this context, in the present paper a study was carried out on the corrosion of metal reinforcement in cement mortars with brick waste. The corrosion process was analyzed on four compositions of mortars without and with 15 %, 25 % and 35 % bricks waste replacing the sand. The brick waste has a majority content in SiO2, Al₂O₃, FeO₃ and CaO. The grain size distribution of brick waste was close to that of the sand (dₘₐₓ = 3 mm). The preparation method of the samples was similar to ordinary mortars. The corrosion properties of concrete, at different waste bricks concentrations, on rebar, were investigated by electrochemical measurements (Tafel curves and EIS) at 1 and 6 months. The results obtained at 6 months revealed that the addition of the bricks waste in mortar are improved the anticorrosion properties, in the case of all samples compared with the sample with 0% bricks waste. The best results were obtained in the case of the sample with 15% bricks waste (the efficiency was ≈ 90 %). The corrosion intermediary layer formed on the rebar surface was determined by SEM-EDX.

Keywords: EIS, steel corrosion, steel reinforced concrete, waste materials

Procedia PDF Downloads 338
13294 Theoretical and Experimental Investigation of Heat Pipes for Solar Collector Applications

Authors: Alireza Ghadiri, Soheila Memarzadeh, Arash Ghadiri

Abstract:

Heat pipes are efficient heat transfer devices for solar hot water heating systems. However, the effective downward transfer of solar energy in an integrated heat pipe system provides increased design and implementation options. There is a lack of literature about flat plate wicked assisted heat pipe solar collector, especially with the presence of finned water-cooled condenser wicked heat pipes for solar energy applications. In this paper, the consequence of incorporating fins arrays into the condenser region of screen mesh heat pipe solar collector is investigated. An experimental model and a transient theoretical model are conducted to compare the performances of the solar heating system at a different period of the year. A good agreement is shown between the model and the experiment. Two working fluids are investigated (water and methanol) and results reveal that water slightly outperforms methanol with a collector instantaneous efficiency of nearly 60%. That modest improvement is achieved by adding fins to the condenser region of the heat pipes. Results show that the collector efficiency increase as the number of fins increases (upon certain number) and reveal that the mesh number is an important factor which affect the overall collector efficiency. An optimal heat pipe mesh number of 100 meshes/in. With two layers appears to be favorable in such collectors for their design and operating conditions.

Keywords: heat pipe, solar collector, capillary limit, mesh number

Procedia PDF Downloads 438
13293 Molecular Motors in Smart Drug Delivery Systems

Authors: Ainoa Guinart, Maria Korpidou, Daniel Doellerer, Cornelia Palivan, Ben L. Feringa

Abstract:

Stimuli responsive systems arise from the need to meet unsolved needs of current molecular drugs. Our study presents the design of a delivery system with high spatiotemporal control and tuneable release profiles. We study the incorporation of a hydrophobic synthetic molecular motor into PDMS-b-PMOXA block copolymer vesicles to create a self-assembled system. We prove their successful incorporation and selective activation by low powered visible light (λ 430 nm, 6.9 mW). We trigger the release of a fluorescent dye with high release efficiencies over sequential cycles (up to 75%) with the ability to turn on and off the release behaviour on demand by light irradiation. Low concentrations of photo-responsive units are proven to trigger release down to 1 mol% of molecular motor. Finally, we test our system in relevant physiological conditions using a lung cancer cell line and the encapsulation of an approved drug. Similar levels of cell viability are observed compared to the free-given drugshowing the potential of our platform to deliver functional drugs on demand with the same efficiency and lower toxicity.

Keywords: molecular motor, polymer, drug delivery, light-responsive, cancer, selfassembly

Procedia PDF Downloads 135
13292 Improving Cheon-Kim-Kim-Song (CKKS) Performance with Vector Computation and GPU Acceleration

Authors: Smaran Manchala

Abstract:

Homomorphic Encryption (HE) enables computations on encrypted data without requiring decryption, mitigating data vulnerability during processing. Usable Fully Homomorphic Encryption (FHE) could revolutionize secure data operations across cloud computing, AI training, and healthcare, providing both privacy and functionality, however, the computational inefficiency of schemes like Cheon-Kim-Kim-Song (CKKS) hinders their widespread practical use. This study focuses on optimizing CKKS for faster matrix operations through the implementation of vector computation parallelization and GPU acceleration. The variable effects of vector parallelization on GPUs were explored, recognizing that while parallelization typically accelerates operations, it could introduce overhead that results in slower runtimes, especially in smaller, less computationally demanding operations. To assess performance, two neural network models, MLPN and CNN—were tested on the MNIST dataset using both ARM and x86-64 architectures, with CNN chosen for its higher computational demands. Each test was repeated 1,000 times, and outliers were removed via Z-score analysis to measure the effect of vector parallelization on CKKS performance. Model accuracy was also evaluated under CKKS encryption to ensure optimizations did not compromise results. According to the results of the trail runs, applying vector parallelization had a 2.63X efficiency increase overall with a 1.83X performance increase for x86-64 over ARM architecture. Overall, these results suggest that the application of vector parallelization in tandem with GPU acceleration significantly improves the efficiency of CKKS even while accounting for vector parallelization overhead, providing impact in future zero trust operations.

Keywords: CKKS scheme, runtime efficiency, fully homomorphic encryption (FHE), GPU acceleration, vector parallelization

Procedia PDF Downloads 23
13291 FLC with 3DSVM for 4LEG 4WIRE Shunt Active Power Filter

Authors: Abdelhalim Kessal, Ali Chebabhi

Abstract:

In this paper, a controller based on fuzzy logic control (FLC) associated to Three Dimensional Space Vector Modulation (3DSVM) is applied for shunt active filter in αβo axes domain. The main goals are to improve power quality under disturbed loads, minimize source currents harmonics and reduce neutral current magnitude in the four-wire structure. FLC is used to obtain the reference current and control the DC-bus voltage at the inverter output. The switching signals of the four-leg inverter are generating through a Three Dimensional Space Vector Modulation (3DSVM). Selected simulation results have been shown to validate the proposed system.

Keywords: flc, 3dsvm, sapf, harmonic, inverter

Procedia PDF Downloads 497
13290 Correlation Between Ore Mineralogy and the Dissolution Behavior of K-Feldspar

Authors: Adrian Keith Caamino, Sina Shakibania, Lena Sunqvist-Öqvist, Jan Rosenkranz, Yousef Ghorbani

Abstract:

Feldspar minerals are one of the main components of the earth’s crust. They are tectosilicate, meaning that they mainly contain aluminum and silicon. Besides aluminum and silicon, they contain either potassium, sodium, or calcium. Accordingly, feldspar minerals are categorized into three main groups: K-feldspar, Na-feldspar, and Ca-feldspar. In recent years, the trend to use K-feldspar has grown tremendously, considering its potential to produce potash and alumina. However, the feldspar minerals, in general, are difficult to decompose for the dissolution of their metallic components. Several methods, including intensive milling, leaching under elevated pressure and temperature, thermal pretreatment, and the use of corrosive leaching reagents, have been proposed to improve its low dissolving efficiency. In this study, as part of the POTASSIAL EU project, to overcome the low dissolution efficiency of the K-feldspar components, mechanical activation using intensive milling followed by leaching using hydrochloric acid (HCl) was practiced. Grinding operational parameters, namely time, rotational speed, and ball-to-sample weight ratio, were studied using the Taguchi optimization method. Then, the mineralogy of the grinded samples was analyzed using a scanning electron microscope (SEM) equipped with automated quantitative mineralogy. After grinding, the prepared samples were subjected to HCl leaching. In the end, the dissolution efficiency of the main elements and impurities of different samples were correlated to the mineralogical characterization results. K-feldspar component dissolution is correlated with ore mineralogy, which provides insight into how to best optimize leaching conditions for selective dissolution. Further, it will have an effect on purifying steps taken afterward and the final value recovery procedures

Keywords: K-feldspar, grinding, automated mineralogy, impurity, leaching

Procedia PDF Downloads 76
13289 The Effect of the Weld Current Types on Microstructure and Hardness in Tungsten Inert Gas Welding of the AZ31 Magnesium Alloy Sheet

Authors: Bilge Demir, Ahmet Durgutlu, Mustafa Acarer

Abstract:

In this study, the butt welding of the commercial AZ31 magnesium alloy sheets have been carried out by using Tungsten Inert Gas (TIG) welding process with alternative and pulsed current. Welded samples were examined with regards to hardness and microstructure. Despite some recent developments in welding of magnesium alloys, they have some problems such as porosity, hot cracking, oxide formation and so on. Samples of the welded parts have undergone metallographic and mechanical examination. Porosities and homogeneous micron grain oxides were rarely observed. Orientations of the weld microstructure in terms of heat transfer also were rarely observed and equiaxed grain morphology was dominant grain structure as in the base metal. As results, fusion zone and few locations of the HAZ of the welded samples have shown twin’s grains. Hot cracking was not observed for any samples. Weld bead geometry of the welded samples were evaluated as normal according to welding parameters. In the results, conditions of alternative and pulsed current and the samples were compared to each other with regards to microstructure and hardness.

Keywords: AZ31 magnesium alloy, microstructures, micro hardness TIG welding

Procedia PDF Downloads 390
13288 CeO₂-Decorated Graphene-coated Nickel Foam with NiCo Layered Double Hydroxide for Efficient Hydrogen Evolution Reaction

Authors: Renzhi Qi, Zhaoping Zhong

Abstract:

Under the dual pressure of the global energy crisis and environmental pollution, avoiding the consumption of non-renewable fossil fuels based on carbon as the energy carrier and developing and utilizing non-carbon energy carriers are the basic requirements for the future new energy economy. Electrocatalyst for water splitting plays an important role in building sustainable and environmentally friendly energy conversion. The oxygen evolution reaction (OER) is essentially limited by the slow kinetics of multi-step proton-electron transfer, which limits the efficiency and cost of water splitting. In this work, CeO₂@NiCo-NRGO/NF hybrid materials were prepared using nickel foam (NF) and nitrogen-doped reduced graphene oxide (NRGO) as conductive substrates by multi-step hydrothermal method and were used as highly efficient catalysts for OER. The well-connected nanosheet array forms a three-dimensional (3D) network on the substrate, providing a large electrochemical surface area with abundant catalytic active sites. The doping of CeO₂ in NiCo-NRGO/NF electrocatalysts promotes the dispersion of substances and its synergistic effect in promoting the activation of reactants, which is crucial for improving its catalytic performance against OER. The results indicate that CeO₂@NiCo-NRGO/NF only requires a lower overpotential of 250 mV to drive the current density of 10 mA cm-2 for an OER reaction of 1 M KOH, and exhibits excellent stability at this current density for more than 10 hours. The double layer capacitance (Cdl) values show that CeO₂@NiCo-NRGO/NF significantly affects the interfacial conductivity and electrochemically active surface area. The hybrid structure could promote the catalytic performance of oxygen evolution reaction, such as low initial potential, high electrical activity, and excellent long-term durability. The strategy for improving the catalytic activity of NiCo-LDH can be used to develop a variety of other electrocatalysts for water splitting.

Keywords: CeO₂, reduced graphene oxide, NiCo-layered double hydroxide, oxygen evolution reaction

Procedia PDF Downloads 82
13287 Investigation of Clustering Algorithms Used in Wireless Sensor Networks

Authors: Naim Karasekreter, Ugur Fidan, Fatih Basciftci

Abstract:

Wireless sensor networks are networks in which more than one sensor node is organized among themselves. The working principle is based on the transfer of the sensed data over the other nodes in the network to the central station. Wireless sensor networks concentrate on routing algorithms, energy efficiency and clustering algorithms. In the clustering method, the nodes in the network are divided into clusters using different parameters and the most suitable cluster head is selected from among them. The data to be sent to the center is sent per cluster, and the cluster head is transmitted to the center. With this method, the network traffic is reduced and the energy efficiency of the nodes is increased. In this study, clustering algorithms were examined in terms of clustering performances and cluster head selection characteristics to try to identify weak and strong sides. This work is supported by the Project 17.Kariyer.123 of Afyon Kocatepe University BAP Commission.

Keywords: wireless sensor networks (WSN), clustering algorithm, cluster head, clustering

Procedia PDF Downloads 513
13286 Waste Management and Education: The Case of York, UK

Authors: Ruijie Fan, Hao Xu

Abstract:

Due to the increasing demand for resources, solid waste disposal is becoming an increasingly important issue to be addressed. Solid waste is not only hazardous to human health but also has a negative impact on the environment. The main sources of solid waste are metals, glass, food, plastics, paper, and electrical waste. Different types of waste may require different treatments. The UK currently lags behind other countries, such as Japan and Germany, in terms of waste management. Although the UK is catching up through various incentives, waste management education in the UK still faces challenges. Education requires a lot of work before the UK can achieve a circular economy. This paper first presents the latest information on the five main types of solid waste in the UK today. It delves into the current state of waste paper management in the UK, in addition to gathering information from the literature on the current state of waste management education in the UK as a whole. Potential barriers to the disposal of each waste type in the UK are identified, along with potential barriers to education in the UK. This study was based on a pragmatic philosophy to find possible solutions for these barriers, including questionnaires to conduct an in-depth investigation. In addition, the questionnaire analysis reveals a correlation between educational attainment and individual waste management behaviour and attitudes. This research guides inspiration on the current problems of waste management in the UK.

Keywords: circular economy, education, solid waste, waste management

Procedia PDF Downloads 180
13285 Online Versus Offline Learning: A Comparative Analysis of Modes of Education Amidst Pandemic

Authors: Nida B. Syed

Abstract:

Following second wave of the current pandemic COVID-19, education transmission is occurring via both the modes of education, that is, online as well as offline in the college. The aim of the current study was, therefore, to bring forth the comparative analysis of both the modes of education and their impact on the levels of academic stress and states of the mental wellbeing of the students amidst the current pandemic. Measures of the constructs were obtained by the online Google forms, which consist of the Perceptions of Academic Stress Scale (PASS) by and Warwick-Edinburg Mental Well-being Scale, from a sample of 100 undergraduate students aged 19-25 years studying in different colleges of Bengaluru, India. Modes of education were treated as the predictor variables whilst academic stress, and mental wellbeing constituted the criterion variables. Two-way ANOVA was employed. Results show that the levels of academic stress are found to be a bit higher in students attending online classes as compared to those taking offline classes in college (MD = 1.10, df = 98, t = 0.590, p > 0.05), whereas mental wellbeing is found to be low in students attending offline classes in colleges than those taking online classes (MD = 5.180, df = 98, t =2.340, p > 0.05 level). The combined interactional effect of modes of education and academic stress on the states of the mental wellbeing of the students is found to be low (R2 = 0.053), whilst the combined impact of modes of education and mental wellbeing on the levels of academic stress was found to be quite low (R2 = 0.014). It was concluded that modes of education have an impact on levels of academic stress and states of the mental well-being of the students amidst the current pandemic, but it is low.

Keywords: modes of education, online learning, offline learning, pandemic

Procedia PDF Downloads 107
13284 Utilization of Cloud-Based Learning Platform for the Enhancement of IT Onboarding System

Authors: Christian Luarca

Abstract:

The study aims to define the efficiency of e-Trainings by the use of cloud platform as part of the onboarding process for IT support engineers. Traditional lecture based trainings involves human resource to guide and assist new hires as part of onboarding which takes time and effort. The use of electronic medium as a platform for training provides a two-way basic communication that can be done in a repetitive manner. The study focuses on determining the most efficient manner of learning the basic knowledge on IT support in the shortest time possible. This was determined by conducting the same set of knowledge transfer categories in two different approaches, one being the e-Training and the other using the traditional method. Performance assessment will be done by the use of Service Tracker Assessment (STA) Tool and Service Manager. Data gathered from this ongoing study will promote the utilization of e-Trainings in the IT onboarding process.

Keywords: cloud platform, e-Training, efficiency, onboarding

Procedia PDF Downloads 150
13283 Corporate Governance and Firm Performance: An Empirical Study from Pakistan

Authors: Mohammed Nishat, Ahmad Ghazali

Abstract:

This study empirically inspects the corporate governance and firm performance, and attempts to analyze the corporate governance and control related variables which are hypothesized to have effect on firm’s performance. Current study attempts to assess the mechanism and efficiency of corporate governance to achieve high level performance for the listed firms on the Karachi Stock Exchange (KSE) for the period 2005 to 2008. To evaluate the firm performance level this study investigate the firm performance using three measures; Return on assets (ROA), Return on Equity (ROE) and Tobin’s Q. To check the link between firm performances with the corporate governance three categories of corporate governance variables are tested which includes governance, ownership and control related variables. Fixed effect regression model is used to examine the relation among governance and corporate performance for 267 KSE listed Pakistani firms. The result shows that governance related variables like block shareholding by individuals have positive impact on firm performance. When chief executive officer is also the board chairperson then it is observed that performance of firm is adversely affected. Also negative relationship is found between share held by insiders and performance of firm. Leverage has negative influence on the firm performance and size of firm is positively related with performance of the firm.

Keywords: corporate governance, agency cost, KSE, ROA, Tobin’s Q

Procedia PDF Downloads 409
13282 Localized Treatment of Cutaneous Candidiasis through Cubosomes in vitro Evaluation

Authors: Aakanchha Jain, D. V. Kohli

Abstract:

Cubosomes are nanoparticles but instead of the solid particles, cubosomes are self-assembled liquid crystalline particles of certain surfactant with proper ratio of water with a microstructure that provides unique properties of practical interest. Cubosomes encapsulating Fluconazole were prepared by emulsification method and characterized for particle size, entrapment efficiency. The cubosomes prepared were 257.2±2.94 nm in size with drug entrapment efficiency of 66.2±2.69%. The optimized formulation characterized for shape and surface morphology by TEM and SEM analysis. SEM photograph showed the smooth surface of optimized cubosomes and TEM photograph revealed square somewhat circular intact shapes of cubosomes. MIC was determined by XTT based method and antifungal activity was determined in vitro. The cumulative percentage of Fnz from cubosomes permeated via dialysis membrane (MWCO 12-14 KD) showed a percent cumulative drug release of 76.86% while Fnz solution showed release up to 91.04% in 24 hours in PBS (pH 6.5)(p < 0.005).

Keywords: Candids albicans, cubosomes, fluconazole, topical delivery

Procedia PDF Downloads 302
13281 Exergy Analysis of Reverse Osmosis for Potable Water and Land Irrigation

Authors: M. Sarai Atab, A. Smallbone, A. P. Roskilly

Abstract:

A thermodynamic study is performed on the Reverse Osmosis (RO) desalination process for brackish water. The detailed RO model of thermodynamics properties with and without an energy recovery device was built in Simulink/MATLAB and validated against reported measurement data. The efficiency of desalination plants can be estimated by both the first and second laws of thermodynamics. While the first law focuses on the quantity of energy, the second law analysis (i.e. exergy analysis) introduces quality. This paper used the Main Outfall Drain in Iraq as a case study to conduct energy and exergy analysis of RO process. The result shows that it is feasible to use energy recovery method for reverse osmosis with salinity less than 15000 ppm as the exergy efficiency increases twice. Moreover, this analysis shows that the highest exergy destruction occurs in the rejected water and lowest occurs in the permeate flow rate accounting 37% for 4.3% respectively.

Keywords: brackish water, exergy, irrigation, reverse osmosis (RO)

Procedia PDF Downloads 174
13280 Effect of Blade Shape on the Performance of Wells Turbine for Wave Energy Conversion

Authors: Katsuya Takasaki, Manabu Takao, Toshiaki Setoguchi

Abstract:

Effect of 3-dimensional (3D) blade on the turbine characteristics of Wells turbine for wave energy conversion has been investigated experimentally by model testing under steady flow conditions in the study, in order to improve the peak efficiency and the stall characteristics. The aim of the use of 3D blade is to prevent flow separation on the suction surface near the tip. The chord length is constant with radius and the blade profile changes gradually from mean radius to tip. The proposed blade profiles in the study are NACA0015 from hub to mean radius and NACA0025 at the tip. The performances of Wells turbine with 3D blades has been compared with those of the original Wells turbine, i.e. the turbine with 2-dimensional (2D) blades. As a result, it was concluded that although the peak efficiency of Wells turbine can be improved by the use of the proposed 3D blade, its blade does not overcome the weakness of stalling.

Keywords: fluid machinery, ocean engineering, stall, wave energy conversion, wells turbine

Procedia PDF Downloads 305
13279 Thermodynamic Analysis of a Multi-Generation Plant Driven by Pine Sawdust as Primary Fuel

Authors: Behzad Panahirad, UğUr Atikol

Abstract:

The current study is based on a combined heat and power system with multi-objectives, driven by biomass. The system consists of a combustion chamber (CC), a single effect absorption cooling system (SEACS), an air conditioning unit (AC), a reheat steam Rankine cycle (RRC), an organic Rankine cycle (ORC) and an electrolyzer. The purpose of this system is to produce hydrogen, electricity, heat, cooling, and air conditioning. All the simulations had been performed by Engineering Equation Solver (EES) software. Pine sawdust is the selected biofuel for the combustion process. The overall utilization factor (εₑₙ) and exergetic efficiency (ψₑₓ) were calculated to be 2.096 and 24.03% respectively. The performed renewable and environmental impact analysis indicated a sustainability index of 1.316 (SI) and a specific CO2 emission of 353.8 kg/MWh. The parametric study is conducted based on the variation of ambient (sink) temperature, biofuel mass flow rate, and boilers outlet temperatures. The parametric simulation showed that the increase in biofuel mass flow rate has a positive effect on the sustainability of the system.

Keywords: biomass, exergy assessment, multi-objective plant, CO₂ emission, irreversibility

Procedia PDF Downloads 169
13278 Phenol Degradation via Photocatalytic Oxidation Using Fe Doped TiO₂

Authors: Sherif Ismail

Abstract:

Degradation of phenol-contaminated wastewater using Photocatalytic oxidation process was investigated in batch experiments using Fe doped TiO₂. Moreover, the effect of oxygen aeration on the performance of photocatalytic oxidation process by iron (Fe⁺²) doped titanium dioxide (TiO₂) was assessed. Photocatalytic oxidation using Fe doped TiO₂ effectively reduce the phenol concentration in wastewater with optimum condition of light intensity, pH, catalyst-dosing and initial concentration of phenol were 50 W/m2, 5.3, 600 mg/l and 10 mg/l respectively. The results obtained that removal efficiency of phenol was 88% after 180 min in case of N₂ addition. However, aeration by oxygen resulted in a 99% removal efficiency in 120 min. The results of photo-catalysis oxidation experiments fitted the pseudo-first-order kinetic equation with high correlation. Costs estimation of 30 m3/d full-scale photo-catalysis oxidation plant was assessed.

Keywords: phenol degradation, Fe-doped TiO2, AOPs, cost analysis

Procedia PDF Downloads 163
13277 Relay-Augmented Bottleneck Throughput Maximization for Correlated Data Routing: A Game Theoretic Perspective

Authors: Isra Elfatih Salih Edrees, Mehmet Serdar Ufuk Türeli

Abstract:

In this paper, an energy-aware method is presented, integrating energy-efficient relay-augmented techniques for correlated data routing with the goal of optimizing bottleneck throughput in wireless sensor networks. The system tackles the dual challenge of throughput optimization while considering sensor network energy consumption. A unique routing metric has been developed to enable throughput maximization while minimizing energy consumption by utilizing data correlation patterns. The paper introduces a game theoretic framework to address the NP-complete optimization problem inherent in throughput-maximizing correlation-aware routing with energy limitations. By creating an algorithm that blends energy-aware route selection strategies with the best reaction dynamics, this framework provides a local solution. The suggested technique considerably raises the bottleneck throughput for each source in the network while reducing energy consumption by choosing the best routes that strike a compromise between throughput enhancement and energy efficiency. Extensive numerical analyses verify the efficiency of the method. The outcomes demonstrate the significant decrease in energy consumption attained by the energy-efficient relay-augmented bottleneck throughput maximization technique, in addition to confirming the anticipated throughput benefits.

Keywords: correlated data aggregation, energy efficiency, game theory, relay-augmented routing, throughput maximization, wireless sensor networks

Procedia PDF Downloads 82
13276 Stationary Methanol Steam Reforming to Hydrogen Fuel for Fuel-Cell Filling Stations

Authors: Athanasios A. Tountas, Geoffrey A. Ozin, Mohini M. Sain

Abstract:

Renewable hydrogen (H₂) carriers such as methanol (MeOH), dimethyl ether (DME), oxymethylene dimethyl ethers (OMEs), and conceivably ammonia (NH₃) can be reformed back into H₂ and are fundamental chemical conversions for the long-term viability of the H₂ economy due to their higher densities and ease of transportability compared to H₂. MeOH is an especially important carrier as it is a simple C1 chemical that can be produced from green solar-PV-generated H₂ and direct-air-captured CO₂ with a current commercially practical solar-to-fuel efficiency of 10% from renewable solar energy. MeOH steam reforming (MSR) in stationary systems next to H₂ fuel-cell filling stations can eliminate the need for onboard mobile reformers, and the former systems can be more robust in terms of attaining strict H₂ product specifications, and MeOH is a safe, lossless, and compact medium for long-term H₂ storage. Both thermal- and photo-catalysts are viable options for achieving the stable, long-term performance of stationary MSR systems.

Keywords: fuel-cell vehicle filling stations, methanol steam reforming, hydrogen transport and storage, stationary reformer, liquid hydrogen carriers

Procedia PDF Downloads 102
13275 Practical Software for Optimum Bore Hole Cleaning Using Drilling Hydraulics Techniques

Authors: Abdulaziz F. Ettir, Ghait Bashir, Tarek S. Duzan

Abstract:

A proper well planning is very vital to achieve any successful drilling program on the basis of preventing, overcome all drilling problems and minimize cost operations. Since the hydraulic system plays an active role during the drilling operations, that will lead to accelerate the drilling effort and lower the overall well cost. Likewise, an improperly designed hydraulic system can slow drill rate, fail to clean the hole of cuttings, and cause kicks. In most cases, common sense and commercially available computer programs are the only elements required to design the hydraulic system. Drilling optimization is the logical process of analyzing effects and interactions of drilling variables through applied drilling and hydraulic equations and mathematical modeling to achieve maximum drilling efficiency with minimize drilling cost. In this paper, practical software adopted in this paper to define drilling optimization models including four different optimum keys, namely Opti-flow, Opti-clean, Opti-slip and Opti-nozzle that can help to achieve high drilling efficiency with lower cost. The used data in this research from vertical and horizontal wells were recently drilled in Waha Oil Company fields. The input data are: Formation type, Geopressures, Hole Geometry, Bottom hole assembly and Mud reghology. Upon data analysis, all the results from wells show that the proposed program provides a high accuracy than that proposed from the company in terms of hole cleaning efficiency, and cost break down if we consider that the actual data as a reference base for all wells. Finally, it is recommended to use the established Optimization calculations software at drilling design to achieve correct drilling parameters that can provide high drilling efficiency, borehole cleaning and all other hydraulic parameters which assist to minimize hole problems and control drilling operation costs.

Keywords: optimum keys, namely opti-flow, opti-clean, opti-slip and opti-nozzle

Procedia PDF Downloads 319
13274 Removal of Chromium by UF5kDa Membrane: Its Characterization, Optimization of Parameters, and Evaluation of Coefficients

Authors: Bharti Verma, Chandrajit Balomajumder

Abstract:

Water pollution is escalated owing to industrialization and random ejection of one or more toxic heavy metal ions from the semiconductor industry, electroplating, metallurgical, mining, chemical manufacturing, tannery industries, etc., In semiconductor industry various kinds of chemicals in wafers preparation are used . Fluoride, toxic solvent, heavy metals, dyes and salts, suspended solids and chelating agents may be found in wastewater effluent of semiconductor manufacturing industry. Also in the chrome plating, in the electroplating industry, the effluent contains heavy amounts of Chromium. Since Cr(VI) is highly toxic, its exposure poses an acute risk of health. Also, its chronic exposure can even lead to mutagenesis and carcinogenesis. On the contrary, Cr (III) which is naturally occurring, is much less toxic than Cr(VI). Discharge limit of hexavalent chromium and trivalent chromium are 0.05 mg/L and 5 mg/L, respectively. There are numerous methods such as adsorption, chemical precipitation, membrane filtration, ion exchange, and electrochemical methods for the heavy metal removal. The present study focuses on the removal of Chromium ions by using flat sheet UF5kDa membrane. The Ultra filtration membrane process is operated above micro filtration membrane process. Thus separation achieved may be influenced due to the effect of Sieving and Donnan effect. Ultrafiltration is a promising method for the rejection of heavy metals like chromium, fluoride, cadmium, nickel, arsenic, etc. from effluent water. Benefits behind ultrafiltration process are that the operation is quite simple, the removal efficiency is high as compared to some other methods of removal and it is reliable. Polyamide membranes have been selected for the present study on rejection of Cr(VI) from feed solution. The objective of the current work is to examine the rejection of Cr(VI) from aqueous feed solutions by flat sheet UF5kDa membranes with different parameters such as pressure, feed concentration and pH of the feed. The experiments revealed that with increasing pressure, the removal efficiency of Cr(VI) is increased. Also, the effect of pH of feed solution, the initial dosage of chromium in the feed solution has been studied. The membrane has been characterized by FTIR, SEM and AFM before and after the run. The mass transfer coefficients have been estimated. Membrane transport parameters have been calculated and have been found to be in a good correlation with the applied model.

Keywords: heavy metal removal, membrane process, waste water treatment, ultrafiltration

Procedia PDF Downloads 139
13273 Comparison of Fuel Cell Installation Methods at Large Commercial and Industrial Sites

Authors: Masood Sattari

Abstract:

Using fuel cell technology to generate electricity for large commercial and industrial sites is a growing segment in the fuel cell industry. The installation of these systems involves design, permitting, procurement of long-lead electrical equipment, and construction involving multiple utilities. The installation of each fuel cell system requires the same amount of coordination as the construction of a new structure requiring a foundation, gas, water, and electricity. Each of these components provide variables that can delay and possibly eliminate a new project. As the manufacturing process and efficiency of fuel cell systems improves, so must the installation methods to prevent a ‘bottle-neck’ in the installation phase of the deployment. Installation methodologies to install the systems vary among companies and this paper will examine the methodologies, describe the benefits and drawbacks for each, and provide guideline for the industry to improve overall installation efficiency.

Keywords: construction, installation, methodology, procurement

Procedia PDF Downloads 196
13272 Determining Efficiency of Frequency Control System of Karkheh Power Plant in Main Network

Authors: Ferydon Salehifar, Hassan Safarikia, Hossein Boromandfar

Abstract:

Karkheh plant in Iran's Khuzestan province and is located in the city Andimeshk. The plant has a production capacity of 400 MW units with water and three hours. One of the important parameters of each country's power grid stability is the stability of the power grid is affected by the voltage and frequency In plants, the amount of active power frequency control is done so that when the unit is placed in the frequency control their productivity is a function of frequency and output power varies with frequency. Produced by hydroelectric power plants with the water level behind the dam has a direct relationship And to decrease and increase the water level behind the dam in order to reduce the power output increases But these changes have a different interval is due to some mechanical problems such as turbine cavitation and vibration are limited. In this study, the range of the frequency control can be Karkheh manufacturing plants have been identified and their effectiveness has been determined.

Keywords: Karkheh power, frequency control system, active power, efficiency

Procedia PDF Downloads 620