Search results for: amorphous composite
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2264

Search results for: amorphous composite

854 Evaluation of Drilling-Induced Delamination of Flax/Epoxy Composites by Non-Destructive Testing Methods

Authors: Hadi Rezghimaleki, Masatoshi Kubouchi, Yoshihiko Arao

Abstract:

The use of natural fiber composites (NFCs) is growing at a fast rate regarding industrial applications and principle researches due to their eco-friendly, renewable nature, and low density/costs. Drilling is one of the most important machining operations that are carried out on natural fiber composites. Delamination is a major concern in the drilling process of NFCs that affects the structural integrity and long-term reliability of the machined components. Flax fiber reinforced epoxy composite laminates were prepared by hot press technique. In this research, we evaluated drilling-induced delamination of flax/epoxy composites by X-ray computed tomography (CT), ultrasonic testing (UT), and optical methods and compared the results.

Keywords: natural fiber composites, flax/epoxy, X-ray CT, ultrasonic testing

Procedia PDF Downloads 299
853 Advanced Humidity Sensors Using Cobalt and Iron-Doped ZnO-rGO Composites

Authors: Wallia Majeed

Abstract:

Humidity sensors based on doped ZnO-rGO composites have shown promise due to their sensitivity to humidity changes. Here, it report on the hydrothermal synthesis of ZnO-rGO and doped ZnO-rGO nanocomposites, incorporating cobalt and iron dopants at 2% concentration. X-ray diffraction confirmed successful doping, while scanning electron microscopy revealed the composite's layered structure with embedded ZnO rods. To evaluate their performance, humidity sensors were fabricated by depositing aluminum electrodes on silicon substrates coated with the composites. The Fe-doped ZnO-rGO sensor exhibited rapid response (27 s) and recovery times (24 s) across a wide humidity range (11% to 97% RH), surpassing ZnO-rGO and Co-doped ZnO-rGO variants in sensitivity (2.2k at 100 Hz). These findings highlight Fe-doped ZnO-rGO composites as ideal candidates for humidity sensing applications, offering enhanced performance crucial for environmental monitoring and industrial processes.

Keywords: humidity sensors, nanocomposites, hydrothermal synthesis, sensitivity

Procedia PDF Downloads 35
852 Classification of Impact Damages with Respect of Damage Tolerance Design Approach and Airworthiness Requirements

Authors: T. Mrna, R. Doubrava

Abstract:

This paper describes airworthiness requirements with respect damage tolerance. Damage tolerance determines the amount and magnitude of damage on parts of the airplane. Airworthiness requirements determine the amount of damage that can still be in flight capable of the condition. Component damage can be defined as barely visible impact damage, visible impact damage or clear visible impact damage. Damage is also distributed it according to the velocity. It is divided into low or high velocity impact damage. The severity of damage to the part of airplane divides the airworthiness requirements into several categories according to severity. Airworthiness requirements are determined by type airplane. All types of airplane do not have the same conditions for airworthiness requirements. This knowledge is important for designing and operating an airplane.

Keywords: airworthiness requirements, composite, damage tolerance, low and high velocity impact

Procedia PDF Downloads 569
851 High Frequency Sonochemistry: A New Field of Cavitation‐Free Acoustic Materials Synthesis and Manipulation

Authors: Amgad Rezk, Heba Ahmed, Leslie Yeo

Abstract:

Ultrasound presents a powerful means for material synthesis. In this talk, we showcase a new field demonstrating the possibility for harnessing sound energy sources at considerably higher frequencies (10 MHz to 1 GHz) compared to conventional ultrasound (kHz and up to ~2 MHz) for crystalising and manipulating a variety of nanoscale materials. At these frequencies, cavitation—which underpins most sonochemical processes—is largely absent, suggesting that altogether fundamentally different mechanisms are at dominant. Examples include the crystallization of highly oriented structures, quasi-2D metal-organic frameworks and nanocomposites. These fascinating examples reveal how the highly nonlinear electromechanical coupling associated with high-frequency surface vibration gives rise to molecular ordering and assembly on the nano and microscale.

Keywords: high-frequency acoustics, microfluidics, crystallisation, composite nanomaterials

Procedia PDF Downloads 121
850 Hexagonal Honeycomb Sandwich Plate Optimization Using Gravitational Search Algorithm

Authors: A. Boudjemai, A. Zafrane, R. Hocine

Abstract:

Honeycomb sandwich panels are increasingly used in the construction of space vehicles because of their outstanding strength, stiffness and light weight properties. However, the use of honeycomb sandwich plates comes with difficulties in the design process as a result of the large number of design variables involved, including composite material design, shape and geometry. Hence, this work deals with the presentation of an optimal design of hexagonal honeycomb sandwich structures subjected to space environment. The optimization process is performed using a set of algorithms including the gravitational search algorithm (GSA). Numerical results are obtained and presented for a set of algorithms. The results obtained by the GSA algorithm are much better compared to other algorithms used in this study.

Keywords: optimization, gravitational search algorithm, genetic algorithm, honeycomb plate

Procedia PDF Downloads 377
849 Identification and Correlation of Structural Parameters and Gas Accumulation Capacity of Shales From Poland

Authors: Anna Pajdak, Mateusz Kudasik, Aleksandra Gajda, Katarzyna Kozieł

Abstract:

Shales are a type of fine-grained sedimentary rocks, which are composed of small grains of several to several dozen μm in size and consist of a variable mixture of clay minerals, quartz, feldspars, carbonates, sulphides, amorphous material and organic matter. The study involved an analysis of the basic physical properties of shale rocks from several research wells in Poland. The structural, sorption and seepage parameters of these rocks were determined. The total porosity of granular rock samples reached several percent, including the share of closed pores up to half a percent. The volume and distribution of pores, which are of significant importance in the context of the mechanisms of methane binding to the rock matrix and methods of stimulating its desorption and the possibility of CO₂ storage, were determined. The BET surface area of the samples ranged from a few to a dozen or so m²/g, and the share of micropores was dominant. In order to determine the interaction of rocks with gases, the sorption capacity in relation to CO₂ and CH₄ was determined at a pressure of 0-1.4 MPa. Sorption capacities, sorption isotherms and diffusion coefficients were also determined. Studies of competitive sorption of CO₂/CH₄ on shales showed a preference for CO₂ sorption over CH₄, and the selectivity of CO₂/CH₄ sorption decreased with increasing pressure. In addition to the pore structure, the adsorption capacity of gases in shale rocks is significantly influenced by the carbon content in their organic matter. The sorbed gas can constitute from 20% to 80% of the total gas contained in the shales. With the increasing depth of shale gas occurrence, the share of free gas to sorbed gas increases, among others, due to the increase in temperature and surrounding pressure. Determining the share of free gas to sorbed gas in shale, depending on the depth of its deposition, is one of the key elements of recognizing the gas/sorption exchange processes of CO₂/CH₄, which are the basis of CO₂-ESGR technology. The main objective of the work was to identify the correlation between different forms of gas occurrence in rocks and the parameters describing the pore space of shales.

Keywords: shale, CH₄, CO₂, shale gas, CO₂ -ESGR, pores structure

Procedia PDF Downloads 11
848 Complex Analysis of Annual Plats Utilization for Particleboard Production

Authors: Petra Gajdačová

Abstract:

The presented research deals with a complex evaluation of after-harvest remnants utilization for particleboard production. Agricultural crops that are in the Czech Republic widely grown are in the scope of interest. Researches dealing with composites from agricultural rests solved mostly physical and mechanical properties of produced materials. For the commercialization of these results, however, one another step is essential. It is needed to evaluate the composites production from agricultural rests more comprehensive, take into account all aspects that affect their production, not only material characteristics of produced composites. In this study, descriptive, comparative and synthesis methods were used. Results of this research include a supply stability forecast, technical and technological differences of production of particleboards from agricultural rests and quantification of an economical potential of the agricultural rests.

Keywords: agricultural crops, annual plant, composite material, particleboard

Procedia PDF Downloads 196
847 Effect of Fiber Content and Chemical Treatment on Hardness of Bagasse Fiber Reinforced Epoxy Composites

Authors: Varun Mittal, Shishir Sinha

Abstract:

The present experimental study focused on the hardness behavior of bagasse fiber-epoxy composites. The relationship between bagasse fiber content and effect of chemical treatment on bagasse fiber as a function of Brinell hardness of bagasse fiber epoxy was investigated. Bagasse fiber was treated with sodium hydroxide followed by acrylic acid before they were reinforced with epoxy resin. Compared hardness properties with the untreated bagasse filled epoxy composites. It was observed that Brinell hardness increased up to 15 wt% fiber content and further decreases, however, chemical treatment also improved the hardness properties of composites.

Keywords: bagasse fiber, composite, hardness, sodium hydroxide

Procedia PDF Downloads 286
846 Eco-Friendly Natural Filler Based Epoxy Composites

Authors: Suheyla Kocaman, Gulnare Ahmetli

Abstract:

In this study, acrylated soybean oil (AESO) was used as modifying agent for DGEBF-type epoxy resin (ER). AESO was used as a co-matrix in 50 wt % with ER. Composites with eco-friendly natural fillers-banana bark and seashell were prepared. MNA was used as a hardener. Effect of banana peel (BP) and seashell (SSh) fillers on mechanical properties, such as tensile strength, elongation at break, and hardness of M-ERs were investigated. The structure epoxy resins (M-ERs) cured with MNA and sebacic acid (SAc) hardeners were characterized by Fourier transform infrared spectroscopy (FTIR). Tensile test results show that Young’s (elastic) modulus, tensile strength and hardness of SSh particles reinforced with M-ERs were higher than the M-ERs reinforced with banana bark.

Keywords: biobased composite, epoxy resin, mechanical properties, natural fillers

Procedia PDF Downloads 240
845 Numerical and Experimental Investigation of Mixed-Mode Fracture of Cement Paste and Interface Under Three-Point Bending Test

Authors: S. Al Dandachli, F. Perales, Y. Monerie, F. Jamin, M. S. El Youssoufi, C. Pelissou

Abstract:

The goal of this research is to study the fracture process and mechanical behavior of concrete under I–II mixed-mode stress, which is essential for ensuring the safety of concrete structures. For this purpose, two-dimensional simulations of three-point bending tests under variable load and geometry on notched cement paste samples of composite samples (cement paste/siliceous aggregate) are modeled by employing Cohesive Zone Models (CZMs). As a result of experimental validation of these tests, the CZM model demonstrates its capacity to predict fracture propagation at the local scale.

Keywords: cement paste, interface, cohesive zone model, fracture, three-point flexural test bending

Procedia PDF Downloads 150
844 Analysis of Structural and Photocatalytical Properties of Anatase, Rutile and Mixed Phase TiO2 Films Deposited by Pulsed-Direct Current and Radio Frequency Magnetron Co-Sputtering

Authors: S. Varnagiris, M. Urbonavicius, S. Tuckute, M. Lelis, K. Bockute

Abstract:

Amongst many water purification techniques, TiO2 photocatalysis is recognized as one of the most promising sustainable methods. It is known that for photocatalytical applications anatase is the most suitable TiO2 phase, however heterojunction of anatase/rutile phases could improve the photocatalytical activity of TiO2 even further. Despite the relative simplicity of TiO2 different synthesis methods lead to the highly dispersed crystal phases and photocatalytic activity of the corresponding samples. Accordingly, suggestions and investigations of various innovative methods of TiO2 synthesis are still needed. In this work structural and photocatalytical properties of TiO2 films deposited by the unconventional method of simultaneous co-sputtering from two magnetrons powered by pulsed-Direct Current (pDC) and Radio Frequency (RF) power sources with negative bias voltage have been studied. More specifically, TiO2 film thickness, microstructure, surface roughness, crystal structure, optical transmittance and photocatalytical properties were investigated by profilometer, scanning electron microscope, atomic force microscope, X-ray diffractometer and UV-Vis spectrophotometer respectively. The proposed unconventional two magnetron co-sputtering based TiO2 film formation method showed very promising results for crystalline TiO2 film formation while keeping process temperatures below 100 °C. XRD analysis revealed that by using proper combination of power source type and bias voltage various TiO2 phases (amorphous, anatase, rutile or their mixture) can be synthesized selectively. Moreover, strong dependency between power source type and surface roughness, as well as between the bias voltage and band gap value of TiO2 films was observed. Interestingly, TiO2 films deposited by two magnetron co-sputtering without bias voltage had one of the highest band gap values between the investigated films but its photocatalytic activity was superior compared to all other samples. It is suggested that this is due to the dominating nanocrystalline anatase phase with various exposed surfaces including photocatalytically the most active {001}.

Keywords: films, magnetron co-sputtering, photocatalysis, TiO₂

Procedia PDF Downloads 117
843 Polypyrrole as Bifunctional Materials for Advanced Li-S Batteries

Authors: Fang Li, Jiazhao Wang, Jianmin Ma

Abstract:

The practical application of Li-S batteries is hampered due to poor cycling stability caused by electrolyte-dissolved lithium polysulfides. Dual functionalities such as strong chemical adsorption stability and high conductivity are highly desired for an ideal host material for a sulfur-based cathode. Polypyrrole (PPy), as a conductive polymer, was widely studied as matrixes for sulfur cathode due to its high conductivity and strong chemical interaction with soluble polysulfides. Thus, a novel cathode structure consisting of a free-standing sulfur-polypyrrole cathode and a polypyrrole coated separator was designed for flexible Li-S batteries. The PPy materials show strong interaction with dissoluble polysulfides, which could suppress the shuttle effect and improve the cycling stability. In addition, the synthesized PPy film with a rough surface acts as a current collector, which improves the adhesion of sulfur materials and restrain the volume expansion, enhancing the structural stability during the cycling process. For further enhancing the cycling stability, a PPy coated separator was also applied, which could make polysulfides into the cathode side to alleviate the shuttle effect. Moreover, the PPy layer coated on commercial separator is much lighter than other reported interlayers. A soft-packaged flexible Li-S battery has been designed and fabricated for testing the practical application of the designed cathode and separator, which could power a device consisting of 24 light-emitting diode (LED) lights. Moreover, the soft-packaged flexible battery can still show relatively stable cycling performance after repeated bending, indicating the potential application in flexible batteries. A novel vapor phase deposition method was also applied to prepare uniform polypyrrole layer coated sulfur/graphene aerogel composite. The polypyrrole layer simultaneously acts as host and adsorbent for efficient suppression of polysulfides dissolution through strong chemical interaction. The density functional theory (DFT) calculations reveal that the polypyrrole could trap lithium polysulfides through stronger bonding energy. In addition, the deflation of sulfur/graphene hydrogel during the vapor phase deposition process enhances the contact of sulfur with matrixes, resulting in high sulfur utilization and good rate capability. As a result, the synthesized polypyrrole coated sulfur/graphene aerogel composite delivers a specific discharge capacity of 1167 mAh g⁻¹ and 409.1 mAh g⁻¹ at 0.2 C and 5 C respectively. The capacity can maintain at 698 mAh g⁻¹ at 0.5 C after 500 cycles, showing an ultra-slow decay rate of 0.03% per cycle.

Keywords: polypyrrole, strong chemical interaction, long-term stability, Li-S batteries

Procedia PDF Downloads 140
842 Controllable Modification of Glass-Crystal Composites with Ion-Exchange Technique

Authors: Andrey A. Lipovskii, Alexey V. Redkov, Vyacheslav V. Rusan, Dmitry K. Tagantsev, Valentina V. Zhurikhina

Abstract:

The presented research is related to the development of recently proposed technique of the formation of composite materials, like optical glass-ceramics, with predetermined structure and properties of the crystalline component. The technique is based on the control of the size and concentration of the crystalline grains using the phenomenon of glass-ceramics decrystallization (vitrification) induced by ion-exchange. This phenomenon was discovered and explained in the beginning of the 2000s, while related theoretical description was given in 2016 only. In general, the developed theory enables one to model the process and optimize the conditions of ion-exchange processing of glass-ceramics, which provide given properties of crystalline component, in particular, profile of the average size of the crystalline grains. The optimization is possible if one knows two dimensionless parameters of the theoretical model. One of them (β) is the value which is directly related to the solubility of crystalline component of the glass-ceramics in the glass matrix, and another (γ) is equal to the ratio of characteristic times of ion-exchange diffusion and crystalline grain dissolution. The presented study is dedicated to the development of experimental technique and simulation which allow determining these parameters. It is shown that these parameters can be deduced from the data on the space distributions of diffusant concentrations and average size of crystalline grains in the glass-ceramics samples subjected to ion-exchange treatment. Measurements at least at two temperatures and two processing times at each temperature are necessary. The composite material used was a silica-based glass-ceramics with crystalline grains of Li2OSiO2. Cubical samples of the glass-ceramics (6x6x6 mm3) underwent the ion exchange process in NaNO3 salt melt at 520 oC (for 16 and 48 h), 540 oC (for 8 and 24 h), 560 oC (for 4 and 12 h), and 580 oC (for 2 and 8 h). The ion exchange processing resulted in the glass-ceramics vitrification in the subsurface layers where ion-exchange diffusion took place. Slabs about 1 mm thick were cut from the central part of the samples and their big facets were polished. These slabs were used to find profiles of diffusant concentrations and average size of the crystalline grains. The concentration profiles were determined from refractive index profiles measured with Max-Zender interferometer, and profiles of the average size of the crystalline grains were determined with micro-Raman spectroscopy. Numerical simulation were based on the developed theoretical model of the glass-ceramics decrystallization induced by ion exchange. The simulation of the processes was carried out for different values of β and γ parameters under all above-mentioned ion exchange conditions. As a result, the temperature dependences of the parameters, which provided a reliable coincidence of the simulation and experimental data, were found. This ensured the adequate modeling of the process of the glass-ceramics decrystallization in 520-580 oC temperature interval. Developed approach provides a powerful tool for fine tuning of the glass-ceramics structure, namely, concentration and average size of crystalline grains.

Keywords: diffusion, glass-ceramics, ion exchange, vitrification

Procedia PDF Downloads 269
841 Thermal Stability and Insulation of a Cement Mixture Using Graphene Oxide Nanosheets

Authors: Nasser A. M. Habib

Abstract:

The impressive physical properties of graphene derivatives, including thermal properties, have made them an attractive addition to advanced construction nanomaterial. In this study, we investigated the impact of incorporating low amounts of graphene oxide (GO) into cement mixture nanocomposites on their heat storage and thermal stability. The composites were analyzed using Fourier transmission infrared, thermo-gravimetric analysis, and field emission scanning electron microscopy. Results showed that GO significantly improved specific heat by 32%, reduced thermal conductivity by 16%, and reduced thermal decomposition to only 3% at a concentration of 1.2 wt%. These findings suggest that the cement mixture can withstand high temperatures and may suit specific applications requiring thermal stability and insulation properties.

Keywords: cement mixture composite, graphene oxide, thermal decomposition, thermal conductivity

Procedia PDF Downloads 69
840 Utilizing Fly Ash Cenosphere and Aerogel for Lightweight Thermal Insulating Cement-Based Composites

Authors: Asad Hanif, Pavithra Parthasarathy, Zongjin Li

Abstract:

Thermal insulating composites help to reduce the total power consumption in a building by creating a barrier between external and internal environment. Such composites can be used in the roofing tiles or wall panels for exterior surfaces. This study purposes to develop lightweight cement-based composites for thermal insulating applications. Waste materials like silica fume (an industrial by-product) and fly ash cenosphere (FAC) (hollow micro-spherical shells obtained as a waste residue from coal fired power plants) were used as partial replacement of cement and lightweight filler, respectively. Moreover, aerogel, a nano-porous material made of silica, was also used in different dosages for improved thermal insulating behavior, while poly vinyl alcohol (PVA) fibers were added for enhanced toughness. The raw materials including binders and fillers were characterized by X-Ray Diffraction (XRD), X-Ray Fluorescence spectroscopy (XRF), and Brunauer–Emmett–Teller (BET) analysis techniques in which various physical and chemical properties of the raw materials were evaluated like specific surface area, chemical composition (oxide form), and pore size distribution (if any). Ultra-lightweight cementitious composites were developed by varying the amounts of FAC and aerogel with 28-day unit weight ranging from 1551.28 kg/m3 to 1027.85 kg/m3. Excellent mechanical and thermal insulating properties of the resulting composites were obtained ranging from 53.62 MPa to 8.66 MPa compressive strength, 9.77 MPa to 3.98 MPa flexural strength, and 0.3025 W/m-K to 0.2009 W/m-K as thermal conductivity coefficient (QTM-500). The composites were also tested for peak temperature difference between outer and inner surfaces when subjected to heating (in a specially designed experimental set-up) by a 275W infrared lamp. The temperature difference up to 16.78 oC was achieved, which indicated outstanding properties of the developed composites to act as a thermal barrier for building envelopes. Microstructural studies were carried out by Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDS) for characterizing the inner structure of the composite specimen. Also, the hydration products were quantified using the surface area mapping and line scale technique in EDS. The microstructural analyses indicated excellent bonding of FAC and aerogel in the cementitious system. Also, selective reactivity of FAC was ascertained from the SEM imagery where the partially consumed FAC shells were observed. All in all, the lightweight fillers, FAC, and aerogel helped to produce the lightweight composites due to their physical characteristics, while exceptional mechanical properties, owing to FAC partial reactivity, were achieved.

Keywords: aerogel, cement-based, composite, fly ash cenosphere, lightweight, sustainable development, thermal conductivity

Procedia PDF Downloads 224
839 Synthesis and Performance of Polyamide Forward Osmosis Membrane for Natural Organic Matter (NOM) Removal

Authors: M. N. Abu Seman, L. M. Kei, M. A. Yusoff

Abstract:

Forward Osmosis (FO) polyamide thin-film composite membranes have been prepared by inter facial polymerization using commercial UF polyethersulfone as membrane support. Different inter facial polymerization times (10s, 30s and 60s) in the organic solution containing trimesoyl chloride (TMC) at constant m-phenylenediamine (MPD) concentration (2% w/v) were studied. The synthesized polyamide membranes then tested for treatment of natural organic matter (NOM) and compared to commercial Cellulose TriAcetate (CTA) membrane. It was found that membrane prepared with higher reaction time (30 s and 60 s) exhibited better membrane performance (flux and humic acid removal) over commercial CTA membrane.

Keywords: cellulose triacetate, forward osmosis, humic acid, polyamide

Procedia PDF Downloads 493
838 Dynamic Mechanical Thermal Properties of Arenga pinnata Fibre Reinforced Epoxy Composite: Effects of Alkaline Treatment

Authors: Abdul Hakim Abdullah, Mohamad Syafiq Abdul Khadir

Abstract:

In present investigations, thermal behaviours of Arenga pinnata fibres prior and after alkaline treatment were studied. The alkaline treatments were applied on the Arenga pinnata fibres by immersing in the alkaline solution, 6% sodium hydroxide (NaOH). Using hand lay-out technique, composites were fabricated at 20% and 40% by Arenga pinnata fibres weight contents. The thermal behaviours of both untreated and treated composites were determined by employing Dynamic Mechanical Analysis (DMA). The results show that the TAP owned better results of Storage Modulus (E’), Loss Modulus (E”) and Tan Delta temperatures ranges from 0°C to 60°C.

Keywords: composites, Arenga pinnata fibre, alkaline treatment, dynamic mechanical properties

Procedia PDF Downloads 361
837 Chromia-Carbon Nanocomposite Materials for Energy Storage Devices

Authors: Muhammad A. Nadeem, Shaheed Ullah

Abstract:

The article reports the synthesis of Cr2O3/C nanocomposites obtained by the direct carbonization of PFA/MIL-101(Cr) bulk composite. The nanocomposites were characterized by various instrumental techniques like powder X-ray diffraction (PXRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED) and the surface characterized were investigated via N2 adsorption/desorption analysis. TEM and SAED analysis shows that turbostatic graphitic carbon was obtained with high crystallinity. The nanocomposites were tested for electrochemical supercapacitor and the faradic and non-Faradic processes were checked through cyclic voltammetry (CV). The maximum specific capacitance calculated for Cr2O3/C 900 sample from CV measurement is 301 F g-1 at 2 mV s-1 due to its maximum charge storing capacity as confirm by frequency response analysis.

Keywords: nanocomposites, transmission electron microscopy, non-faradic process

Procedia PDF Downloads 435
836 Investigation of Nucleation and Thermal Conductivity of Waxy Crude Oil on Pipe Wall via Particle Dynamics

Authors: Jinchen Cao, Tiantian Du

Abstract:

As waxy crude oil is easy to crystallization and deposition in the pipeline wall, it causes pipeline clogging and leads to the reduction of oil and gas gathering and transmission efficiency. In this paper, a mesoscopic scale dissipative particle dynamics method is employed, and constructed four pipe wall models, including smooth wall (SW), hydroxylated wall (HW), rough wall (RW), and single-layer graphene wall (GW). Snapshots of the simulation output trajectories show that paraffin molecules interact with each other to form a network structure that constrains water molecules as their nucleation sites. Meanwhile, it is observed that the paraffin molecules on the near-wall side are adsorbed horizontally between inter-lattice gaps of the solid wall. In the pressure range of 0 - 50 MPa, the pressure change has less effect on the affinity properties of SS, HS, and GS walls, but for RS walls, the contact angle between paraffin wax and water molecules was found to decrease with the increase in pressure, while the water molecules showed the opposite trend, the phenomenon is due to the change in pressure, leading to the transition of paraffin wax molecules from amorphous to crystalline state. Meanwhile, the minimum crystalline phase pressure (MCPP) was proposed to describe the lowest pressure at which crystallization of paraffin molecules occurs. The maximum number of crystalline clusters formed by paraffin molecules at MCPP in the system showed NSS (0.52 MPa) > NHS (0.55 MPa) > NRS (0.62 MPa) > NGS (0.75 MPa). The MCPP on the graphene surface, with the least number of clusters formed, indicates that the addition of graphene inhibited the crystallization process of paraffin deposition on the wall surface. Finally, the thermal conductivity was calculated, and the results show that on the near-wall side, the thermal conductivity changes drastically due to the occurrence of adsorption crystallization of paraffin waxes; on the fluid side the thermal conductivity gradually tends to stabilize, and the average thermal conductivity shows: ĸRS(0.254W/(m·K)) > ĸRS(0.249W/(m·K)) > ĸRS(0.218W/(m·K)) > ĸRS(0.188W/(m·K)).This study provides a theoretical basis for improving the transport efficiency and heat transfer characteristics of waxy crude oil in terms of wall type, wall roughness, and MCPP.

Keywords: waxy crude oil, thermal conductivity, crystallization, dissipative particle dynamics, MCPP

Procedia PDF Downloads 72
835 Effect of Iron Contents on Rheological Properties of Syndiotactic Polypropylene/iron Composites

Authors: Naveed Ahmad, Farooq Ahmad, Abdul Aal

Abstract:

The effect of iron contents on the rheological behavior of sPP/iron composites in the melt phase was investigated using a series of syndiotactic polypropylene/iron (sPP/iron) composite samples. Using the Advanced Rheometric Expansion System, studies with small amplitude oscillatory shear were conducted (ARES). It was discovered that the plateau modulus rose along with the iron loading. Also it was found that both entanglement molecular weight and packing length decrease with increase in iron loading.. This finding demonstrates how iron content in polymer/iron composites affects chain parameters and dimensions, which in turn affects the entire chain dynamics.

Keywords: plateau modulus, packing lenght, polymer/iron composites, rheology, entanglement molecular weight

Procedia PDF Downloads 161
834 Evaluation of Pozzolanic Properties of Micro and Nanofillers Origin from Waste Products

Authors: Laura Vitola, Diana Bajare, Genadijs Sahmenko, Girts Bumanis

Abstract:

About 8 % of CO2 emission in the world is produced by concrete industry therefore replacement of cement in concrete composition by additives with pozzolanic activity would give a significant impact on the environment. Material which contains silica SiO2 or amorphous silica SiO2 together with aluminum dioxide Al2O3 is called pozzolana type additives in the concrete industry. Pozzolana additives are possible to obtain from recycling industry and different production by-products such as processed bulb boric silicate (DRL type) and lead (LB type) glass, coal combustion bottom ash, utilized brick pieces and biomass ash, thus solving utilization problem which is so important in the world, as well as practically using materials which previously were considered as unusable. In the literature, there is no summarized method which could be used for quick waste-product pozzolana activity evaluation without the performance of wide researches related to the production of innumerable concrete contents and samples in the literature. Besides it is important to understand which parameters should be predicted to characterize the efficiency of waste-products. Simple methods of pozzolana activity increase for different types of waste-products are also determined. The aim of this study is to evaluate effectiveness of the different types of waste materials and industrial by-products (coal combustion bottom ash, biomass ash, waste glass, waste kaolin and calcined illite clays), and determine which parameters have the greatest impact on pozzolanic activity. By using materials, which previously were considered as unusable and landfilled, in concrete industry basic utilization problems will be partially solved. The optimal methods for treatment of waste materials and industrial by–products were detected with the purpose to increase their pozzolanic activity and produce substitutes for cement in the concrete industry. Usage of mentioned pozzolanic allows us to replace of necessary cement amount till 20% without reducing the compressive strength of concrete.

Keywords: cement substitutes, micro and nano fillers, pozzolanic properties, specific surface area, particle size, waste products

Procedia PDF Downloads 427
833 Friction Coefficient of Epiphen Epoxy System Filled with Powder Resulting from the Grinding of Pine Needles

Authors: I. Graur, V. Bria, C. Muntenita

Abstract:

Recent ecological interests have resulted in scientific concerns regarding natural-organic powder composites. Because natural-organic powders are cheap and biodegradable, green composites represent a substantial contribution in polymer science area. The aim of this study is to point out the effect of natural-organic powder resulting from the grinding of pine needles used as a modifying agent for Epiphen epoxy resin and is focused on friction coefficient behavior. A pin-on-disc setup is used for friction coefficient experiments. Epiphen epoxy resin was used with the different ratio of organic powder from the grinding of pine needles. Because of the challenges of natural organic powder, more and more companies are looking at organic composite materials.

Keywords: epoxy, friction coefficient, organic powder, pine needles

Procedia PDF Downloads 177
832 Manufacturing Process of S-Glass Fiber Reinforced PEKK Prepregs

Authors: Nassier A. Nassir, Robert Birch, Zhongwei Guan

Abstract:

The aim of this study is to investigate the fundamental science/technology related to novel S-glass fiber reinforced polyether- ketone-ketone (GF/PEKK) composites and to gain insight into bonding strength and failure mechanisms. Different manufacturing techniques to make this high-temperature pre-impregnated composite (prepreg) were conducted i.e. mechanical deposition, electrostatic powder deposition, and dry powder prepregging techniques. Generally, the results of this investigation showed that it was difficult to control the distribution of the resin powder evenly on the both sides of the fibers within a specific percentage. Most successful approach was by using a dry powder prepregging where the fibers were coated evenly with an adhesive that served as a temporary binder to hold the resin powder in place onto the glass fiber fabric.

Keywords: sry powder technique, PEKK, S-glass, thermoplastic prepreg

Procedia PDF Downloads 204
831 Shopping Behaviour of Ethnic Groups in Indian Culture

Authors: Hari Govindmishra, Sarabjot Singh

Abstract:

The study offers an approach to understand different determinants of shopping behaviour, and the effect of ethnicity on shopping behaviour. The results reveal that the Indian culture is composite in nature and because of which there is no difference between different ethnic groups in their preference for three shopping behaviour determinants, viz., status consciousness, need for touch and companion opinion. The research model investigates the relevant relationship between these constructs by using a structural equation modelling approach, which reveals that status consciousness, need for touch and companion opinion are significant determinants of shopping behaviour. Consequently, the shopping behaviour managers have to understand the collective nature of Indian ethnic consumers in their shopping behaviour.

Keywords: ethnic groups, status consciousness, companion opinion, need for touch, shopping behaviour

Procedia PDF Downloads 451
830 3-D Strain Imaging of Nanostructures Synthesized via CVD

Authors: Sohini Manna, Jong Woo Kim, Oleg Shpyrko, Eric E. Fullerton

Abstract:

CVD techniques have emerged as a promising approach in the formation of a broad range of nanostructured materials. The realization of many practical applications will require efficient and economical synthesis techniques that preferably avoid the need for templates or costly single-crystal substrates and also afford process adaptability. Towards this end, we have developed a single-step route for the reduction-type synthesis of nanostructured Ni materials using a thermal CVD method. By tuning the CVD growth parameters, we can synthesize morphologically dissimilar nanostructures including single-crystal cubes and Au nanostructures which form atop untreated amorphous SiO2||Si substrates. An understanding of the new properties that emerge in these nanostructures materials and their relationship to function will lead to for a broad range of magnetostrictive devices as well as other catalysis, fuel cell, sensor, and battery applications based on high-surface-area transition-metal nanostructures. We use coherent X-ray diffraction imaging technique to obtain 3-D image and strain maps of individual nanocrystals. Coherent x-ray diffractive imaging (CXDI) is a technique that provides the overall shape of a nanostructure and the lattice distortion based on the combination of highly brilliant coherent x-ray sources and phase retrieval algorithm. We observe a fine interplay of reduction of surface energy vs internal stress, which plays an important role in the morphology of nano-crystals. The strain distribution is influenced by the metal-substrate interface and metal-air interface, which arise due to differences in their thermal expansion. We find the lattice strain at the surface of the octahedral gold nanocrystal agrees well with the predictions of the Young-Laplace equation quantitatively, but exhibits a discrepancy near the nanocrystal-substrate interface resulting from the interface. The strain in the bottom side of the Ni nanocube, which is contacted on the substrate surface is compressive. This is caused by dissimilar thermal expansion coefficients between Ni nanocube and Si substrate. Research at UCSD support by NSF DMR Award # 1411335.

Keywords: CVD, nanostructures, strain, CXRD

Procedia PDF Downloads 392
829 Photocatalytic Conversion of Water/Methanol Mixture into Hydrogen Using Cerium/Iron Oxides Based Structures

Authors: Wael A. Aboutaleb, Ahmed M. A. El Naggar, Heba M. Gobara

Abstract:

This research work reports the photocatalytic production of hydrogen from water-methanol mixture using three different 15% ceria/iron oxide catalysts. The catalysts were prepared by physical mixing, precipitation, and ultrasonication methods and labeled as catalysts A-C. The structural and texture properties of the obtained catalysts were confirmed by X-ray diffraction (XRD), BET-surface area analysis and transmission electron microscopy (TEM). The photocatalytic activity of the three catalysts towards hydrogen generation was then tested. Promising hydrogen productivity was obtained by the three catalysts however different gases compositions were obtained by each type of catalyst. Specifically, catalyst A had produced hydrogen mixed with CO₂ while the composite structure (catalyst B) had generated only pure H₂. In the case of catalyst C, syngas made of H₂ and CO was revealed, as a novel product, for the first time, in such process.

Keywords: hydrogen production, water splitting, photocatalysts, clean energy

Procedia PDF Downloads 240
828 Winged Test Rocket with Fully Autonomous Guidance and Control for Realizing Reusable Suborbital Vehicle

Authors: Koichi Yonemoto, Hiroshi Yamasaki, Masatomo Ichige, Yusuke Ura, Guna S. Gossamsetti, Takumi Ohki, Kento Shirakata, Ahsan R. Choudhuri, Shinji Ishimoto, Takashi Mugitani, Hiroya Asakawa, Hideaki Nanri

Abstract:

This paper presents the strategic development plan of winged rockets WIRES (WInged REusable Sounding rocket) aiming at unmanned suborbital winged rocket for demonstrating future fully reusable space transportation technologies, such as aerodynamics, Navigation, Guidance and Control (NGC), composite structure, propulsion system, and cryogenic tanks etc., by universities in collaboration with government and industries, as well as the past and current flight test results.

Keywords: autonomous guidance and control, reusable rocket, space transportation system, suborbital vehicle, winged rocket

Procedia PDF Downloads 365
827 Fabrication of Highly Conductive Graphene/ITO Transparent Bi-Film through Chemical Vapor Deposition (CVD) and Organic Additives-Free Sol-Gel Techniques

Authors: Bastian Waduge Naveen Harindu Hemasiri, Jae-Kwan Kim, Ji-Myon Lee

Abstract:

Indium tin oxide (ITO) remains the industrial standard transparent conducting oxides with better performances. Recently, graphene becomes as a strong material with unique properties to replace the ITO. However, graphene/ITO hybrid composite material is a newly born field in the electronic world. In this study, the graphene/ITO composite bi-film was synthesized by a two steps process. 10 wt.% tin-doped, ITO thin films were produced by an environmentally friendly aqueous sol-gel spin coating technique with economical salts of In(NO3)3.H2O and SnCl4 without using organic additives. The wettability and surface free energy (97.6986 mJ/m2) enhanced oxygen plasma treated glass substrates were used to form voids free continuous ITO film. The spin-coated samples were annealed at 600 0C for 1 hour under low vacuum conditions to obtained crystallized, ITO film. The crystal structure and crystalline phases of ITO thin films were analyzed by X-ray diffraction (XRD) technique. The Scherrer equation was used to determine the crystallite size. Detailed information about chemical composition and elemental composition of the ITO film were determined by X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy (EDX) coupled with FE-SEM respectively. Graphene synthesis was done under chemical vapor deposition (CVD) method by using Cu foil at 1000 0C for 1 min. The quality of the synthesized graphene was characterized by Raman spectroscopy (532nm excitation laser beam) and data was collected at room temperature and normal atmosphere. The surface and cross-sectional observation were done by using FE-SEM. The optical transmission and sheet resistance were measured by UV-Vis spectroscopy and four point probe head at room temperature respectively. Electrical properties were also measured by using V-I characteristics. XRD patterns reveal that the films contain the In2O3 phase only and exhibit the polycrystalline nature of the cubic structure with the main peak of (222) plane. The peak positions of In3d5/2 (444.28 eV) and Sn3d5/2 (486.7 eV) in XPS results indicated that indium and tin are in the oxide form only. The UV-visible transmittance shows 91.35 % at 550 nm with 5.88 x 10-3 Ωcm specific resistance. The G and 2D band in Raman spectroscopy of graphene appear at 1582.52 cm-1 and 2690.54 cm-1 respectively when the synthesized CVD graphene on SiO2/Si. The determined intensity ratios of 2D to G (I2D/IG) and D to G (ID/IG) were 1.531 and 0.108 respectively. However, the above-mentioned G and 2D peaks appear at 1573.57 cm-1 and 2668.14 cm-1 respectively when the CVD graphene on the ITO coated glass, the positions of G and 2D peaks were red shifted by 8.948 cm-1 and 22.396 cm-1 respectively. This graphene/ITO bi-film shows modified electrical properties when compares with sol-gel derived ITO film. The reduction of sheet resistance in the bi-film was 12.03 % from the ITO film. Further, the fabricated graphene/ITO bi-film shows 88.66 % transmittance at 550 nm wavelength.

Keywords: chemical vapor deposition, graphene, ITO, Raman Spectroscopy, sol-gel

Procedia PDF Downloads 260
826 Failure Criterion for Mixed Mode Fracture of Cracked Wood Specimens

Authors: Mahdi Fakoor, Seyed Mohammad Navid Ghoreishi

Abstract:

Investigation of fracture of wood components can prevent from catastrophic failures. Created fracture process zone (FPZ) in crack tip vicinity has important effect on failure of cracked composite materials. In this paper, a failure criterion for fracture investigation of cracked wood specimens under mixed mode I/II loading is presented. This criterion is based on maximum strain energy release rate and material nonlinearity in the vicinity of crack tip due to presence of microcracks. Verification of results with available experimental data proves the coincidence of the proposed criterion with the nature of fracture of wood. To simplify the estimation of nonlinear properties of FPZ, a damage factor is also introduced for engineering and application purposes.

Keywords: fracture criterion, mixed mode loading, damage zone, micro cracks

Procedia PDF Downloads 298
825 The Environmental Impact of Sustainability Dispersion of Chlorine Releases in Coastal Zone of Alexandra: Spatial-Ecological Modeling

Authors: Mohammed El Raey, Moustafa Osman Mohammed

Abstract:

The spatial-ecological modeling is relating sustainable dispersions with social development. Sustainability with spatial-ecological model gives attention to urban environments in the design review management to comply with Earth’s System. Naturally exchange patterns of ecosystems have consistent and periodic cycles to preserve energy flows and materials in Earth’s System. The probabilistic risk assessment (PRA) technique is utilized to assess the safety of industrial complex. The other analytical approach is the Failure-Safe Mode and Effect Analysis (FMEA) for critical components. The plant safety parameters are identified for engineering topology as employed in assessment safety of industrial ecology. In particular, the most severe accidental release of hazardous gaseous is postulated, analyzed and assessment in industrial region. The IAEA- safety assessment procedure is used to account the duration and rate of discharge of liquid chlorine. The ecological model of plume dispersion width and concentration of chlorine gas in the downwind direction is determined using Gaussian Plume Model in urban and ruler areas and presented with SURFER®. The prediction of accident consequences is traced in risk contour concentration lines. The local greenhouse effect is predicted with relevant conclusions. The spatial-ecological model is also predicted the distribution schemes from the perspective of pollutants that considered multiple factors of multi-criteria analysis. The data extends input–output analysis to evaluate the spillover effect, and conducted Monte Carlo simulations and sensitivity analysis. Their unique structure is balanced within “equilibrium patterns”, such as the biosphere and collective a composite index of many distributed feedback flows. These dynamic structures are related to have their physical and chemical properties and enable a gradual and prolonged incremental pattern. While this spatial model structure argues from ecology, resource savings, static load design, financial and other pragmatic reasons, the outcomes are not decisive in artistic/ architectural perspective. The hypothesis is an attempt to unify analytic and analogical spatial structure for development urban environments using optimization software and applied as an example of integrated industrial structure where the process is based on engineering topology as optimization approach of systems ecology.

Keywords: spatial-ecological modeling, spatial structure orientation impact, composite structure, industrial ecology

Procedia PDF Downloads 80