Search results for: wheat yield prediction
3490 Contemporary Changes in Agricultural Land Use in Central and Eastern Europe: Direction and Conditions
Authors: Jerzy Bański
Abstract:
Central and Eastern European agriculture is characterized by large spatial variations in the structure of agricultural land and the structure of crops on arable land. In general, field crops predominate among the land used for agriculture. In the southern part of the study area, permanent crops have a relatively large share, which is due to favorable climatic conditions. Clear differences between the north and south of the region concern the structure of crop cultivation. In the north, the cultivation of cereals, mainly wheat, definitely prevails. In the south of the region, on the other hand, the structure of crops is more diverse, as more industrial crops are grown in addition to cereals. The primary cognitive objective of the study is to diagnose and identify the directions of changes in the structure of agricultural land use in the CEE region. Particular attention was paid to the spatial differentiation of this structure and its importance in its formation of various conditions. The analysis included the basic elements of the structure of agricultural land use and the structure of crops on arable land. The decrease in the area of arable land is characteristic of the entire region and is the result of the territorial growth of cities, the development of communications infrastructure (rail and road), and the increase in the rationality of crop production involving, among other things, the exclusion from the cultivation of land with the lowest agro-ecological values and their afforestation. It can be summarized that the directions of changes in the basic categories of agricultural land are related to agro-ecological conditions, which indicates an increase in the rationality of crop production. In countries with lower-quality of agricultural production space, the share of grassland generally increased, while in countries with favorable conditions -mainly soil- the share of arable land increased. As for the structure of field crops, the direction of its changes seems to be mainly due to economic and social reasons. Ownership changes shaping an unfavorable agrarian structure (fragmentation and fragmentation of arable fields) and the process of aging of the rural population resulted in the abandonment of resource- and labor-intensive crops. As a result, the importance of growing fruits and vegetables, and potatoes has declined. The structure of vegetable crops has been greatly influenced by the accession of Central and Eastern European countries to the European Union. This is primarily the increase in the importance of oil crops (rapeseed and sunflower) related to biofuel production. In the case of cereal crops, the main direction of change was the increase in the share of wheat at the expense of other cereal species.Keywords: agriculture, land use, Central and Eastern Europe, crops, arable land
Procedia PDF Downloads 723489 Predicting Stem Borer Density in Maize Using RapidEye Data and Generalized Linear Models
Authors: Elfatih M. Abdel-Rahman, Tobias Landmann, Richard Kyalo, George Ong’amo, Bruno Le Ru
Abstract:
Maize (Zea mays L.) is a major staple food crop in Africa, particularly in the eastern region of the continent. The maize growing area in Africa spans over 25 million ha and 84% of rural households in Africa cultivate maize mainly as a means to generate food and income. Average maize yields in Sub Saharan Africa are 1.4 t/ha as compared to global average of 2.5–3.9 t/ha due to biotic and abiotic constraints. Amongst the biotic production constraints in Africa, stem borers are the most injurious. In East Africa, yield losses due to stem borers are currently estimated between 12% to 40% of the total production. The objective of the present study was therefore to predict stem borer larvae density in maize fields using RapidEye reflectance data and generalized linear models (GLMs). RapidEye images were captured for a test site in Kenya (Machakos) in January and in February 2015. Stem borer larva numbers were modeled using GLMs assuming Poisson (Po) and negative binomial (NB) distributions with error with log arithmetic link. Root mean square error (RMSE) and ratio prediction to deviation (RPD) statistics were employed to assess the models performance using a leave one-out cross-validation approach. Results showed that NB models outperformed Po ones in all study sites. RMSE and RPD ranged between 0.95 and 2.70, and between 2.39 and 6.81, respectively. Overall, all models performed similar when used the January and the February image data. We conclude that reflectance data from RapidEye data can be used to estimate stem borer larvae density. The developed models could to improve decision making regarding controlling maize stem borers using various integrated pest management (IPM) protocols.Keywords: maize, stem borers, density, RapidEye, GLM
Procedia PDF Downloads 4953488 Effects of Nitrogen and Arsenic on Antioxidant Enzyme Activities and Photosynthetic Pigments in Safflower (Carthamus tinctorius L.)
Authors: Mostafa Heidari
Abstract:
Nitrogen fertilization has played a significant role in increasing crop yield, and solving problems of hunger and malnutrition worldwide. However, excessive of heavy metals such as arsenic can interfere on growth and reduced grain yield. In order to investigate the effects of different concentrations of arsenic and nitrogen fertilizer on photosynthetic pigments and antioxidant enzyme activities in safflower (cv. Goldasht), a factorial plot experiment as randomized complete block design with three replication was conducted in university of Zabol. Arsenic treatment included: A1= control or 0, A2=30, A3=60 and A4=90 mg. kg-1 soil from the Na2HASO4 source and three nitrogen levels including W1=75, W2=150 and W3=225 kg.ha-1 from urea source. Results showed that, arsenic had a significant effect on the activity of antioxidant enzymes. By increasing arsenic levels from A1 to A4, the activity of ascorbate peroxidase (APX) and gayacol peroxidase (GPX) increased and catalase (CAT) was decreased. In this study, arsenic had no significant on chlorophyll a, b and cartoneid content. Nitrogen and interaction between arsenic and nitrogen treatment, except APX, had significant effect on CAT and GPX. The highest GPX activity was obtained at A4N3 treatment. Nitrogen increased the content of chlorophyll a, b and cartoneid.Keywords: arsenic, physiological parameters, oxidative enzymes, nitrogen
Procedia PDF Downloads 4393487 Screening of Plant Growth Promoting Rhizobacteria in the Rhizo- and Endosphere of Sunflower (Helianthus anus) and Their Role in Enhancing Growth and Yield Attriburing Trairs and Colonization Studies
Authors: A. Majeed, M.K. Abbasi, S. Hameed, A. Imran, T. Naqqash, M. K. Hanif
Abstract:
Plant growth-promoting rhizobacteria (PGPR) are free-living soil bacteria that aggressively colonize the rhizosphere/plant roots, and enhance the growth and yield of plants when applied to seed or crops. Root associated (endophytic and rhizospheric) PGPR were isolated from Sunflower (Helianthus anus) grown in soils collected from 16 different sites of sub division Dhirkot, Poonch, Azad Jammu & Kashmir, Pakistan. A total of 150 bacterial isolates were isolated, purified, screened in vitro for their plant growth promoting (PGP) characteristics. 11 most effective isolates were selected on the basis of biochemical assays (nitrogen fixation, phosphate solubilization, growth hormone production, biocontrol assay, and carbon substrates utilization assay through gas chromatography (GCMS), spectrophotometry, high performance liquid chromatography HPLC, fungal and bacterial dual plate assay and BIOLOG GN2/GP2 microplate assay respectively) and were tested on the crop under controlled and field conditions. From the inoculation assay, the most promising 4 strains (on the basis of increased root/shoot weight, root/shoot length, seed oil content, and seed yield) were than selected for colonization studies through confocal laser scanning and transmission electron microscope. 16Sr RNA gene analysis showed that these bacterial isolates belong to Pseudononas, Enterobacter, Azospirrilum, and Citobacter genera. This study is the clear evident that such isolates have the potential for application as inoculants adapted to poor soils and local crops to minimize the chemical fertilizers harmful for soil and environmentKeywords: PGPR, nitrogen fixation, phosphate solubilization, colonization
Procedia PDF Downloads 3393486 Study the Effect of Tolerances for Press Tool Assembly: Computer Aided Tolerance Analysis
Authors: Subodh Kumar, Ramkisan Pawar, Gopal D. Belurkar
Abstract:
This paper describes a study for simple blanking tool. In blanking or piercing operation, punch and die should be concentric for proper cutting. In this study, tolerance analysis method is used to analyze the variation in the press tool assembly. Variation results into the eccentricity in between die and punch due to cumulative tolerance of parts used in assembly. 1D variation analysis were performed by CREO parametric computer aided design (CAD) Software Powered by CETOL 6σ computer aided tolerance analysis software. Use of CAD analysis software given the opportunity to find out the cause of variation in tool assembly. Accordingly, the new specification of tolerance and process setting for die set manufacturing has determined. Tolerance allocation and tolerance analysis method were performed iteratively to conclude that position tolerance as well as size tolerance of hole in top plate for bush and size tolerance of guide pillar were more responsible for eccentricity in punch and die. This work proposes optimum tolerance for press tool assembly parts to achieve 100 % yield for specified .015mm minimum tolerance zone.Keywords: blanking, GD&T (Geometric Dimension and Tolerancing), DPMU (defects per million unit), press tool, stackup analysis, tolerance allocation, yield percentage
Procedia PDF Downloads 3593485 A Quick Prediction for Shear Behaviour of RC Membrane Elements by Fixed-Angle Softened Truss Model with Tension-Stiffening
Authors: X. Wang, J. S. Kuang
Abstract:
The Fixed-angle Softened Truss Model with Tension-stiffening (FASTMT) has a superior performance in predicting the shear behaviour of reinforced concrete (RC) membrane elements, especially for the post-cracking behaviour. Nevertheless, massive computational work is inevitable due to the multiple transcendental equations involved in the stress-strain relationship. In this paper, an iterative root-finding technique is introduced to FASTMT for solving quickly the transcendental equations of the tension-stiffening effect of RC membrane elements. This fast FASTMT, which performs in MATLAB, uses the bisection method to calculate the tensile stress of the membranes. By adopting the simplification, the elapsed time of each loop is reduced significantly and the transcendental equations can be solved accurately. Owing to the high efficiency and good accuracy as compared with FASTMT, the fast FASTMT can be further applied in quick prediction of shear behaviour of complex large-scale RC structures.Keywords: bisection method, FASTMT, iterative root-finding technique, reinforced concrete membrane
Procedia PDF Downloads 2703484 Genetic Dissection of QTLs in Intraspecific Hybrids Derived from Muskmelon (Cucumis Melo L.) and Mangalore Melon (Cucumis Melo Var Acidulus) for Shelflife and Fruit Quality Traits
Authors: Virupakshi Hiremata, Ratnakar M. Shet, Raghavendra Gunnaiah, Prashantha A.
Abstract:
Muskmelon is a health-beneficial and refreshing dessert vegetable with a low shelf life. Mangalore melon, a genetic homeologue of muskmelon, has a shelf life of more than six months and is mostly used for culinary purposes. Understanding the genetics of shelf life, yield and yield-related traits and identification of markers linked to such traits is helpful in transfer of extended shelf life from Mangalore melon to the muskmelon through intra-specific hybridization. For QTL mapping, 276 F2 mapping population derived from the cross Arka Siri × SS-17 was genotyped with 40 polymorphic markers distributed across 12 chromosomes. The same population was also phenotyped for yield, shelf life and fruit quality traits. One major QTL (R2 >10) and fourteen minor QTLs (R2 <10) localized on four linkage groups, governing different traits were mapped in F2 mapping population developed from the intraspecific cross with a LOD > 5.5. The phenotypic varience explained by each locus varied from 3.63 to 10.97 %. One QTL was linked to shelf-life (qSHL-3-1), five QTLs were linked to TSS (qTSS-1-1, qTSS-3-3, qTSS-3-1, qTSS-3-2 and qTSS-1-2), two QTLs for flesh thickness (qFT-3-1, and qFT-3-2) and seven QTLs for fruit yield per vine (qFYV-3-1, qFYV-1-1, qFYV-3-1, qFYV1-1, qFYV-1-3, qFYV2-1 and qFYV6-1). QTL flanking markers may be used for marker assisted introgression of shelf life into muskmelon. Important QTL will be further fine-mapped for identifying candidate genes by QTLseq and RNAseq analysis. Fine-mapping of Important Quantitative Trait Loci (QTL) holds immense promise in elucidating the genetic basis of complex traits. Leveraging advanced techniques like QTLseq and RNA sequencing (RNA seq) is crucial for this endeavor. QTLseq combines next-generation sequencing with traditional QTL mapping, enabling precise identification of genomic regions associated with traits of interest. Through high-throughput sequencing, QTLseq provides a detailed map of genetic variations linked to phenotypic variations, facilitating targeted investigations. Moreover, RNA seq analysis offers a comprehensive view of gene expression patterns in response to specific traits or conditions. By comparing transcriptomes between contrasting phenotypes, RNA seq aids in pinpointing candidate genes underlying QTL regions. Integrating QTLseq with RNA seq allows for a multi-dimensional approach, coupling genetic variation with gene expression dynamics.Keywords: QTL, shelf life, TSS, muskmelon and Mangalore melon
Procedia PDF Downloads 523483 Biodiesel Production from Fruit Pulp of Cassia fistula L. Using Green Microalga Chlorella minutissima
Authors: Rajesh Chandra, Uttam K. Ghosh
Abstract:
This study demonstrates microalgal bio-diesel generation from a cheap, abundant, non-edible fruit pulp of Cassia fistula L. The Cassia fistula L. fruit pulp aqueous extract (CFAE) was utilized as a growth medium for cultivation of microalga Chlorella minutissima (C. minutissima). This microalga accumulated a high amount of lipids when cultivated with CFAE as a source of nutrition in comparison to BG-11 medium. Different concentrations (10, 20, 30, 40 and 50%) of CFAE diluted with distilled water were used to cultivate microalga. Effects of light intensity and photoperiod were also observed on biomass and lipid yield of microalga. Light intensity of 8000 lux with a photoperiod of 18 h resulted in maximum biomass and lipid yield of 1.28 ± 0.03 and 0.3968 ± 0.05 g/L, respectively when cultivated with 40% CFAE. Fatty acid methyl ester (FAME) profile of bio-diesel obtained shown the presence of myristic acid (C14:0), palmitic acid (C16:0), palmitoleic acid (C16:1), stearic acid (C18:0), linoleic acid (C18:2), linolenic acid (C18:3), arachidic acid (C20:0), and gondoic acid (C20:1), as major fatty acids. These facts reflect that the fruit pulp of Cassia fistula L. can be used for cultivation of C. minutissima.Keywords: biomass, bio-diesel, Cassia fistula L., C. minutissima, GC-MS, lipid
Procedia PDF Downloads 1553482 Prediction Compressive Strength of Self-Compacting Concrete Containing Fly Ash Using Fuzzy Logic Inference System
Authors: Belalia Douma Omar, Bakhta Boukhatem, Mohamed Ghrici
Abstract:
Self-compacting concrete (SCC) developed in Japan in the late 80s has enabled the construction industry to reduce demand on the resources, improve the work condition and also reduce the impact of environment by elimination of the need for compaction. Fuzzy logic (FL) approaches has recently been used to model some of the human activities in many areas of civil engineering applications. Especially from these systems in the model experimental studies, very good results have been obtained. In the present study, a model for predicting compressive strength of SCC containing various proportions of fly ash, as partial replacement of cement has been developed by using Adaptive Neuro-Fuzzy Inference System (ANFIS). For the purpose of building this model, a database of experimental data were gathered from the literature and used for training and testing the model. The used data as the inputs of fuzzy logic models are arranged in a format of five parameters that cover the total binder content, fly ash replacement percentage, water content, super plasticizer and age of specimens. The training and testing results in the fuzzy logic model have shown a strong potential for predicting the compressive strength of SCC containing fly ash in the considered range.Keywords: self-compacting concrete, fly ash, strength prediction, fuzzy logic
Procedia PDF Downloads 3343481 Development of Corn (Zea mays L.) Stalk Geotextile Net for Soil Erosion Mitigation
Authors: Cristina S. Decano, Vitaliana U. Malamug, Melissa E. Agulto, Helen F. Gavino
Abstract:
This study aimed to introduce new natural fiber to be used in the production of geotextile net for mitigation of soil erosion. Fiber extraction from the stalks was the main challenge faced during the processing of stalks to ropes. Thus, an investigation on the extraction procedures of corn (Zea mays L.) stalk under biological and chemical retting was undertaken. Results indicated significant differences among percent fiber yield as affected by the retting methods used with values of 15.07%, 12.97%, 11.60%, and 9.01%, for dew, water, chemical (1 day after harvest and15 days after harvest), respectively, with the corresponding average extracting duration of 70, 82, 89, and 94 minutes. Physical characterization of the developed corn stalk geotextile net resulted to average mass per unit area of 806.25 g/m2 and 241% water absorbing capacity. The effect of corn stalk geotextile net in mitigating soil erosion was evaluated in a laboratory experiment for 30o and 60o inclinations with three treatments: bare soil (A1), corn stalk geotextile net (A2) and combined cornstalk geotextile net and vegetation cover (A3). Results revealed that treatment A2 and A3 significantly decreased sediment yield and an increase in terms of soil loss reduction efficiency. The cost of corn stalk geotextile net is Php 62.41 per square meter.Keywords: corn stalk, natural geotextile, retting, soil erosion
Procedia PDF Downloads 2973480 Industrial Wastewater from Paper Mills Used for Biofuel Production and Soil Improvement
Authors: Karin M. Granstrom
Abstract:
Paper mills produce wastewater with a high content of organic substances. Treatment usually consists of sedimentation, biological treatment of activated sludge basins, and chemical precipitation. The resulting sludges are currently a waste problem, deposited in landfills or used as low-grade fuels for incineration. There is a growing awareness of the need for energy efficiency and environmentally sound management of sludge. A resource-efficient method would be to digest the wastewater sludges anaerobically to produce biogas, refine the biogas to biomethane for use in the transportation sector, and utilize the resulting digestate for soil improvement. The biomethane yield of pulp and paper wastewater sludge is comparable to that of straw or manure. As a bonus, the digestate has an improved dewaterability compared to the feedstock biosludge. Limitations of this process are predominantly a weak economic viability - necessitating both sufficiently large-scale paper production for the necessary large amounts of produced wastewater sludge, and the resolving of remaining questions on the certifiability of the digestate and thus its sales price. A way to improve the practical and economical feasibility of using paper mill wastewater for biomethane production and soil improvement is to co-digest it with other feedstocks. In this study, pulp and paper sludge were co-digested with (1) silage and manure, (2) municipal sewage sludge, (3) food waste, or (4) microalgae. Biomethane yield analysis was performed in 500 ml batch reactors, using an Automatic Methane Potential Test System at thermophilic temperature, with a 20 days test duration. The results show that (1) the harvesting season of grass silage and manure collection was an important factor for methane production, with spring feedstocks producing much more than autumn feedstock, and pulp mill sludge benefitting the most from co-digestion; (2) pulp and paper mill sludge is a suitable co-substrate to add when a high nitrogen content cause impaired biogas production due to ammonia inhibition; (3) the combination of food waste and paper sludge gave higher methane yield than either of the substrates digested separately; (4) pure microalgae gave the highest methane yield. In conclusion, although pulp and paper mills are an almost untapped resource for biomethane production, their wastewater is a suitable feedstock for such a process. Furthermore, through co-digestion, the pulp and paper mill wastewater and mill sludges can aid biogas production from more nutrient-rich waste streams from other industries. Such co-digestion also enhances the soil improvement properties of the residue digestate.Keywords: anaerobic, biogas, biomethane, paper, sludge, soil
Procedia PDF Downloads 2573479 The Influence of Organic Waste on Vegetable Nutritional Components and Healthy Livelihood, Minna, Niger State, Nigeria
Authors: A. Abdulkadir, A. A. Okhimamhe, Y. M. Bello, H. Ibrahim, D. H. Makun, M. T. Usman
Abstract:
Household waste form a larger proportion of waste generated across the state, accumulation of organic waste is an apparent problem and the existing dump sites could be overstressed. Niger state has abundant arable land and water resources thus should be one of the highest producers of agricultural crops in the country. However, the major challenge to agricultural sector today is the loss of soil nutrient coupled with high cost of fertilizer. These have continued to increase the use of fertilizer and decomposed solid waste for enhancing agricultural yield, which have varying effects on the soil as well a threat to human livelihood. Consequently, vegetable yield samples from poultry droppings decomposed household waste manure, NPK treatments and control from each replication were subjected to proximate analysis to determine the nutritional and anti-nutritional component as well as heavy metal concentration. Data collected was analyzed using SPSS software and Randomized complete Block Design means were compared. The result shows that the treatments do not devoid the concentrations of any nutritional components while the anti-nutritional analysis proved that NPK had higher oxalate content than control and organic treats. The concentration of lead and cadmium are within safe permissible level while the mercury level exceeded the FAO/WHO maximum permissible limit for the entire treatments depicts the need for urgent intervention to minimize mercury levels in soil and manure in order to mitigate its toxic effect. Thus, eco-agriculture should be widely accepted and promoted by the stakeholders for soil amendment, higher yield, strategies for sustainable environmental protection, food security, poverty eradication, attainment of sustainable development and healthy livelihood.Keywords: anti-nutritional, healthy livelihood, nutritional waste, organic waste
Procedia PDF Downloads 3793478 A Comparison between the Results of Hormuz Strait Wave Simulations Using WAVEWATCH-III and MIKE21-SW and Satellite Altimetry Observations
Authors: Fatemeh Sadat Sharifi
Abstract:
In the present study, the capabilities of WAVEWATCH-III and MIKE21-SW for predicting the characteristics of wind waves in Hormuz Strait are evaluated. The GFS wind data (Global Forecast System) were derived. The bathymetry of gride with 2 arc-minute resolution, also were extracted from the ETOPO1. WAVEWATCH-III findings illustrate more valid prediction of wave features comparing to the MIKE-21 SW in deep water. Apparently, in shallow area, the MIKE-21 provides more uniformities with altimetry measurements. This may be due to the merits of the unstructured grid which are used in MIKE-21, leading to better representations of the coastal area. The findings on the direction of waves generated by wind in the modeling area indicate that in some regions, despite the increase in wind speed, significant wave height stays nearly unchanged. This is fundamental because of swift changes in wind track over the Strait of Hormuz. After discussing wind-induced waves in the region, the impact of instability of the surface layer on wave growth has been considered. For this purpose, the average monthly mean air temperature has been used. The results in cold months, when the surface layer is unstable, indicates an acceptable increase in the accuracy of prediction of the indicator wave height.Keywords: numerical modeling, WAVEWATCH-III, Strait of Hormuz, MIKE21-SW
Procedia PDF Downloads 2063477 Performance of AquaCrop Model for Simulating Maize Growth and Yield Under Varying Sowing Dates in Shire Area, North Ethiopia
Authors: Teklay Tesfay, Gebreyesus Brhane Tesfahunegn, Abadi Berhane, Selemawit Girmay
Abstract:
Adjusting the proper sowing date of a crop at a particular location with a changing climate is an essential management option to maximize crop yield. However, determining the optimum sowing date for rainfed maize production through field experimentation requires repeated trials for many years in different weather conditions and crop management. To avoid such long-term experimentation to determine the optimum sowing date, crop models such as AquaCrop are useful. Therefore, the overall objective of this study was to evaluate the performance of AquaCrop model in simulating maize productivity under varying sowing dates. A field experiment was conducted for two consecutive cropping seasons by deploying four maize seed sowing dates in a randomized complete block design with three replications. Input data required to run this model are stored as climate, crop, soil, and management files in the AquaCrop database and adjusted through the user interface. Observed data from separate field experiments was used to calibrate and validate the model. AquaCrop model was validated for its performance in simulating the green canopy and aboveground biomass of maize for the varying sowing dates based on the calibrated parameters. Results of the present study showed that there was a good agreement (an overall R2 =, Ef= d= RMSE =) between measured and simulated values of the canopy cover and biomass yields. Considering the overall values of the statistical test indicators, the performance of the model to predict maize growth and biomass yield was successful, and so this is a valuable tool help for decision-making. Hence, this calibrated and validated model is suggested to use for determining optimum maize crop sowing date for similar climate and soil conditions to the study area, instead of conducting long-term experimentation.Keywords: AquaCrop model, calibration, validation, simulation
Procedia PDF Downloads 653476 Comparison of Multivariate Adaptive Regression Splines and Random Forest Regression in Predicting Forced Expiratory Volume in One Second
Authors: P. V. Pramila , V. Mahesh
Abstract:
Pulmonary Function Tests are important non-invasive diagnostic tests to assess respiratory impairments and provides quantifiable measures of lung function. Spirometry is the most frequently used measure of lung function and plays an essential role in the diagnosis and management of pulmonary diseases. However, the test requires considerable patient effort and cooperation, markedly related to the age of patients esulting in incomplete data sets. This paper presents, a nonlinear model built using Multivariate adaptive regression splines and Random forest regression model to predict the missing spirometric features. Random forest based feature selection is used to enhance both the generalization capability and the model interpretability. In the present study, flow-volume data are recorded for N= 198 subjects. The ranked order of feature importance index calculated by the random forests model shows that the spirometric features FVC, FEF 25, PEF,FEF 25-75, FEF50, and the demographic parameter height are the important descriptors. A comparison of performance assessment of both models prove that, the prediction ability of MARS with the `top two ranked features namely the FVC and FEF 25 is higher, yielding a model fit of R2= 0.96 and R2= 0.99 for normal and abnormal subjects. The Root Mean Square Error analysis of the RF model and the MARS model also shows that the latter is capable of predicting the missing values of FEV1 with a notably lower error value of 0.0191 (normal subjects) and 0.0106 (abnormal subjects). It is concluded that combining feature selection with a prediction model provides a minimum subset of predominant features to train the model, yielding better prediction performance. This analysis can assist clinicians with a intelligence support system in the medical diagnosis and improvement of clinical care.Keywords: FEV, multivariate adaptive regression splines pulmonary function test, random forest
Procedia PDF Downloads 3083475 A Contemporary Advertising Strategy on Social Networking Sites
Authors: M. S. Aparna, Pushparaj Shetty D.
Abstract:
Nowadays social networking sites have become so popular that the producers or the sellers look for these sites as one of the best options to target the right audience to market their products. There are several tools available to monitor or analyze the social networks. Our task is to identify the right community web pages and find out the behavior analysis of the members by using these tools and formulate an appropriate strategy to market the products or services to achieve the set goals. The advertising becomes more effective when the information of the product/ services come from a known source. The strategy explores great buying influence in the audience on referral marketing. Our methodology proceeds with critical budget analysis and promotes viral influence propagation. In this context, we encompass the vital bits of budget evaluation such as the number of optimal seed nodes or primary influential users activated onset, an estimate coverage spread of nodes and maximum influence propagating distance from an initial seed to an end node. Our proposal for Buyer Prediction mathematical model arises from the urge to perform complex analysis when the probability density estimates of reliable factors are not known or difficult to calculate. Order Statistics and Buyer Prediction mapping function guarantee the selection of optimal influential users at each level. We exercise an efficient tactics of practicing community pages and user behavior to determine the product enthusiasts on social networks. Our approach is promising and should be an elementary choice when there is little or no prior knowledge on the distribution of potential buyers on social networks. In this strategy, product news propagates to influential users on or surrounding networks. By applying the same technique, a user can search friends who are capable to advise better or give referrals, if a product interests him.Keywords: viral marketing, social network analysis, community web pages, buyer prediction, influence propagation, budget constraints
Procedia PDF Downloads 2613474 Rheology Study of Polyurethane (COAPUR 6050) For Composite Materials Usage
Authors: Sabrina Boutaleb, Kouider Halim Benrahou, François Schosseler, Abdelouahed Tounsi, El Abbas Adda Bedia
Abstract:
The use of polyurethane in different areas becomes more frequent. This is due to significant advantages they have including their lightness and resistance. However, their use requires a mastery of their mechanical performance. We will present in this work, a COAPUR 6050 which can be used to develop composite materials. COAPUR 6050 is an associative polyurethane thickener allowing fine rheological adjustment of flat or semi-gloss paints. COAPUR 6050 is characterised by its thickening efficiency at low shear rate. It is a solvent-free liquid product. It promotes good paint pick up, while maintaining a low yield point after shearing, and consequently a good levelling. We will then determine its rheological behaviour experimentally using different annular gaps. The rheological properties of COAPUR 6050 were researched by rotational rheometer (Rheometer-Mars III) using different annular gaps. There is the influence of the size of the annular gap on the behaviour as well as on the rheological parameters of the COAPUR 6050. The rheological properties data of COAPUR 6050 were regressed by nonlinear regression method and their rheological models were established, are characterized by yield pseudoplastic model. In this case, it is essential to make a viscometric correction. The latter was developed and presented in the experimental results.Keywords: COAPUR 6050, flow’s couette, polyurethane, rheological behaviours
Procedia PDF Downloads 4983473 The Psychosis Prodrome: Biomarkers of the Glutamatergic System and Their Potential Role in Prediction and Treatment
Authors: Peter David Reiss
Abstract:
The concept of the psychosis prodrome has allowed for the identification of adolescent and young adult patients who have a significantly elevated risk of developing schizophrenia spectrum disorders. A number of different interventions have been tested in order to prevent or delay progression of symptoms. To date, there has been no consistent meta-analytical evidence to support efficacy of antipsychotic treatment for patients in the prodromal state, and their use remains therefore inconclusive. Although antipsychotics may manage symptoms transiently, they have not been found to prevent or delay onset of psychotic disorders. Furthermore, pharmacological intervention in high-risk individuals remains controversial, because of the antipsychotic side effect profile in a population in which only about 20 to 35 percent will eventually convert to psychosis over a two-year period, with even after two years conversion rates not exceeding 30 to 40 percent. This general estimate is additionally problematic, in that it ignores the fact that there is significant variation in individual risk among clinical high-risk cases. The current lack of reliable tests for at-risk patients makes it difficult to justify individual treatment decisions. Preventive treatment should ideally be dictated by an individual’s risk while minimizing potentially harmful medication exposure. This requires more accurate predictive assessments by using valid and accessible prognostic markers. The following will compare prediction and risk modification potential of behavioral biomarkers such as disturbances of basic sense of self and emotion awareness, neurocognitive biomarkers such as attention, working and declarative memory, and neurophysiological biomarkers such as glutamatergic abnormalities and NMDA receptor dysfunction. Identification of robust biomarkers could therefore not only provide more reliable means of psychosis prediction, but also help test and develop new clinical interventions targeted at the prodromal state.Keywords: at-risk mental state, biomarkers, glutamatergic system, NMDA receptor, psychosis prodrome, schizophrenia
Procedia PDF Downloads 1933472 Prediction of the Crustal Deformation of Volcán - Nevado Del RUíz in the Year 2020 Using Tropomi Tropospheric Information, Dinsar Technique, and Neural Networks
Authors: Juan Sebastián Hernández
Abstract:
The Nevado del Ruíz volcano, located between the limits of the Departments of Caldas and Tolima in Colombia, presented an unstable behaviour in the course of the year 2020, this volcanic activity led to secondary effects on the crust, which is why the prediction of deformations becomes the task of geoscientists. In the course of this article, the use of tropospheric variables such as evapotranspiration, UV aerosol index, carbon monoxide, nitrogen dioxide, methane, surface temperature, among others, is used to train a set of neural networks that can predict the behaviour of the resulting phase of an unrolled interferogram with the DInSAR technique, whose main objective is to identify and characterise the behaviour of the crust based on the environmental conditions. For this purpose, variables were collected, a generalised linear model was created, and a set of neural networks was created. After the training of the network, validation was carried out with the test data, giving an MSE of 0.17598 and an associated r-squared of approximately 0.88454. The resulting model provided a dataset with good thematic accuracy, reflecting the behaviour of the volcano in 2020, given a set of environmental characteristics.Keywords: crustal deformation, Tropomi, neural networks (ANN), volcanic activity, DInSAR
Procedia PDF Downloads 1023471 In Vitro Antioxidant Properties of Balanites Aeqyptiaca Del Enzymatic Protein Hydrolysates
Authors: Friday A. Ogori, Ojotu M. Eke, Oneh J. Abu, Abraham T. Girgih
Abstract:
B.aeqygtiaca del (Balanites aegyptiaca del) seed protein concentrate (APC) was hydrolyzed using different enzymes such as pepsin+pancreatin (PP), Alcalase (Alca), and Flavourzyme (Flav). The Alca has higher yield (100%) when compared to PP (83.23%) and Flav (62.90%). The hydrophobic amino acid and Sulphur containing amino acid (40.19%, 7.04%) in PP hydrolysate were higher compared to Alcalase (38.92%, 6.69%), Flavourenzyme (37.43%,6.35%), and APC (39.97%, 6.95%) samples. The PP has stronger DPPH, Hydroxyl radical quenching, Ferric reducing activity, and linoleic acid peroxidation activity, followed by the protein concentrate (APC) and Alcalase (Alca), while Flavourenzyme (Flav) derived hydrolysate was least in scavenging and inhibiting radical peroxidation properties. Flavourenzyme derived hydrolysate had stronger Ferric reducing antioxidant potential and metal chelating property. The result showed that the Alcalase hydrolysate has promising peptide yield, and PP hydrolysate had excellent amino acid residues and good in-vitro antioxidant potentials and could be a preferred ingredients in the nutraceutical and functional food emerging industries.Keywords: balanites aegyptiaca del, protein concentrate, protein hydrolysates, enzymatic hydrolysis, antioxidants
Procedia PDF Downloads 693470 Enhanced High-Temperature Strength of HfNbTaTiZrV Refractory High-Entropy Alloy via Al₂O₃ Reinforcement
Authors: Bingjie Wang, Qianqian Qang, Nan Lu, Xiubing Liang, Baolong Shen
Abstract:
Novel composites of HfNbTaTiZrV refractory high-entropy alloy (RHEA) reinforced with 0-5 vol.% Al₂O₃ particles have been synthesized by vacuum arc melting. The microstructure evolution, compressive mechanical properties at room and elevated temperatures, as well as strengthening mechanism of the composites, are analyzed. The HfNbTaTiZrV RHEA reinforced with 4 vol.% Al₂O₃ displays excellent phase stability at elevated temperatures. A superior compressive yield strength of 2700 MPa at room temperature, 1392 MPa at 800 °C, and 693 MPa at 1000 °C has been obtained for this composite. The improved yield strength results from multiple strengthening mechanisms caused by Al₂O₃ addition, including interstitial strengthening, grain boundary strengthening, and dispersion strengthening. Besides, the effects of interstitial strengthening increase with the temperature and is the main strengthening mechanism at elevated temperatures. These findings not only promote the development of oxide-reinforced RHEAs for challenging engineering applications but also provide guidelines for the design of light refractory materials with multiple strengthening mechanisms.Keywords: Al₂O₃-reinforcement, HfNbTaTiZrV, refractory high-entropy alloy, interstitial strengthening
Procedia PDF Downloads 1113469 Strategies in Customer Relationship Management and Customers’ Behavior in Making Decision on Buying Car Insurance of Southeast Insurance Co. Ltd. in Bangkok
Authors: Nattapong Techarattanased, Paweena Sribunrueng
Abstract:
The objective of this study is to investigate strategies in customer relationship management and customers’ behavior in making decision on buying car insurance of Southeast Insurance Co. Ltd. in Bangkok. Subjects in this study included 400 customers with the age over 20 years old to complete questionnaires. The data were analyzed by arithmetic mean and multiple regressions. The results revealed that the customers’ opinions on the strategies in customer relationship management, i.e. customer relationship, customer feedback, customer follow-up, useful service suggestions, customer communication, and service channels were in moderate level but on the customer retention was in high level. Moreover, the strategy in customer relationship management, i.e. customer relationship, and customer feedback had an influence on customers’ buying decision on buying car insurance. The two factors above can be used for the prediction at the rate of 34%. In addition, the strategy in customer relationship management, i.e. customer retention, customer feedback, and useful service suggestions had an influence on the customers’ buying decision on period of being customers. The three factors could be used for the prediction at the rate of 45%.Keywords: strategies, customer relationship management, behavior in buying decision, car insurance
Procedia PDF Downloads 4033468 Three-Stage Anaerobic Co-digestion of High-Solids Food Waste and Horse Manure
Authors: Kai-Chee Loh, Jingxin Zhang, Yen-Wah Tong
Abstract:
Hydrolysis and acidogenesis are the rate-controlling steps in an anaerobic digestion (AD) process. Considering that the optimum conditions for each stage can be diverse diverse, the development of a multi-stage AD system is likely to the AD efficiency through individual optimization. In this research, we developed a highly integrate three-stage anaerobic digester (HM3) to combine the advantages of dry AD and wet AD for anaerobic co-digestion of food waste and horse manure. The digester design comprised mainly of three chambers - high-solids hydrolysis, high-solids acidogenesis and wet methanogensis. Through comparing the treatment performance with other two control digesters, HM3 presented 11.2 ~22.7% higher methane yield. The improved methane yield was mainly attributed to the functionalized partitioning in the integrated digester, which significantly accelerated the solubilization of solid organic matters and the formation of organic acids, as well as ammonia in the high-solids hydrolytic and acidogenic stage respectively. Additionally, HM3 also showed the highest volatile solids reduction rate among the three digesters. Real-time PCR and pyrosequencing analysis indicated that the abundance and biodiversity of microorganisms including bacteria and archaea in HM3 was much higher than that in the control reactors.Keywords: anaerobic digestion, high-solids, food waste and horse manure, microbial community
Procedia PDF Downloads 4123467 Exploring Syntactic and Semantic Features for Text-Based Authorship Attribution
Authors: Haiyan Wu, Ying Liu, Shaoyun Shi
Abstract:
Authorship attribution is to extract features to identify authors of anonymous documents. Many previous works on authorship attribution focus on statistical style features (e.g., sentence/word length), content features (e.g., frequent words, n-grams). Modeling these features by regression or some transparent machine learning methods gives a portrait of the authors' writing style. But these methods do not capture the syntactic (e.g., dependency relationship) or semantic (e.g., topics) information. In recent years, some researchers model syntactic trees or latent semantic information by neural networks. However, few works take them together. Besides, predictions by neural networks are difficult to explain, which is vital in authorship attribution tasks. In this paper, we not only utilize the statistical style and content features but also take advantage of both syntactic and semantic features. Different from an end-to-end neural model, feature selection and prediction are two steps in our method. An attentive n-gram network is utilized to select useful features, and logistic regression is applied to give prediction and understandable representation of writing style. Experiments show that our extracted features can improve the state-of-the-art methods on three benchmark datasets.Keywords: authorship attribution, attention mechanism, syntactic feature, feature extraction
Procedia PDF Downloads 1343466 Application of Multilinear Regression Analysis for Prediction of Synthetic Shear Wave Velocity Logs in Upper Assam Basin
Authors: Triveni Gogoi, Rima Chatterjee
Abstract:
Shear wave velocity (Vs) estimation is an important approach in the seismic exploration and characterization of a hydrocarbon reservoir. There are varying methods for prediction of S-wave velocity, if recorded S-wave log is not available. But all the available methods for Vs prediction are empirical mathematical models. Shear wave velocity can be estimated using P-wave velocity by applying Castagna’s equation, which is the most common approach. The constants used in Castagna’s equation vary for different lithologies and geological set-ups. In this study, multiple regression analysis has been used for estimation of S-wave velocity. The EMERGE module from Hampson-Russel software has been used here for generation of S-wave log. Both single attribute and multi attributes analysis have been carried out for generation of synthetic S-wave log in Upper Assam basin. Upper Assam basin situated in North Eastern India is one of the most important petroleum provinces of India. The present study was carried out using four wells of the study area. Out of these wells, S-wave velocity was available for three wells. The main objective of the present study is a prediction of shear wave velocities for wells where S-wave velocity information is not available. The three wells having S-wave velocity were first used to test the reliability of the method and the generated S-wave log was compared with actual S-wave log. Single attribute analysis has been carried out for these three wells within the depth range 1700-2100m, which corresponds to Barail group of Oligocene age. The Barail Group is the main target zone in this study, which is the primary producing reservoir of the basin. A system generated list of attributes with varying degrees of correlation appeared and the attribute with the highest correlation was concerned for the single attribute analysis. Crossplot between the attributes shows the variation of points from line of best fit. The final result of the analysis was compared with the available S-wave log, which shows a good visual fit with a correlation of 72%. Next multi-attribute analysis has been carried out for the same data using all the wells within the same analysis window. A high correlation of 85% has been observed between the output log from the analysis and the recorded S-wave. The almost perfect fit between the synthetic S-wave and the recorded S-wave log validates the reliability of the method. For further authentication, the generated S-wave data from the wells have been tied to the seismic and correlated them. Synthetic share wave log has been generated for the well M2 where S-wave is not available and it shows a good correlation with the seismic. Neutron porosity, density, AI and P-wave velocity are proved to be the most significant variables in this statistical method for S-wave generation. Multilinear regression method thus can be considered as a reliable technique for generation of shear wave velocity log in this study.Keywords: Castagna's equation, multi linear regression, multi attribute analysis, shear wave logs
Procedia PDF Downloads 2263465 Survival Analysis Based Delivery Time Estimates for Display FAB
Authors: Paul Han, Jun-Geol Baek
Abstract:
In the flat panel display industry, the scheduler and dispatching system to meet production target quantities and the deadline of production are the major production management system which controls each facility production order and distribution of WIP (Work in Process). In dispatching system, delivery time is a key factor for the time when a lot can be supplied to the facility. In this paper, we use survival analysis methods to identify main factors and a forecasting model of delivery time. Of survival analysis techniques to select important explanatory variables, the cox proportional hazard model is used to. To make a prediction model, the Accelerated Failure Time (AFT) model was used. Performance comparisons were conducted with two other models, which are the technical statistics model based on transfer history and the linear regression model using same explanatory variables with AFT model. As a result, the Mean Square Error (MSE) criteria, the AFT model decreased by 33.8% compared to the existing prediction model, decreased by 5.3% compared to the linear regression model. This survival analysis approach is applicable to implementing a delivery time estimator in display manufacturing. And it can contribute to improve the productivity and reliability of production management system.Keywords: delivery time, survival analysis, Cox PH model, accelerated failure time model
Procedia PDF Downloads 5413464 Crack Width Analysis of Reinforced Concrete Members under Shrinkage Effect by Pseudo-Discrete Crack Model
Authors: F. J. Ma, A. K. H. Kwan
Abstract:
Crack caused by shrinkage movement of concrete is a serious problem especially when restraint is provided. It may cause severe serviceability and durability problems. The existing prediction methods for crack width of concrete due to shrinkage movement are mainly numerical methods under simplified circumstances, which do not agree with each other. To get a more unified prediction method applicable to more sophisticated circumstances, finite element crack width analysis for shrinkage effect should be developed. However, no existing finite element analysis can be carried out to predict the crack width of concrete due to shrinkage movement because of unsolved reasons of conventional finite element analysis. In this paper, crack width analysis implemented by finite element analysis is presented with pseudo-discrete crack model, which combines traditional smeared crack model and newly proposed crack queuing algorithm. The proposed pseudo-discrete crack model is capable of simulating separate and single crack without adopting discrete crack element. And the improved finite element analysis can successfully simulate the stress redistribution when concrete is cracked, which is crucial for predicting crack width, crack spacing and crack number.Keywords: crack queuing algorithm, crack width analysis, finite element analysis, shrinkage effect
Procedia PDF Downloads 4173463 A Machine Learning Approach for Intelligent Transportation System Management on Urban Roads
Authors: Ashish Dhamaniya, Vineet Jain, Rajesh Chouhan
Abstract:
Traffic management is one of the gigantic issue in most of the urban roads in al-most all metropolitan cities in India. Speed is one of the critical traffic parameters for effective Intelligent Transportation System (ITS) implementation as it decides the arrival rate of vehicles on an intersection which are majorly the point of con-gestions. The study aimed to leverage Machine Learning (ML) models to produce precise predictions of speed on urban roadway links. The research objective was to assess how categorized traffic volume and road width, serving as variables, in-fluence speed prediction. Four tree-based regression models namely: Decision Tree (DT), Random Forest (RF), Extra Tree (ET), and Extreme Gradient Boost (XGB)are employed for this purpose. The models' performances were validated using test data, and the results demonstrate that Random Forest surpasses other machine learning techniques and a conventional utility theory-based model in speed prediction. The study is useful for managing the urban roadway network performance under mixed traffic conditions and effective implementation of ITS.Keywords: stream speed, urban roads, machine learning, traffic flow
Procedia PDF Downloads 693462 Effect of Be, Zr, and Heat Treatment on Mechanical Behavior of Cast Al-Mg-Zn-Cu Alloys (7075)
Authors: Mahmoud M. Tash
Abstract:
The present study was undertaken to investigate the effect of aging parameters (time and temperature) on the mechanical properties of Be-and/or Zr- treated Al-Mg-Zn (7075) alloys. Ultimate tensile strength, 0.5% offset yield strength and % elongation measurements were carried out on specimens prepared from cast and heat treated 7075 alloys containing Be and/or Zr. Different aging treatment were carried out for the as solution treated (SHT) specimens. The specimens were aged at different conditions; Natural and artificial aging was carried out at room temperature, 120C, 150C, 180C and 220C for different periods of time. Duplex aging was performed for SHT conditions (pre-aged at different time and temperature followed by high temperature aging). Ultimate tensile strength, yield strength and % elongation data results as a function of different aging parameters are analysed. A statistical design of experiments (DOE) approach using fractional factorial design is applied to acquire an understanding of the effects of these variables and their interactions on the mechanical properties of Be- and/or Zr- treated 7075 alloys. Mathematical models are developed to relate the alloy mechanical properties with the different aging parameters.Keywords: casting aging treatment, mechanical properties, Al-Mg-Zn alloys, Be- and/or Zr-treatment, experimental correlation
Procedia PDF Downloads 3623461 Shark Detection and Classification with Deep Learning
Authors: Jeremy Jenrette, Z. Y. C. Liu, Pranav Chimote, Edward Fox, Trevor Hastie, Francesco Ferretti
Abstract:
Suitable shark conservation depends on well-informed population assessments. Direct methods such as scientific surveys and fisheries monitoring are adequate for defining population statuses, but species-specific indices of abundance and distribution coming from these sources are rare for most shark species. We can rapidly fill these information gaps by boosting media-based remote monitoring efforts with machine learning and automation. We created a database of shark images by sourcing 24,546 images covering 219 species of sharks from the web application spark pulse and the social network Instagram. We used object detection to extract shark features and inflate this database to 53,345 images. We packaged object-detection and image classification models into a Shark Detector bundle. We developed the Shark Detector to recognize and classify sharks from videos and images using transfer learning and convolutional neural networks (CNNs). We applied these models to common data-generation approaches of sharks: boosting training datasets, processing baited remote camera footage and online videos, and data-mining Instagram. We examined the accuracy of each model and tested genus and species prediction correctness as a result of training data quantity. The Shark Detector located sharks in baited remote footage and YouTube videos with an average accuracy of 89\%, and classified located subjects to the species level with 69\% accuracy (n =\ eight species). The Shark Detector sorted heterogeneous datasets of images sourced from Instagram with 91\% accuracy and classified species with 70\% accuracy (n =\ 17 species). Data-mining Instagram can inflate training datasets and increase the Shark Detector’s accuracy as well as facilitate archiving of historical and novel shark observations. Base accuracy of genus prediction was 68\% across 25 genera. The average base accuracy of species prediction within each genus class was 85\%. The Shark Detector can classify 45 species. All data-generation methods were processed without manual interaction. As media-based remote monitoring strives to dominate methods for observing sharks in nature, we developed an open-source Shark Detector to facilitate common identification applications. Prediction accuracy of the software pipeline increases as more images are added to the training dataset. We provide public access to the software on our GitHub page.Keywords: classification, data mining, Instagram, remote monitoring, sharks
Procedia PDF Downloads 120