Search results for: water distribution networks
14097 The Effect of Taekwondo on Plantar Pressure Distribution and Arch Index
Authors: Maryam Kakavand, Samira Entezari, Sara Khoshjamalfekri, Raghad Mimar
Abstract:
The objective of this study is 1) to compare elite female and beginner taekwondo players in terms of plantar pressure distribution, vertical ground reaction force, contact area, mean pressure, and right and left longitudinal arches, and 2) to compare preferred and non-preferred limbs among elite players. To the best of authors’ knowledge, as of yet, there is no information available about the plantar pressure distribution and arch index among taekwondo players. Material and Methods: An analytical-comparative research method is applied. Therefore seven elite athletes and eight novice athletes were selected. The emed-C50 platform was used to assess plantar pressure distribution, vertical ground reaction force, contact area, mean pressure of different areas, and planter longitudinal arch in a second step protocol. Independent t-test and dependent t-test were used at a level of 0.05 to compare the elites and beginners' right and left feet, and preferred and non-preferred limbs among elite athletes, respectively. Results: In comparing the right and left limbs of elite and beginner groups, findings indicate that there is only a significant difference in the mean pressure of the first metatarsal of the right foot. Findings also showed a significant difference in the contact area of the toes 3, 4, 5 regions between elites’ preferred and non-preferred limbs. However, no significant difference was found between the two groups’ right and left limbs and elites’ preferred and non-preferred limbs in terms of pressure distribution, vertical ground reaction force, and arch index. Conclusion: It seems that taekwondo exercises have affected pressure distribution patterns among advanced players causing some differences in their planter pressure distribution pattern when compared to that of beginners. Therefore, taekwondo exercises may be a factor contributing to asymmetry performance in preferred and non-preferred limbs.Keywords: planter pressure, arch index, taekwondo, elite
Procedia PDF Downloads 15514096 Graph Neural Networks and Rotary Position Embedding for Voice Activity Detection
Authors: YingWei Tan, XueFeng Ding
Abstract:
Attention-based voice activity detection models have gained significant attention in recent years due to their fast training speed and ability to capture a wide contextual range. The inclusion of multi-head style and position embedding in the attention architecture are crucial. Having multiple attention heads allows for differential focus on different parts of the sequence, while position embedding provides guidance for modeling dependencies between elements at various positions in the input sequence. In this work, we propose an approach by considering each head as a node, enabling the application of graph neural networks (GNN) to identify correlations among the different nodes. In addition, we adopt an implementation named rotary position embedding (RoPE), which encodes absolute positional information into the input sequence by a rotation matrix, and naturally incorporates explicit relative position information into a self-attention module. We evaluate the effectiveness of our method on a synthetic dataset, and the results demonstrate its superiority over the baseline CRNN in scenarios with low signal-to-noise ratio and noise, while also exhibiting robustness across different noise types. In summary, our proposed framework effectively combines the strengths of CNN and RNN (LSTM), and further enhances detection performance through the integration of graph neural networks and rotary position embedding.Keywords: voice activity detection, CRNN, graph neural networks, rotary position embedding
Procedia PDF Downloads 7614095 Role of Ionic Solutions Affect Water Treeing Propagation in XLPE Insulation for High Voltage Cable
Authors: T. Boonraksa, B. Marungsri
Abstract:
This paper presents the experimental results on role of ionic solutions affect water treeing propagation in cross-linked polyethylene insulation for high voltage cable. To study the water treeing expansion due to the ionic solutions, discs of 4mm thickness and 4cm diameter were taken from 115 kV XLPE insulation cable and were used as test specimen in this study. Ionic solutions composed of CuSO4, FeSO4, Na2SO4 and K2SO4 were used. Each specimen was immersed in 0.1 mole ionic solutions and was tested for 120 hrs. under a voltage stress at 7 kV AC rms, 1000 Hz. The results show that Na2SO4 and CuSO4solutions play an important role in the expansion of water treeing and cause degradation of the cross-linked polyethylene (XLPE) in the presence of the applied electric field.Keywords: ionic solutions, water treeing, water treeing expansion, cross-linked polyethylene (XLPE)
Procedia PDF Downloads 38514094 Time Truncated Group Acceptance Sampling Plans for Exponentiated Half Logistic Distribution
Authors: Srinivasa Rao Gadde
Abstract:
In this article, we considered a group acceptance sampling plans for exponentiated half logistic distribution when the life-test is truncated at a pre-specified time. It is assumed that the index parameter of the exponentiated half logistic distribution is known. The design parameters such as the number of groups and the acceptance number are obtained by satisfying the producer’s and consumer’s risks at the specified quality levels in terms of medians and 10th percentiles under the assumption that the termination time and the number of items in each group are pre-fixed. Finally, an example is given to illustration the methodology.Keywords: group acceptance sampling plan, operating characteristic, consumer and producer’s risks, truncated life-test
Procedia PDF Downloads 34114093 The Potential Fresh Water Resources of Georgia and Sustainable Water Management
Authors: Nana Bolashvili, Vakhtang Geladze, Tamazi Karalashvili, Nino Machavariani, George Geladze, Davit Kartvelishvili, Ana Karalashvili
Abstract:
Fresh water is the major natural resource of Georgia. The average perennial sum of the rivers' runoff in Georgia is 52,77 km³, out of which 9,30 km³ inflows from abroad. The major volume of transit river runoff is ascribed to the Chorokhi river. Average perennial runoff in Western Georgia is 41,52 km³, in Eastern Georgia 11,25 km³. The indices of Eastern and Western Georgia were calculated with 50% and 90% river runoff respectively, while the same index calculation for other countries is based on a 50% river runoff. Out of total volume of resources, 133,2 m³/sec (4,21 km³) has been geologically prospected by the State Commission on Reserves and Acknowledged as reserves available for exploitation, 48% (2,02 km³) of which is in Western Georgia and 2,19 km³ in Eastern Georgia. Considering acknowledged water reserves of all categories per capita water resources accounts to 2,2 m³/day, whereas high industrial category -0. 88 m³ /day fresh drinking water. According to accepted norms, the possibility of using underground water reserves is 2,5 times higher than the long-term requirements of the country. The volume of abundant fresh-water reserves in Georgia is about 150 m³/sec (4,74 km³). Water in Georgia is consumed mostly in agriculture for irrigation purposes. It makes 66,4% around Georgia, in Eastern Georgia 72,4% and 38% in Western Georgia. According to the long-term forecast provision of population and the territory with water resources in Eastern Georgia will be quite normal. A bit different is the situation in the lower reaches of the Khrami and Iori rivers which could be easily overcome by corresponding financing. The present day irrigation system in Georgia does not meet the modern technical requirements. The overall efficiency of their majority varies between 0,4-0,6. Similar is the situation in the fresh water and public service water consumption. Organization of the mentioned systems, installation of water meters, introduction of new methods of irrigation without water loss will substantially increase efficiency of water use. Besides new irrigation norms developed from agro-climatic, geographical and hydrological angle will significantly reduce water waste. Taking all this into account we assume that for irrigation agricultural lands in Georgia is necessary 6,0 km³ water, 5,5 km³ of which goes to Eastern Georgia on irrigation arable areas. To increase water supply in Eastern Georgian territory and its population is possible by means of new water reservoirs as the runoff of every river considerably exceeds the consumption volume. In conclusion, we should say that fresh water resources by which Georgia is that rich could be significant source for barter exchange and investment attraction. Certain volume of fresh water can be exported from Western Georgia quite trouble free, without bringing any damage to population and hydroecosystems. The precise volume of exported water per region/time and method/place of water consumption should be defined after the estimation of different hydroecosystems and detailed analyses of water balance of the corresponding territories.Keywords: GIS, management, rivers, water resources
Procedia PDF Downloads 37214092 Estimation of Pressure Profile and Boundary Layer Characteristics over NACA 4412 Airfoil
Authors: Anwar Ul Haque, Waqar Asrar, Erwin Sulaeman, Jaffar S. M. Ali
Abstract:
Pressure distribution data of the standard airfoils is usually used for the calibration purposes in subsonic wind tunnels. Results of such experiments are quite old and obtained by using the model in the spanwise direction. In this manuscript, pressure distribution over NACA 4412 airfoil model was presented by placing the 3D model in the lateral direction. The model is made of metal with pressure ports distributed longitudinally as well as in the lateral direction. The pressure model was attached to the floor of the tunnel with the help of the base plate to give the specified angle of attack to the model. Before the start of the experiments, the pressure tubes of the respective ports of the 128 ports pressure scanner are checked for leakage, and the losses due to the length of the pipes were also incorporated in the results for the specified pressure range. Growth rate maps of the boundary layer thickness were also plotted. It was found that with the increase in the velocity, the dynamic pressure distribution was also increased for the alpha seep. Plots of pressure distribution so obtained were overlapped with those obtained by using XFLR software, a low fidelity tool. It was found that at moderate and high angles of attack, the distribution of the pressure coefficients obtained from the experiments is high when compared with the XFLR ® results obtained along with the span of the wing. This under-prediction by XFLR ® is more obvious on the windward than on the leeward side.Keywords: subsonic flow, boundary layer, wind tunnel, pressure testing
Procedia PDF Downloads 32014091 Understanding Social Networks in Community's Coping Capacity with Floods: A Case Study of a Community in Cambodia
Authors: Ourn Vimoil, Kallaya Suntornvongsagul
Abstract:
Cambodia is considered as one of the most disaster prone countries in South East Asia, and most of natural disasters are related to floods. Cambodia, a developing country, faces significant impacts from floods, such as environmental, social, and economic losses. Using data accessed from focus group discussions and field surveys with villagers in Ba Baong commune, prey Veng province, Cambodia, the research would like to examine roles of social networks in raising community’s coping capacity with floods. The findings indicate that social capital play crucial roles in three stages of floods, namely preparedness, response, and recovery to overcome the crisis. People shared their information and resources, and extent their assistances to one another in order to adapt to floods. The study contribute to policy makers, national and international agencies working on this issue to pay attention on social networks as one factors to accelerate flood coping capacity at community level.Keywords: social network, community, coping capacity, flood, Cambodia
Procedia PDF Downloads 36614090 Conservation Planning of Paris Polyphylla Smith, an Important Medicinal Herb of the Indian Himalayan Region Using Predictive Distribution Modelling
Authors: Mohd Tariq, Shyamal K. Nandi, Indra D. Bhatt
Abstract:
Paris polyphylla Smith (Family- Liliaceae; English name-Love apple: Local name- Satuwa) is an important folk medicinal herb of the Indian subcontinent, being a source of number of bioactive compounds for drug formulation. The rhizomes are widely used as antihelmintic, antispasmodic, digestive stomachic, expectorant and vermifuge, antimicrobial, anti-inflammatory, heart and vascular malady, anti-fertility and sedative. Keeping in view of this, the species is being constantly removed from nature for trade and various pharmaceuticals purpose, as a result, the availability of the species in its natural habitat is decreasing. In this context, it would be pertinent to conserve this species and reintroduce them in its natural habitat. Predictive distribution modelling of this species was performed in Western Himalayan Region. One such recent method is Ecological Niche Modelling, also popularly known as Species distribution modelling, which uses computer algorithms to generate predictive maps of species distributions in a geographic space by correlating the point distributional data with a set of environmental raster data. In case of P. polyphylla, and to understand its potential distribution zones and setting up of artificial introductions, or selecting conservation sites, and conservation and management of their native habitat. Among the different districts of Uttarakhand (28°05ˈ-31°25ˈ N and 77°45ˈ-81°45ˈ E) Uttarkashi, Rudraprayag, Chamoli, Pauri Garhwal and some parts of Bageshwar, 'Maximum Entropy' (Maxent) has predicted wider potential distribution of P. polyphylla Smith. Distribution of P. polyphylla is mainly governed by Precipitation of Driest Quarter and Mean Diurnal Range i.e., 27.08% and 18.99% respectively which indicates that humidity (27%) and average temperature (19°C) might be suitable for better growth of Paris polyphylla.Keywords: biodiversity conservation, Indian Himalayan region, Paris polyphylla, predictive distribution modelling
Procedia PDF Downloads 33014089 Optimization of the Drinking Water Treatment Process Improvement of the Treated Water Quality by Using the Sludge Produced by the Water Treatment Plant
Authors: M. Derraz, M. Farhaoui
Abstract:
Problem statement: In the water treatment processes, the coagulation and flocculation processes produce sludge according to the level of the water turbidity. The aluminum sulfate is the most common coagulant used in water treatment plants of Morocco as well as many countries. It is difficult to manage Sludge produced by the treatment plant. However, it can be used in the process to improve the quality of the treated water and reduce the aluminum sulfate dose. Approach: In this study, the effectiveness of sludge was evaluated at different turbidity levels (low, medium, and high turbidity) and coagulant dosage to find optimal operational conditions. The influence of settling time was also studied. A set of jar test experiments was conducted to find the sludge and aluminum sulfate dosages in order to improve the produced water quality for different turbidity levels. Results: Results demonstrated that using sludge produced by the treatment plant can improve the quality of the produced water and reduce the aluminum sulfate using. The aluminum sulfate dosage can be reduced from 40 to 50% according to the turbidity level (10, 20, and 40 NTU). Conclusions/Recommendations: Results show that sludge can be used in order to reduce the aluminum sulfate dosage and improve the quality of treated water. The highest turbidity removal efficiency is observed within 6 mg/l of aluminum sulfate and 35 mg/l of sludge in low turbidity, 20 mg/l of aluminum sulfate and 50 mg/l of sludge in medium turbidity and 20 mg/l of aluminum sulfate and 60 mg/l of sludge in high turbidity. The turbidity removal efficiency is 97.56%, 98.96%, and 99.47% respectively for low, medium and high turbidity levels.Keywords: coagulation process, coagulant dose, sludge reuse, turbidity removal
Procedia PDF Downloads 23814088 Waters Colloidal Phase Extraction and Preconcentration: Method Comparison
Authors: Emmanuelle Maria, Pierre Crançon, Gaëtane Lespes
Abstract:
Colloids are ubiquitous in the environment and are known to play a major role in enhancing the transport of trace elements, thus being an important vector for contaminants dispersion. Colloids study and characterization are necessary to improve our understanding of the fate of pollutants in the environment. However, in stream water and groundwater, colloids are often very poorly concentrated. It is therefore necessary to pre-concentrate colloids in order to get enough material for analysis, while preserving their initial structure. Many techniques are used to extract and/or pre-concentrate the colloidal phase from bulk aqueous phase, but yet there is neither reference method nor estimation of the impact of these different techniques on the colloids structure, as well as the bias introduced by the separation method. In the present work, we have tested and compared several methods of colloidal phase extraction/pre-concentration, and their impact on colloids properties, particularly their size distribution and their elementary composition. Ultrafiltration methods (frontal, tangential and centrifugal) have been considered since they are widely used for the extraction of colloids in natural waters. To compare these methods, a ‘synthetic groundwater’ was used as a reference. The size distribution (obtained by Field-Flow Fractionation (FFF)) and the chemical composition of the colloidal phase (obtained by Inductively Coupled Plasma Mass Spectrometry (ICPMS) and Total Organic Carbon analysis (TOC)) were chosen as comparison factors. In this way, it is possible to estimate the pre-concentration impact on the colloidal phase preservation. It appears that some of these methods preserve in a more efficient manner the colloidal phase composition while others are easier/faster to use. The choice of the extraction/pre-concentration method is therefore a compromise between efficiency (including speed and ease of use) and impact on the structural and chemical composition of the colloidal phase. In perspective, the use of these methods should enhance the consideration of colloidal phase in the transport of pollutants in environmental assessment studies and forensics.Keywords: chemical composition, colloids, extraction, preconcentration methods, size distribution
Procedia PDF Downloads 21714087 A Network-Theorical Perspective on Music Analysis
Authors: Alberto Alcalá-Alvarez, Pablo Padilla-Longoria
Abstract:
The present paper describes a framework for constructing mathematical networks encoding relevant musical information from a music score for structural analysis. These graphs englobe statistical information about music elements such as notes, chords, rhythms, intervals, etc., and the relations among them, and so become helpful in visualizing and understanding important stylistic features of a music fragment. In order to build such networks, musical data is parsed out of a digital symbolic music file. This data undergoes different analytical procedures from Graph Theory, such as measuring the centrality of nodes, community detection, and entropy calculation. The resulting networks reflect important structural characteristics of the fragment in question: predominant elements, connectivity between them, and complexity of the information contained in it. Music pieces in different styles are analyzed, and the results are contrasted with the traditional analysis outcome in order to show the consistency and potential utility of this method for music analysis.Keywords: computational musicology, mathematical music modelling, music analysis, style classification
Procedia PDF Downloads 10414086 Impact of Fin Cross Section Shape on Potential Distribution of Nanoscale Trapezoidal FinFETs
Authors: Ahmed Nassim Moulai Khatir
Abstract:
Fin field effect transistors (FinFETs) deliver superior levels of scalability than the classical structure of MOSFETs by offering the elimination of short channel effects. Modern FinFETs are 3D structures that rise above the planar substrate, but some of these structures have inclined surfaces, which results in trapezoidal cross sections instead of rectangular sections usually used. Fin cross section shape of FinFETs results in some device issues, like potential distribution performance. This work analyzes that impact with three-dimensional numeric simulation of several triple-gate FinFETs with various top and bottom widths of fin. Results of the simulation show that the potential distribution and the electrical field in the fin depend on the sidewall inclination angle.Keywords: FinFET, cross section shape, SILVACO, trapezoidal FinFETs
Procedia PDF Downloads 4914085 Explore Urban Spatial Density with Boltzmann Statistical Distribution
Authors: Jianjia Wang, Tong Yu, Haoran Zhu, Kun Liu, Jinwei Hao
Abstract:
The underlying pattern in the modern city is agglomeration. To some degree, the distribution of urban spatial density can be used to describe the status of this assemblage. There are three intrinsic characteristics to measure urban spatial density, namely, Floor Area Ratio (FAR), Building Coverage Ratio (BCR), and Average Storeys (AS). But the underlying mechanism that contributes to these quantities is still vague in the statistical urban study. In this paper, we explore the corresponding extrinsic factors related to spatial density. These factors can further provide the potential influence on the intrinsic quantities. Here, we take Shanghai Inner Ring Area and Manhattan in New York as examples to analyse the potential impacts on urban spatial density with six selected extrinsic elements. Ebery single factor presents the correlation to the spatial distribution, but the overall global impact of all is still implicit. To handle this issue, we attempt to develop the Boltzmann statistical model to explicitly explain the mechanism behind that. We derive a corresponding novel quantity, called capacity, to measure the global effects of all other extrinsic factors to the three intrinsic characteristics. The distribution of capacity presents a similar pattern to real measurements. This reveals the nonlinear influence on the multi-factor relations to the urban spatial density in agglomeration.Keywords: urban spatial density, Boltzmann statistics, multi-factor correlation, spatial distribution
Procedia PDF Downloads 15414084 Quantifying the UK’s Future Thermal Electricity Generation Water Use: Regional Analysis
Authors: Daniel Murrant, Andrew Quinn, Lee Chapman
Abstract:
A growing population has led to increasing global water and energy demand. This demand, combined with the effects of climate change and an increasing need to maintain and protect the natural environment, represents a potentially severe threat to many national infrastructure systems. This has resulted in a considerable quantity of published material on the interdependencies that exist between the supply of water and the thermal generation of electricity, often known as the water-energy nexus. Focusing specifically on the UK, there is a growing concern that the future availability of water may at times constrain thermal electricity generation, and therefore hinder the UK in meeting its increasing demand for a secure, and affordable supply of low carbon electricity. To provide further information on the threat the water-energy nexus may pose to the UK’s energy system, this paper models the regional water demand of UK thermal electricity generation in 2030 and 2050. It uses the strategically important Energy Systems Modelling Environment model developed by the Energy Technologies Institute. Unlike previous research, this paper was able to use abstraction and consumption factors specific to UK power stations. It finds that by 2050 the South East, Yorkshire and Humber, the West Midlands and North West regions are those with the greatest freshwater demand and therefore most likely to suffer from a lack of resource. However, it finds that by 2050 it is the East, South West and East Midlands regions with the greatest total water (fresh, estuarine and seawater) demand and the most likely to be constrained by environmental standards.Keywords: climate change, power station cooling, UK water-energy nexus, water abstraction, water resources
Procedia PDF Downloads 29414083 Quantity, Quality and Water Productivity of Mulberry Leaf Influenced by Different Methods, Levels of Irrigation and Mulching in Eastern Dry Zone of Karnataka, India
Authors: Chengalappa Seenappa, Narayanappa Devkumar, Narayanappa Nagaraja
Abstract:
Mulberry leaf is the major economic component in sericulture and quality of leaf produced per unit area has a direct effect on quality of cocoon. Among all the agronomical inputs, irrigation water has highest impact on mulberry leaf quantity and quality. The water productivity in sericulture in the country is inadequate and inefficient though India has the largest irrigated area. There is a need of proper irrigation methods and conservation practices to ensure efficiency and economy in water use. Hence, this field experiment was conducted at College of Sericulture, Chintamani, Chickaballapur district, Karnataka, India during 2013 and 2014 to know the quantity, quality and water productivity of mulberry influenced by different methods, levels of irrigation and mulching in Eastern Dry Zone (EDZ) of Karnataka, India. The results revealed that the mulberry leaf quantity, quality and water productivity were significantly influenced by different methods, levels of irrigation and mulching. Subsurface drip irrigation at 0.8 CPE (Cumulative Pan Evaporation) recorded higher leaf yield, chlorophyll, relative water, protein content and water productivity (42857 kg ha-1 yr-1, 8.54, 65.80%, 22.27% and 364.41 kg hacm-1, respectively) than surface drip at 1.0 CPE (38809 kg ha-1 yr-1, 7.34, 62.76%, 17.75% and 264 10 kg hacm-1, respectively) and micro spray jet at 1.0 CPE (39931 kg ha-1 yr-1, 7.96, 63.50%, 19.00%, 35617 kg ha-1 yr-1 and 271.83 kg hacm-1, respectively). Mulching treatment recorded maximum leaf yield, chlorophyll, relative water, protein content and water productivity (38035 kg ha-1 yr-1, 7.12, 62.11%, 16.14% and 330 kg hacm-1, respectively) compared to without mulching. These results clearly indicated that subsurface drip irrigation at lower level of irrigation (0.8 CPE) and mulching increased the quantity, quality and water productivity of mulberry leaf than surface drip and micro spray jet irrigation at higher level of irrigation (1.0 CPE) by saving 20 per cent of water. Therefore, in the coming days subsurface drip irrigation in mulberry cultivation may be more appropriate to realise higher yield, quality and water productivity in EDZ of Karnataka, India.Keywords: subsurface drip irrigation, mulching, water productivity, mulberry
Procedia PDF Downloads 27014082 A Bayesian Model with Improved Prior in Extreme Value Problems
Authors: Eva L. Sanjuán, Jacinto Martín, M. Isabel Parra, Mario M. Pizarro
Abstract:
In Extreme Value Theory, inference estimation for the parameters of the distribution is made employing a small part of the observation values. When block maxima values are taken, many data are discarded. We developed a new Bayesian inference model to seize all the information provided by the data, introducing informative priors and using the relations between baseline and limit parameters. Firstly, we studied the accuracy of the new model for three baseline distributions that lead to a Gumbel extreme distribution: Exponential, Normal and Gumbel. Secondly, we considered mixtures of Normal variables, to simulate practical situations when data do not adjust to pure distributions, because of perturbations (noise).Keywords: bayesian inference, extreme value theory, Gumbel distribution, highly informative prior
Procedia PDF Downloads 19914081 Study on Water Level Management Criteria of Reservoir Failure Alert System
Authors: B. Lee, B. H. Choi
Abstract:
The loss of safety for reservoirs brought about by climate change and facility aging leads to reservoir failures, which results in the loss of lives and property damage in downstream areas. Therefore, it is necessary to provide a reservoir failure alert system for downstream residents to detect the early signs of failure (with sensors) in real-time and perform safety management to prevent and minimize possible damage. 10 case studies were carried out to verify the water level management criteria of four levels (attention, caution, alert, serious). Peak changes in water level data were analysed. The results showed that ‘Caution’ and ‘Alert’ were closed to 33% and 66% of difference in level between flood water level and full water level. Therefore, it is adequate to use initial water level management criteria of reservoir failure alert system for the first year. Acknowledgment: This research was supported by a grant (2017-MPSS31-002) from 'Supporting Technology Development Program for Disaster Management' funded by the Ministry of the Interior and Safety(MOIS)Keywords: alert system, management criteria, reservoir failure, sensor
Procedia PDF Downloads 20114080 RF Propagation Analysis in Outdoor Environments Using RSSI Measurements Applied in ZigBee Sensor Networks
Authors: Teles de Sales Bezerra, Saulo Aislan da Silva Eleuterio, José Anderson Rodrigues de Souza, Jeronimo Silva Rocha
Abstract:
Propagation in radio frequency is a constant concern in the application of Wireless Sensor Networks (WSN), the behavior of an environment determines how good the quality of signal reception. The objective of this paper is to analyze the behavior of a WSN in an environment for agriculture where environmental variables are present and correlate the capture of values received signal strength (RSSI) with a propagation model.Keywords: propagation, WSN, agriculture, quality
Procedia PDF Downloads 75614079 Aquatic and Marshy Flora from Fresh Water Wetlands on Quartz Sands in Pinar Del Río, Cuba
Authors: Vidal Pérez Hernández, Enrique González Pendás
Abstract:
The most of the aquatic and marshy flora in Cuba, is located on quartzitic sands ecosystems and they are represented by a wide variety of freshwater wetlands, which are spread in the whole south and south-western plain of Pinar del Río. The survey carried out in these ecosystems offers an updated inventory of these species, showing up their biological type, habit, distribution, and the threat grade to which are subjected, taking into account categories granted by UICN. A remarkable decrease is evidenced, in the total of these species respect to this area; due to deposit processes and deforestation, which are taken place by the human activity and the climatic change. It is linked to others threats like, limitless use of their water reserves for irrigating groves, the cattle raising and intensive fishing. Added to it, its sand with 99% pure crystal quartz, are used for the mining. The combination of all factors has a negative influence on a flora that stores more than 250 species, most of them herbaceous and hydrophytes. In these particular ecosystems were found a 40% endemism from total flora, and more than 80%, are evaluated inside the most sensitive threat categories, and already some of them have been declared as extinct.Keywords: aquatic flora, marshy flora, quartzitic sands, wetlands
Procedia PDF Downloads 22914078 A Decision-Support Tool for Humanitarian Distribution Planners in the Face of Congestion at Security Checkpoints: A Real-World Case Study
Authors: Mohanad Rezeq, Tarik Aouam, Frederik Gailly
Abstract:
In times of armed conflicts, various security checkpoints are placed by authorities to control the flow of merchandise into and within areas of conflict. The flow of humanitarian trucks that is added to the regular flow of commercial trucks, together with the complex security procedures, creates congestion and long waiting times at the security checkpoints. This causes distribution costs to increase and shortages of relief aid to the affected people to occur. Our research proposes a decision-support tool to assist planners and policymakers in building efficient plans for the distribution of relief aid, taking into account congestion at security checkpoints. The proposed tool is built around a multi-item humanitarian distribution planning model based on multi-phase design science methodology that has as its objective to minimize distribution and back ordering costs subject to capacity constraints that reflect congestion effects using nonlinear clearing functions. Using the 2014 Gaza War as a case study, we illustrate the application of the proposed tool, model the underlying relief-aid humanitarian supply chain, estimate clearing functions at different security checkpoints, and conduct computational experiments. The decision support tool generated a shipment plan that was compared to two benchmarks in terms of total distribution cost, average lead time and work in progress (WIP) at security checkpoints, and average inventory and backorders at distribution centers. The first benchmark is the shipment plan generated by the fixed capacity model, and the second is the actual shipment plan implemented by the planners during the armed conflict. According to our findings, modeling and optimizing supply chain flows reduce total distribution costs, average truck wait times at security checkpoints, and average backorders when compared to the executed plan and the fixed-capacity model. Finally, scenario analysis concludes that increasing capacity at security checkpoints can lower total operations costs by reducing the average lead time.Keywords: humanitarian distribution planning, relief-aid distribution, congestion, clearing functions
Procedia PDF Downloads 8214077 Alternative Systems of Drinking Water Supply Using Rainwater Harvesting for Small Rural Communities with Zero Greenhouse Emissions
Authors: Martin Mundo-Molina
Abstract:
In Mexico, there are many small rural communities with serious water supply deficiencies. In Chiapas, Mexico, there are 19,972 poor rural communities, 15,712 of which have fewer than 100 inhabitants. The lack of a constant water supply is most severe in the highlands of Chiapas where the population is made up mainly of indigenous groups. The communities are on mountainous terrain with a widely dispersed population. These characteristics combine to make the provision of public utilities, such as water, electricity and sewerage, difficult with conventional means. The introduction of alternative, low-cost technologies represents means of supplying water such as through fog and rain catchment with zero greenhouse emissions. In this paper is presented the rainwater harvesting system (RWS) constructed in Yalentay, Chiapas Mexico. The RWS is able to store 1.2 M liters of water to provide drinking water to small rural indigenous communities of 500 people in the drought stage. Inside the system of rainwater harvesting there isn't photosynthesis in order to conserve water for long periods. The natural filters of the system of rainwater harvesting guarantee the drinking water for using to the community. The combination of potability and low cost makes rain collection a viable alternative for rural areas, weather permitting. The Mexican Institute of Water Technology and Chiapas University constructed a rainwater harvesting system in Yalentay Chiapas, it consists of four parts: 1. Roof of aluminum, for collecting rainwater, 2. Underground-cistern, divided in two tanks, 3. Filters, to improve the water quality and 4. The system of rainwater harvesting dignified the lives of people in Yalentay, saves energy, prevents the emission of greenhouse gases into the atmosphere, conserves natural resources such as water and air.Keywords: appropriate technologies, climate change, greenhouse gases, rainwater harvesting
Procedia PDF Downloads 40714076 Environmental Pollution and Treatment Technology
Authors: R. Berrached, H. Ait Mahamed, A. Iddou
Abstract:
Water pollution is nowadays a serious problem, due to the increasing scarcity of water and thus to the impact induced by such pollution on the human health. Various techniques are made use of to deal with water pollution. Among the most used ones, some can be enumerated: the bacterian bed, the activated mud, the Lagunage as biological processes and coagulation-floculation as a physic-chemical process. These processes are very expensive and an treatment efficiency which decreases along with the increase of the initial pollutants’ concentration. This is the reason why research has been reoriented towards the use of a process by adsorption as an alternative solution instead of the other traditional processes. In our study, we have tempted to exploit the characteristics of two metallic hydroxides Al and Fe to purify contaminated water by two industrial dyes SBL blue and SRL-150 orange. Results have shown the efficiency of the two materials on the blue SBL dye.Keywords: metallic hydroxydes, industrial dyes, purificatıon,
Procedia PDF Downloads 32514075 MigrationR: An R Package for Analyzing Bird Migration Data Based on Satellite Tracking
Authors: Xinhai Li, Huidong Tian, Yumin Guo
Abstract:
Bird migration is fantastic natural phenomenon. In recent years, the use of GPS transmitters has generated a vast amount of data, and the Movebank platform has made these data publicly accessible. For researchers, what they need are data analysis tools. Although there are approximately 90 R packages dedicated to animal movement analysis, the capacity for comprehensive processing of bird migration data remains limited. Hence, we introduce a novel package called migrationR. This package enables the calculation of movement speed, direction, changes in direction, flight duration, daily and annual movement distances. Furthermore, it can pinpoint the starting and ending dates of migration, estimate nest site locations and stopovers, and visualize movement trajectories at various time scales. migrationR distinguishes individuals through NMDS (non-metric multidimensional scaling) coordinates based on movement variables such as speed, flight duration, path tortuosity, and migration timing. A distinctive aspect of the package is the development of a hetero-occurrences species distribution model that takes into account the daily rhythm of individual birds across different landcover types. Habitat use for foraging and roosting differs significantly for many waterbirds. For example, White-naped Cranes at Poyang Lake in China typically forage in croplands and roost in shallow water areas. Both of these occurrence types are of equal importance. Optimal habitats consist of a combination of crop lands and shallow waters, whereas suboptimal habitats lack both, which necessitates birds to fly extensively. With migrationR, we conduct species distribution modeling for foraging and roosting separately and utilize the moving distance between crop lands and shallow water areas as an index of overall habitat suitability. This approach offers a more nuanced understanding of the habitat requirements for migratory birds and enhances our ability to analyze and interpret their movement patterns effectively. The functions of migrationR are demonstrated using our own tracking data of 78 White-naped Crane individuals from 2014 to 2023, comprising over one million valid locations in total. migrationR can be installed from a GitHub repository by executing the following command: remotes::install_github("Xinhai-Li/migrationR").Keywords: bird migration, hetero-occurrences species distribution model, migrationR, R package, satellite telemetry
Procedia PDF Downloads 6614074 Tuning Cubic Equations of State for Supercritical Water Applications
Authors: Shyh Ming Chern
Abstract:
Cubic equations of state (EoS), popular due to their simple mathematical form, ease of use, semi-theoretical nature and, reasonable accuracy are normally fitted to vapor-liquid equilibrium P-v-T data. As a result, They often show poor accuracy in the region near and above the critical point. In this study, the performance of the renowned Peng-Robinson (PR) and Patel-Teja (PT) EoS’s around the critical area has been examined against the P-v-T data of water. Both of them display large deviations at critical point. For instance, PR-EoS exhibits discrepancies as high as 47% for the specific volume, 28% for the enthalpy departure and 43% for the entropy departure at critical point. It is shown that incorporating P-v-T data of the supercritical region into the retuning of a cubic EoS can improve its performance above the critical point dramatically. Adopting a retuned acentric factor of 0.5491 instead of its genuine value of 0.344 for water in PR-EoS and a new F of 0.8854 instead of its original value of 0.6898 for water in PT-EoS reduces the discrepancies to about one third or less.Keywords: equation of state, EoS, supercritical water, SCW
Procedia PDF Downloads 53714073 Prospection of Technology Production in Physiotherapy in Brazil
Authors: C. M. Priesnitz, G. Zanandrea, J. P. Fabris, S. L. Russo, M. E. Camargo
Abstract:
This study aimed to the prospection the physiotherapy area technological production registered with the National Intellectual Property Institute (INPI) in Brazil, for understand the evolution of the technological production in the country over time and visualize the distribution this production request in Brazil. There was an evolution in the technology landscape, where the average annual deposits had an increase of 102%, from 3.14 before the year 2004 to 6,33 after this date. It was found differences in the distribution of the number the deposits requested to each Brazilian region, being that of the 132 request, 68,9% were from the southeast region. The international patent classification evaluated the request deposits, and the more found numbers were A61H and A63B. So even with an improved panorama of technology production, this should still have incentives since it is an important tool for the development of the country.Keywords: distribution, evolution, patent, physiotherapy, technological prospecting
Procedia PDF Downloads 33014072 Mechanical Characterization and Impact Study on the Environment of Raw Sediments and Sediments Dehydrated by Addition of Polymer
Authors: A. Kasmi, N. E. Abriak, M. Benzerzour, I. Shahrour
Abstract:
Large volumes of river sediments are dredged each year in Europe in order to maintain harbour activities and prevent floods. The management of this sediment has become increasingly complex. Several European projects were implemented to find environmentally sound solutions for these materials. The main objective of this study is to show the ability of river sediment to be used in road. Since sediments contain a high amount of water, then a dehydrating treatment by addition of the flocculation aid has been used. Firstly, a lot of physical characteristics are measured and discussed for a better identification of the raw sediment and this dehydrated sediment by addition the flocculation aid. The identified parameters are, for example, the initial water content, the density, the organic matter content, the grain size distribution, the liquid limit and plastic limit and geotechnical parameters. The environmental impacts of the used material were evaluated. The results obtained show that there is a slight change on the physical-chemical and geotechnical characteristics of sediment after dehydration by the addition of polymer. However, these sediments cannot be used in road construction.Keywords: rive sediment, dehydration, flocculation aid or polymer, characteristics, treatments, valorisation, road construction
Procedia PDF Downloads 38014071 Seismic Retrofitting of Structures Using Steel Plate Slit Dampers Based on Genetic Algorithm
Authors: Mohamed Noureldin, Jinkoo Kim
Abstract:
In this study, a genetic algorithm was used to find out the optimum locations of the slit dampers satisfying a target displacement. A seismic retrofit scheme for a building structure was presented using steel plate slit dampers. A cyclic loading test was used to verify the energy dissipation capacity of the slit damper. The seismic retrofit of the model structure using the slit dampers was compared with the retrofit with enlarging shear walls. The capacity spectrum method was used to propose a simple damper distribution scheme proportional to the inter-story drifts. The validity of the simple story-wise damper distribution procedure was verified by comparing the results of the genetic algorithm. It was observed that the proposed simple damper distribution pattern was in a good agreement with the optimum distribution obtained from the genetic algorithm. Acknowledgment: This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A1B03032809).Keywords: slit dampers, seismic retrofit, genetic algorithm, optimum design
Procedia PDF Downloads 22414070 Identifying Network Subgraph-Associated Essential Genes in Molecular Networks
Authors: Efendi Zaenudin, Chien-Hung Huang, Ka-Lok Ng
Abstract:
Essential genes play an important role in the survival of an organism. It has been shown that cancer-associated essential genes are genes necessary for cancer cell proliferation, where these genes are potential therapeutic targets. Also, it was demonstrated that mutations of the cancer-associated essential genes give rise to the resistance of immunotherapy for patients with tumors. In the present study, we focus on studying the biological effects of the essential genes from a network perspective. We hypothesize that one can analyze a biological molecular network by decomposing it into both three-node and four-node digraphs (subgraphs). These network subgraphs encode the regulatory interaction information among the network’s genetic elements. In this study, the frequency of occurrence of the subgraph-associated essential genes in a molecular network was quantified by using the statistical parameter, odds ratio. Biological effects of subgraph-associated essential genes are discussed. In summary, the subgraph approach provides a systematic method for analyzing molecular networks and it can capture useful biological information for biomedical research.Keywords: biological molecular networks, essential genes, graph theory, network subgraphs
Procedia PDF Downloads 15814069 Phytoremediation Rates of Water Hyacinth in an Aquaculture Effluent Hydroponic System
Authors: E. A. Kiridi, A. O. Ogunlela
Abstract:
Conventional wastewater treatment plants of activated carbon, electrodialysis, ion exchange, reverse osmosis etc. are expensive to install, operate and maintain especially in developing countries; therefore, the use of aquatic macrophytes for wastewater purification is a viable alternative. On the first day of experimentation, approximately 100g of water hyacinth was introduced into the hydroponic units in four replicates. The water quality parameters measured were total suspended solids (TSS), pH and electrical conductivity (EC). Others were concentration of ammonium–nitrogen (NH4+-N), nitrite-nitrogen (NO2--N), nitrate-nitrogen (NO3--N), phosphate–phosphorus (PO43--P), and biomass value. At phytoremediation intervals of 7, 14, 21 and 28 days, the biomass recorded were 438.2 g, 600.7 g, 688.2 g and 725.7 g. Water hyacinth was able to reduce the pollutant concentration of all the selected parameter. The percentage reduction of pH ranged from 1.9% to 14.7%, EC from 49.8% to 97.0%, TDS from 50.4% to 97.6%, TSS from 34.0% to 78.3%, NH4+-N from 38.9% to 85.2%, NO2--N from 0% to 84.6%, NO3--N from 63.2% to 98.8% and PO43--P from 10% to 88.0%. Paired sample t-test shows that at 95% confidence level, it can be concluded statistically that the inequality between the pre-treatment and post-treatment values are significant. This suggests that the use of water hyacinth is valuable in the design and operation of aquaculture effluent treatment and should therefore be adopted by environmental and wastewater managers.Keywords: aquaculture effluent, phytoremediation, pollutant, water hyacinth
Procedia PDF Downloads 27514068 Groundwater Contamination and Fluorosis: A Comprehensive Analysis
Authors: Rajkumar Ghosh, Bhabani Prasad Mukhopadhay
Abstract:
Groundwater contamination with fluoride has emerged as a global concern affecting millions of people, leading to the widespread occurrence of fluorosis. It affects bones and teeth, leading to dental and skeletal fluorosis. This study presents a comprehensive analysis of the relationship between groundwater contamination and fluorosis. It delves into the causes of fluoride contamination in groundwater, its spatial distribution, and adverse health impacts of fluorosis on affected communities. Fluoride contamination in groundwater can be attributed to both natural and anthropogenic sources. Geogenic sources involve the dissolution of fluoride-rich minerals present in the aquifer materials. On the other hand, anthropogenic activities such as industrial discharges, agricultural practices, and improper disposal of fluoride-containing waste contribute to the contamination of groundwater. The spatial distribution of fluoride contamination varies widely across different regions and geological formations. High fluoride levels are commonly observed in areas with fluorine-rich geological deposits. Additionally, agricultural and industrial centres often exhibit elevated fluoride concentrations due to anthropogenic contributions. Excessive fluoride ingestion during tooth development leads to dental fluorosis, characterized by enamel defects, discoloration, and dental caries. The severity of dental fluorosis varies based on fluoride exposure levels during tooth development. Long-term consumption of fluoride-contaminated water causes skeletal fluorosis, resulting in bone and joint pain, decreased joint mobility, and skeletal deformities. In severe cases, skeletal fluorosis can lead to disability and reduced quality of life. Various defluoridation techniques such as activated alumina, bone char, and reverse osmosis have been employed to reduce fluoride concentrations in drinking water. These methods effectively remove fluoride, but their implementation requires careful consideration of cost, maintenance, and sustainability. Diversifying water sources, such as rainwater harvesting and surface water supply, can reduce the reliance on fluoride-contaminated groundwater, especially in regions with high fluoride concentrations. Groundwater contamination with fluoride remains a significant public health challenge, leading to the widespread occurrence of fluorosis globally. This scientific report emphasizes the importance of understanding the relationship between groundwater contamination and fluorosis. Implementing effective mitigation strategies and preventive measures is crucial to combat fluorosis and ensure sustainable access to safe drinking water for communities worldwide. Collaborative efforts between government agencies, local communities, and scientific researchers are essential to address this issue and safeguard the health of vulnerable populations. Additionally, the report explores various mitigation strategies and preventive measures to address the issue and offers recommendations for sustainable management of groundwater resources to combat fluorosis effectively.Keywords: fluorosis, fluoride contamination, groundwater contamination, groundwater resources
Procedia PDF Downloads 97