Search results for: underground photoelectric composite cable
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2495

Search results for: underground photoelectric composite cable

1115 Noise Mitigation Techniques to Minimize Electromagnetic Interference/Electrostatic Discharge Effects for the Lunar Mission Spacecraft

Authors: Vabya Kumar Pandit, Mudit Mittal, N. Prahlad Rao, Ramnath Babu

Abstract:

TeamIndus is the only Indian team competing for the Google Lunar XPRIZE(GLXP). The GLXP is a global competition to challenge the private entities to soft land a rover on the moon, travel minimum 500 meters and transmit high definition images and videos to Earth. Towards this goal, the TeamIndus strategy is to design and developed lunar lander that will deliver a rover onto the surface of the moon which will accomplish GLXP mission objectives. This paper showcases the various system level noise control techniques adopted by Electrical Distribution System (EDS), to achieve the required Electromagnetic Compatibility (EMC) of the spacecraft. The design guidelines followed to control Electromagnetic Interference by proper electronic package design, grounding, shielding, filtering, and cable routing within the stipulated mass budget, are explained. The paper also deals with the challenges of achieving Electromagnetic Cleanliness in presence of various Commercial Off-The-Shelf (COTS) and In-House developed components. The methods of minimizing Electrostatic Discharge (ESD) by identifying the potential noise sources, susceptible areas for charge accumulation and the methodology to prevent arcing inside spacecraft are explained. The paper then provides the EMC requirements matrix derived from the mission requirements to meet the overall Electromagnetic compatibility of the Spacecraft.

Keywords: electromagnetic compatibility, electrostatic discharge, electrical distribution systems, grounding schemes, light weight harnessing

Procedia PDF Downloads 288
1114 Research of the Load Bearing Capacity of Inserts Embedded in CFRP under Different Loading Conditions

Authors: F. Pottmeyer, M. Weispfenning, K. A. Weidenmann

Abstract:

Continuous carbon fiber reinforced plastics (CFRP) exhibit a high application potential for lightweight structures due to their outstanding specific mechanical properties. Embedded metal elements, so-called inserts, can be used to join structural CFRP parts. Drilling of the components to be joined can be avoided using inserts. In consequence, no bearing stress is anticipated. This is a distinctive benefit of embedded inserts, since continuous CFRP have low shear and bearing strength. This paper aims at the investigation of the load bearing capacity after preinduced damages from impact tests and thermal-cycling. In addition, characterization of mechanical properties during dynamic high speed pull-out testing under different loading velocities was conducted. It has been shown that the load bearing capacity increases up to 100% for very high velocities (15 m/s) in comparison with quasi-static loading conditions (1.5 mm/min). Residual strength measurements identified the influence of thermal loading and preinduced mechanical damage. For both, the residual strength was evaluated afterwards by quasi-static pull-out tests. Taking into account the DIN EN 6038 a high decrease of force occurs at impact energy of 16 J with significant damage of the laminate. Lower impact energies of 6 J, 9 J, and 12 J do not decrease the measured residual strength, although the laminate is visibly damaged - distinguished by cracks on the rear side. To evaluate the influence of thermal loading, the specimens were placed in a climate chamber and were exposed to various numbers of temperature cycles. One cycle took 1.5 hours from -40 °C to +80 °C. It could be shown that already 10 temperature cycles decrease the load bearing capacity up to 20%. Further reduction of the residual strength with increasing number of thermal cycles was not observed. Thus, it implies that the maximum damage of the composite is already induced after 10 temperature cycles.

Keywords: composite, joining, inserts, dynamic loading, thermal loading, residual strength, impact

Procedia PDF Downloads 274
1113 Development of PPy-M Composites Materials for Sensor Application

Authors: Yatimah Alias, Tilagam Marimuthu, M. R. Mahmoudian, Sharifah Mohamad

Abstract:

The rapid growth of science and technology in energy and environmental fields has enlightened the substantial importance of the conducting polymer and metal composite materials engineered at nano-scale. In this study, polypyrrole-cobalt composites (PPy-Co Cs) and polypyrrole-nickel oxide composites (PPy-NiO Cs) were prepared by a simple and facile chemical polymerization method with an aqueous solution of pyrrole monomer in the presence of metal salt. These composites then fabricated into non-enzymatic hydrogen peroxide (H2O2) and glucose sensor. The morphology and composition of the composites are characterized by the Field Emission Scanning Electron Microscope, Fourier Transform Infrared Spectrum and X-ray Powder Diffraction. The obtained results were compared with the pure PPy and metal oxide particles. The structural and morphology properties of synthesized composites are different from those of pure PPy and metal oxide particles, which were attributed to the strong interaction between the PPy and the metal particles. Besides, a favorable micro-environment for the electrochemical oxidation of H2O2 and glucose was achieved on the modified glassy carbon electrode (GCE) coated with PPy-Co Cs and PPy-NiO Cs respectively, resulting in an enhanced amperometric response. Both PPy-Co/GCE and PPy-NiO/GCE give high response towards target analyte at optimum condition of 500 μl pyrrole monomer content. Furthermore, the presence of pyrrole monomer greatly increases the sensitivity of the respective modified electrode. The PPy-Co/GCE could detect H2O2 in a linear range of 20 μM to 80 mM with two linear segments (low and high concentration of H2O2) and the detection limit for both ranges is 2.05 μM and 19.64 μM, respectively. Besides, PPy-NiO/GCE exhibited good electrocatalytic behavior towards glucose oxidation in alkaline medium and could detect glucose in linear ranges of 0.01 mM to 0.50 mM and 1 mM to 20 mM with detection limit of 0.33 and 5.77 μM, respectively. The ease of modifying and the long-term stability of this sensor have made it superior to enzymatic sensors, which must kept in a critical environment.

Keywords: metal oxide, composite, non-enzymatic sensor, polypyrrole

Procedia PDF Downloads 260
1112 Reliability Analysis of Soil Liquefaction Based on Standard Penetration: A Case Study in Babol City

Authors: Mehran Naghizaderokni, Asscar Janalizadechobbasty

Abstract:

There are more probabilistic and deterministic liquefaction evaluation procedures in order to judge whether liquefaction will occur or not. A review of this approach reveals that there is a need for a comprehensive procedure that accounts for different sources of uncertainty in liquefaction evaluation. In fact, for the same set of input parameters, different methods provide different factors of safety and/or probabilities of liquefaction. To account for the different uncertainties, including both the model and measurement uncertainties, reliability analysis is necessary. This paper has obtained information from Standard Penetration Test (SPT) and some empirical approaches such as: Seed et al, Highway bridge of Japan approach to soil liquefaction, The Overseas Coastal Area Development Institute of Japan (OCDI) and reliability method to studying potential of liquefaction in soil of Babol city in the north of Iran are compared. Evaluation potential of liquefaction in soil of Babol city is an important issue since the soil of some area contains sand, seismic area, increasing level of underground waters and consequently saturation of soil; therefore, one of the most important goals of this paper is to gain suitable recognition of liquefaction potential and find the most appropriate procedure of evaluation liquefaction potential to decrease related damages.

Keywords: reliability analysis, liquefaction, Babol, civil, construction and geological engineering

Procedia PDF Downloads 493
1111 Analysis Of Magnetic Anomaly Data For Identification Subsurface Structure Geothermal Manifestations Area Candi Umbul, Grabag, Magelang, Central Java Province, Indonesia

Authors: Ikawati Wulandari

Abstract:

Acquisition of geomagnetic field has been done at Geothermal manifestation Candi Umbul, Grabag, Magelang, Central Java Province on 10-12 May 2013. The purpose of this research to study sub-surface structure condition and the structure which control the hot springs manifestation. The research area have size of 1,5 km x 2 km and measurement spacing of 150 m. Total magnetic field data, the position, and the north pole direction have acquired by Proton Precession Magnetometer (PPM), Global Positioning System (GPS), and of geology compass, respectively. The raw data has been processed and performed using IGRF (International Geomagnetics Reference Field) correction to obtain total field magnetic anomaly. Upward continuation was performed at 100 meters height using software Magpick. Analysis conclude horizontal position of the body causing anomaly which is located at hot springs manifestation, and it stretch along Northeast - Southwest, which later interpreted as normal fault. This hotsprings manifestation was controlled by the downward fault which becomes a weak zone where hot water from underground the geothermal reservoir leakage

Keywords: PPM, Geothermal, Fault, Grabag

Procedia PDF Downloads 450
1110 Solid State Fermentation: A Technological Alternative for Enriching Bioavailability of Underutilized Crops

Authors: Vipin Bhandari, Anupama Singh, Kopal Gupta

Abstract:

Solid state fermentation, an eminent bioconversion technique for converting many biological substrates into a value-added product, has proven its role in the biotransformation of crops by nutritionally enriching them. Hence, an effort was made for nutritional enhancement of underutilized crops viz. barnyard millet, amaranthus and horse gram based composite flour using SSF. The grains were given pre-treatments before fermentation and these pre-treatments proved quite effective in diminishing the level of antinutrients in grains and in improving their nutritional characteristics. The present study deals with the enhancement of nutritional characteristics of underutilized crops viz. barnyard millet, amaranthus and horsegram based composite flour using solid state fermentation (SSF) as the principle bioconversion technique to convert the composite flour substrate into a nutritionally enriched value added product. Response surface methodology was used to design the experiments. The variables selected for the fermentation experiments were substrate particle size, substrate blend ratio, fermentation time, fermentation temperature and moisture content having three levels of each. Seventeen designed experiments were conducted randomly to find the effect of these variables on microbial count, reducing sugar, pH, total sugar, phytic acid and water absorption index. The data from all experiments were analyzed using Design Expert 8.0.6 and the response functions were developed using multiple regression analysis and second order models were fitted for each response. Results revealed that pretreatments proved quite handful in diminishing the level of antinutrients and thus enhancing the nutritional value of the grains appreciably, for instance, there was about 23% reduction in phytic acid levels after decortication of barnyard millet. The carbohydrate content of the decorticated barnyard millet increased to 81.5% from initial value of 65.2%. Similarly popping and puffing of horsegram and amaranthus respectively greatly reduced the trypsin inhibitor activity. Puffing of amaranthus also reduced the tannin content appreciably. Bacillus subtilis was used as the inoculating specie since it is known to produce phytases in solid state fermentation systems. These phytases remarkably reduce the phytic acid content which acts as a major antinutritional factor in food grains. Results of solid state fermentation experiments revealed that phytic acid levels reduced appreciably when fermentation was allowed to continue for 72 hours at a temperature of 35°C. Particle size and substrate blend ratio also affected the responses positively. All the parameters viz. substrate particle size, substrate blend ratio, fermentation time, fermentation temperature and moisture content affected the responses namely microbial count, reducing sugar, pH, total sugar, phytic acid and water absorption index but the effect of fermentation time was found to be most significant on all the responses. Statistical analysis resulted in the optimum conditions (particle size 355µ, substrate blend ratio 50:20:30 of barnyard millet, amaranthus and horsegram respectively, fermentation time 68 hrs, fermentation temperature 35°C and moisture content 47%) for maximum reduction in phytic acid. The model F- value was found to be highly significant at 1% level of significance in case of all the responses. Hence, second order model could be fitted to predict all the dependent parameters. The effect of fermentation time was found to be most significant as compared to other variables.

Keywords: composite flour, solid state fermentation, underutilized crops, cereals, fermentation technology, food processing

Procedia PDF Downloads 320
1109 Effect of Gum Extracts on the Textural and Bread-Making Properties of a Composite Flour Based on Sour Cassava Starch (Manihot esculenta), Peanut (Arachis hypogaea) and Cowpea Flour (Vigna unguiculata)

Authors: Marie Madeleine Nanga Ndjang, Julie Mathilde Klang, Edwin M. Mmutlane, Derek Tantoh Ndinteh, Eugenie Kayitesi, Francois Ngoufack Zambou

Abstract:

Gluten intolerance and the unavailability of wheat flour in some parts of the world have led to the development of gluten-free bread. However, gluten-free bread generally results in a low specific volume, and to remedy this, the use of hydrocolloids and bases has proved to be very successful. Thus, the present study aims to determine the optimal proportions of gum extract of Triumffetapentendraand sodium bicarbonate in breadmaking of a composite flour based on sour cassava starch, peanut, and cowpea flour. To achieve this, a BoxBenkhendesign was used, the variable being the amount of extract gums, the amount of bicarbonate, and the amount of water. The responses evaluated were the specific volume and texture properties (Hardness, Cohesiveness, Consistency, Elasticity, and Masticability). The specific volume was done according to standard methods of AACC and the textural properties by a texture analyzer. It appears from this analysis that the specific volume is positively influenced by the incorporation of extract gums, bicarbonate, and water. The hardness, consistency, and plasticity increased with the incorporation rate of extract gums but reduced with the incorporation rate of bicarbonate and water. On the other hand, Cohesion and elasticity increased with the incorporation rate of bicarbonate and water but reduced with the incorporation of extract gum. The optimate proportions of extract gum, bicarbonate, and water are 0.28;1.99, and 112.5, respectively. This results in a specific volume of 1.51; a hardness of 38.51; a cohesiveness of 0.88; a consistency of 32.86; an elasticity of 5.57, and amasticability of 162.35. Thus, this analysis suggests that gum extracts and sodium bicarbonate can be used to improve the quality of gluten-free bread.

Keywords: box benkhen design, bread-making, gums, textures properties, specific volume

Procedia PDF Downloads 90
1108 Chemical Modifications of Three Underutilized Vegetable Fibres for Improved Composite Value Addition and Dye Absorption Performance

Authors: Abayomi O. Adetuyi, Jamiu M. Jabar, Samuel O. Afolabi

Abstract:

Vegetable fibres are classes of fibres of low density, biodegradable and non-abrasive that are largely abundant fibre materials with specific properties and mostly found/ obtained in plants on earth surface. They are classified into three categories, depending on the part of the plant from which they are gotten from namely: fruit, Blast and Leaf fibre. Ever since four/five millennium B.C, attention has been focussing on the commonest and highly utilized cotton fibre obtained from the fruit of cotton plants (Gossypium spp), for the production of cotton fabric used in every home today. The present study, therefore, focused on the ability of three underutilized vegetable (fruit) fibres namely: coir fiber (Eleas coniferus), palm kernel fiber and empty fruit bunch fiber (Elias guinensis) through chemical modifications for better composite value addition performance to polyurethane form and dye adsorption. These fibres were sourced from their parents’ plants, identified and cleansed with 2% hot detergent solution 1:100, rinsed in distilled water and oven-dried to constant weight, before been chemically modified through alkali bleaching, mercerization and acetylation. The alkali bleaching involves treating 0.5g of each fiber material with 100 mL of 2% H2O2 in 25 % NaOH solution with refluxing for 2 h. While that of mercerization and acetylation involves the use of 5% sodium hydroxide NaOH solution for 2 h and 10% acetic acid- acetic anhydride 1:1 (v/v) (CH3COOH) / (CH3CO)2O solution with conc. H2SO4 as catalyst for 1 h, respectively on the fibres. All were subsequently washed thoroughly with distilled water and oven dried at 105 0C for 1 h. These modified fibres were incorporated as composite into polyurethane form and used in dye adsorption study of indigo. The first two treatments led to fiber weight reduction, while the acidified acetic anhydride treatment gave the fibers weight increment. All the treated fibers were found to be of less hydrophilic nature, better mechanical properties, higher thermal stabilities as well as better adsorption surfaces/capacities than the untreated ones. These were confirmed by gravimetric analysis, Instron Universal Testing Machine, Thermogravimetric Analyser and the Scanning Electron Microscope (SEM) respectively. The fiber morphology of the modified fibers showed smoother surfaces than unmodified fibres.The empty fruit bunch fibre and the coconut coir fibre are better than the palm kernel fibres as reinforcers for composites or as adsorbents for waste-water treatment. Acetylation and alkaline bleaching treatment improve the potentials of the fibres more than mercerization treatment. Conclusively, vegetable fibres, especially empty fruit bunch fibre and the coconut coir fibre, which are cheap, abundant and underutilized, can replace the very costly powdered activated carbon in wastewater treatment and as reinforcer in foam.

Keywords: chemical modification, industrial application, value addition, vegetable fibre

Procedia PDF Downloads 319
1107 Electroless Nickel Boron Deposition onto the SiC and B4C Ceramic Reinforced Materials

Authors: I. Kerti, G. Sezen, S. Daglilar

Abstract:

This present work is focused on studying to improve low wetting behaviour between liquid metal and ceramic particles. Ceramic particles like SiC and B4C have attracted great attention because of their usability as reinforcement for composite materials. However, poor wettability of particles is one of the major drawbacks of metal matrix composite production. Various methods have been studied to enhance the wetting properties between ceramic materials and metal substrates during ceramic reinforced metal matrix composites. Among these methods, autocatalytic nickel deposition is a unique process for the enhancement of the surface properties of ceramic particles. In fact, it is difficult to obtain continuous and uniform metallic coating on ceramic powders. In this study deposition of nickel boron layer on ceramic particles via autocatalytic plating in borohydride baths were investigated. Firstly, powders with different particle sizes were sensitized and activated respectively in order to ensure catalytic properties. Following the pre-treatment operations, particles were transferred into the coating bath containing nickel sulphate or nickel chloride as the Ni2+ source. The results show that a better bonding and uniform coating layer were obtained for Ni-B coatings with the Ni2+ source of NiCl2.6H2O as compared to NiSO4.6H2O. With the progress of the time, both particle surfaces are completely covered by a continuous and thin nickel boron layer. The surface morphology of the coatings that were analysed using scanning electron microscopy (SEM) show that SiC and B4C particles both distributed and different thickness of Ni-B nanolayers have been successfully coated onto the particles. The particles were mounted into a polimeric resin and polished in order to observe the thickness and the continuity of the coating layer. The composition of the coating layers were also evaluated by EDS analyses. The SEM morphologies and the EDS results of the coatings at different reaction times were adopted for detailed discussion of the Ni-B electroless plating mechanism.

Keywords: boron carbide, electroless coating, nickel boron deposition, silicon carbide

Procedia PDF Downloads 340
1106 Design and Analysis of Electric Power Production Unit for Low Enthalpy Geothermal Reservoir Applications

Authors: Ildar Akhmadullin, Mayank Tyagi

Abstract:

The subject of this paper is the design analysis of a single well power production unit from low enthalpy geothermal resources. A complexity of the project is defined by a low temperature heat source that usually makes such projects economically disadvantageous using the conventional binary power plant approach. A proposed new compact design is numerically analyzed. This paper describes a thermodynamic analysis, a working fluid choice, downhole heat exchanger (DHE) and turbine calculation results. The unit is able to produce 321 kW of electric power from a low enthalpy underground heat source utilizing n-Pentane as a working fluid. A geo-pressured reservoir located in Vermilion Parish, Louisiana, USA is selected as a prototype for the field application. With a brine temperature of 126℃, the optimal length of DHE is determined as 304.8 m (1000ft). All units (pipes, turbine, and pumps) are chosen from commercially available parts to bring this project closer to the industry requirements. Numerical calculations are based on petroleum industry standards. The project is sponsored by the Department of Energy of the US.

Keywords: downhole heat exchangers, geothermal power generation, organic rankine cycle, refrigerants, working fluids

Procedia PDF Downloads 313
1105 Application of Chemical Tests for the Inhibition of Scaling From Hamma Hard Waters

Authors: Samira Ghizellaoui, Manel Boumagoura

Abstract:

Calcium carbonate precipitation is a widespread problem, especially in hard water systems. The main water supply that supplies the city of Constantine with drinking water is underground water called Hamma water. This water has a very high hardness of around 590 mg/L CaCO₃. This leads to the formation of scale, consisting mainly of calcium carbonate, which can be responsible for the clogging of valves and the deterioration of equipment (water heaters, washing machines and encrustations in the pipes). Plant extracts used as scale inhibitors have attracted the attention of several researchers. In recent years, green inhibitors have attracted great interest because they are biodegradable, non-toxic and do not affect the environment. The aim of our work is to evaluate the effectiveness of a chemical antiscale treatment in the presence of three green inhibitors: gallicacid; quercetin; alginate, and three mixtures: (gallic acid-quercetin); (quercetin-alginate); (gallic acid-alginate). The results show that the inhibitory effect is manifested from an addition of 1mg/L of gallic acid, 10 mg/L of quercetin, 0.2 mg/L of alginate, 0.4mg/L of (gallic acid-quercetin), 2mg/L of (quercetin-alginate) and 0.4 mg/L of (gallic acid-alginate). On the other hand, 100 mg/L (Drinking water standard) of Ca2+is reached for partial softening at 4 mg/L of gallic acid, 40 mg/L of quercetin, 0.6mg/L of alginate, 4mg/L of (gallic acid-quercetin), 10mg/L of (quercetin-alginate) and 1.6 mg/L of (gallic acid-alginate).

Keywords: water, scaling, calcium carbonate, green inhibitor

Procedia PDF Downloads 60
1104 Structural Properties of Surface Modified PVA: Zn97Pr3O Polymer Nanocomposite Free Standing Films

Authors: Pandiyarajan Thangaraj, Mangalaraja Ramalinga Viswanathan, Karthikeyan Balasubramanian, Héctor D. Mansilla, José Ruiz

Abstract:

Rare earth ions doped semiconductor nanostructures gained much attention due to their novel physical and chemical properties which lead to potential applications in laser technology as inexpensive luminescent materials. Doping of rare earth ions into ZnO semiconductor alter its electronic structure and emission properties. Surface modification (polymer covering) is one of the simplest techniques to modify the emission characteristics of host materials. The present work reports the synthesis and structural properties of PVA:Zn97Pr3O polymer nanocomposite free standing films. To prepare Pr3+ doped ZnO nanostructures and PVA:Zn97Pr3O polymer nanocomposite free standing films, the colloidal chemical and solution casting techniques were adopted, respectively. The formation of PVA:Zn97Pr3O films were confirmed through X-ray diffraction (XRD), absorption and Fourier transform infrared (FTIR) spectroscopy analyses. XRD measurements confirm the prepared materials are crystalline having hexagonal wurtzite structure. Polymer composite film exhibits the diffraction peaks of both PVA and ZnO structures. TEM images reveal the pure and Pr3+ doped ZnO nanostructures exhibit sheet like morphology. Optical absorption spectra show free excitonic absorption band of ZnO at 370 nm and, the PVA:Zn97Pr3O polymer film shows absorption bands at ~282 and 368 nm and these arise due to the presence of carbonyl containing structures connected to the PVA polymeric chains, mainly at the ends and free excitonic absorption of ZnO nanostructures, respectively. Transmission spectrum of as prepared film shows 57 to 69% of transparency in the visible and near IR region. FTIR spectral studies confirm the presence of A1 (TO) and E1 (TO) modes of Zn-O bond vibration and the formation of polymer composite materials.

Keywords: rare earth doped ZnO, polymer composites, structural characterization, surface modification

Procedia PDF Downloads 355
1103 Minimization of the Abrasion Effect of Fiber Reinforced Polymer Matrix on Stainless Steel Injection Nozzle through the Application of Laser Hardening Technique

Authors: Amessalu Atenafu Gelaw, Nele Rath

Abstract:

Currently, laser hardening process is becoming among the most efficient and effective hardening technique due to its significant advantages. The source where heat is generated, the absence of cooling media, self-quenching property, less distortion nature due to localized heat input, environmental friendly behavior and less time to finish the operation are among the main benefits to adopt this technology. This day, a variety of injection machines are used in plastic, textile, electrical and mechanical industries. Due to the fast growing of composite technology, fiber reinforced polymer matrix becoming optional solution to use in these industries. Due, to the abrasion nature of fiber reinforced polymer matrix composite on the injection components, many parts are outdated before the design period. Niko, a company specialized in injection molded products, suffers from the short lifetime of the injection nozzles of the molds, due to the use of fiber reinforced and, therefore, more abrasive polymer matrix. To prolong the lifetime of these molds, hardening the susceptible component like the injecting nozzles was a must. In this paper, the laser hardening process is investigated on Unimax, a type of stainless steel. The investigation to get optimal results for the nozzle-case was performed in three steps. First, the optimal parameters for maximum possible hardenability for the investigated nozzle material is investigated on a flat sample, using experimental testing as well as thermal simulation. Next, the effect of an inclination on the maximum temperature is analyzed both by experimental testing and validation through simulation. Finally, the data combined and applied for the nozzle. This paper describes possible strategies and methods for laser hardening of the nozzle to reach hardness of at least 720 HV for the material investigated. It has been proven, that the nozzle can be laser hardened to over 900 HV with the option of even higher results when more precise positioning of the laser can be assured.

Keywords: absorptivity, fiber reinforced matrix, laser hardening, Nd:YAG laser

Procedia PDF Downloads 151
1102 Parametric Study for Optimal Design of Hybrid Bridge Joint

Authors: Bongsik Park, Jae Hyun Park, Jae-Yeol Cho

Abstract:

Mixed structure, which is a kind of hybrid system, is incorporating steel beam and prestressed concrete beam. Hybrid bridge adopting mixed structure have some merits. Main span length can be made longer by using steel as main span material. In case of cable-stayed bridge having asymmetric span length, negative reaction at side span can be restrained without extra restraining devices by using weight difference between main span material and side span material. However angle of refraction might happen because of rigidity difference between materials and stress concentration also might happen because of abnormal loading transmission at joint in the hybrid bridge. Therefore the joint might be a weak point of the structural system and it needs to pay attention to design of the joint. However, design codes and standards about the joint in the hybrid-bridge have not been established so the joint designs in most of construction cases have been very conservative or followed previous design without extra verification. In this study parametric study using finite element analysis for optimal design of hybrid bridge joint is conducted. Before parametric study, finite element analysis was conducted based on previous experimental data and it is verified that analysis result approximated experimental data. Based on the finite element analysis results, parametric study was conducted. The parameters were selected as those have influences on joint behavior. Based on the parametric study results, optimal design of hybrid bridge joint has been determined.

Keywords: parametric study, optimal design, hybrid bridge, finite element analysis

Procedia PDF Downloads 418
1101 Evaluating Accessibility to Bangkok Mass Transit System: Case Study of Saphan Taksin BTS Station

Authors: Rungpansa Noichan, Bart Julien Dewancker

Abstract:

Access to the mass transit system, including rapid elevated and underground transport has become an outstanding issue for many cities. The mass transit access development should focus on behavioral responses of the different passenger groups. Moreover, it should consider about the appearance of intent-oriented action related accessibility that was explored from user’s satisfaction and attitudes related to services quality. This study aims to evaluate mass transit accessibility from passenger’s satisfaction, therefore, understanding the passenger’s attitudes about mass transit accessibility. The study area of this research is Bangkok Mass Transit system (BTS Skytrain) at Saphan Taksin station. 200 passengers at Saphan Taksin station were asked to rate the questionnaires survey that considers accessibility aspects of convenience, safety, feeder connectivity, and other dimensions. The survey was to find out the passenger attitudes and satisfaction for access to the BTS station, and the result shows several factors that influence the passenger choice of using the BTS as a public transportation mode and passenger’s opinion that needs to concern for the development mass transit system and accessibility performance.

Keywords: urban transportation, user satisfaction, accessibility, Bangkok mass transit

Procedia PDF Downloads 257
1100 Adsorptive Removal of Cd(II) Ions from Aqueous Systems by Wood Ash-Alginate Composite Beads

Authors: Tichaona Nharingo, Hope Tauya, Mambo Moyo

Abstract:

Wood ash has been demonstrated to have favourable adsorption capacity for heavy metal ions but suffers the application problem of difficult to separate/isolate from the batch adsorption systems. Fabrication of wood ash beads using multifunctional group and non-toxic carbohydrate, alginate, may improve the applicability of wood ash in environmental pollutant remediation. In this work, alginate-wood ash beads (AWAB) were fabricated and applied to the removal of cadmium ions from aqueous systems. The beads were characterized by FTIR, TGA/DSC, SEM-EDX and their pHZPC before and after the adsorption of Cd(II) ions. Important adsorption parameters i.e. pH, AWAB dosage, contact time and ionic strength were optimized and the effect of initial concentration of Cd(II) ions to the adsorption process was established. Adsorption kinetics, adsorption isotherms, adsorption mechanism and application of AWAB to real water samples spiked with Cd(II) ions were ascertained. The composite adsorbent was characterized by a heterogeneous macro pore surface comprising of metal oxides, multiple hydroxyl groups and carbonyl groups that were involved in electrostatic interaction and Lewis acid-base interactions with the Cd(II) ions. The pseudo second order and the Freundlich isotherm models best fitted the adsorption kinetics and isotherm data respectively suggesting chemical sorption process and surface heterogeneity. The presence of Pb(II) ions inhibited the adsorption of Cd(II) ions (reduced by 40 %) attributed to the competition for the adsorption sites. The Cd(II) loaded beads could be regenerated using 0.1 M HCl and could be applied to four sorption-desorption cycles without significant loss in its initial adsorption capacity. The high maximum adsorption capacity, stability, selectivity and reusability of AWAB make the adsorbent ideal for application in the removal of Cd(II) ions from real water samples. Column type adsorption experiments need to be explored to establish the potential of the adsorbent in removing Cd(II) ions using continuous flow systems.

Keywords: adsorption, Cd(II) ions, regeneration, wastewater, wood ash-alginate beads

Procedia PDF Downloads 237
1099 Coupled Field Formulation – A Unified Method for Formulating Structural Mechanics Problems

Authors: Ramprasad Srinivasan

Abstract:

Engineers create inventions and put their ideas in concrete terms to design new products. Design drivers must be established, which requires, among other things, a complete understanding of the product design, load paths, etc. For Aerospace Vehicles, weight/strength ratio, strength, stiffness and stability are the important design drivers. A complex built-up structure is made up of an assemblage of primitive structural forms of arbitrary shape, which include 1D structures like beams and frames, 2D structures like membranes, plate and shell structures, and 3D solid structures. Justification through simulation involves a check for all the quantities of interest, namely stresses, deformation, frequencies, and buckling loads and is normally achieved through the finite element (FE) method. Over the past few decades, Fiber-reinforced composites are fast replacing the traditional metallic structures in the weight-sensitive aerospace and aircraft industries due to their high specific strength, high specific stiffness, anisotropic properties, design freedom for tailoring etc. Composite panel constructions are used in aircraft to design primary structure components like wings, empennage, ailerons, etc., while thin-walled composite beams (TWCB) are used to model slender structures like stiffened panels, helicopter, and wind turbine rotor blades, etc. The TWCB demonstrates many non-classical effects like torsional and constrained warping, transverse shear, coupling effects, heterogeneity, etc., which makes the analysis of composite structures far more complex. Conventional FE formulations to model 1D structures suffer from many limitations like shear locking, particularly in slender beams, lower convergence rates due to material coupling in composites, inability to satisfy, equilibrium in the domain and natural boundary conditions (NBC) etc. For 2D structures, the limitations of conventional displacement-based FE formulations include the inability to satisfy NBC explicitly and many pathological problems such as shear and membrane locking, spurious modes, stress oscillations, lower convergence due to mesh distortion etc. This mandates frequent re-meshing to even achieve an acceptable mesh (satisfy stringent quality metrics) for analysis leading to significant cycle time. Besides, currently, there is a need for separate formulations (u/p) to model incompressible materials, and a single unified formulation is missing in the literature. Hence coupled field formulation (CFF) is a unified formulation proposed by the author for the solution of complex 1D and 2D structures addressing the gaps in the literature mentioned above. The salient features of CFF and its many advantages over other conventional methods shall be presented in this paper.

Keywords: coupled field formulation, kinematic and material coupling, natural boundary condition, locking free formulation

Procedia PDF Downloads 62
1098 A Case Study on Impact of Climate Change and Adaptation in Kabul Metropolitan Area

Authors: Mohammad Rahim Rahimi, Yuji Hoshino, Kota Masuyama, Naoya Nakajima

Abstract:

The aim of this paper is to study the behavior or influence of climate adaptation and change in Kabul Metropolitan Area (KMA). The Kabul Metropolitan Area (KMA) in Afghanistan includes Kabul existing city and Kabul New City (KNC). Kabul Metropolitan Area has admitted the challenges due to climate change, which includes, natural climate change, social transformations, city landscape, economic and political issues, etc. KMA will withhold a large population within its boundaries. The main problems competed in KMA were the temperature changes over the years, especially in Hindukush and Central Highland of Afghanistan from 1950 up to 2010, 1°C and 1.71°C raised respectively and reduction of water table in existing Kabul city due to the use of more water from underground water resources. Moreover, the cause of temperature rise, the precipitation in spring season and melting of snow early or melting in compressed time as well as the water source is directly related to the capacity of the mountains snow and precipitation. In addition, the temperature increased, and precipitation declined in spring period. It is directly related to separation of dissertation, migration to the cities and other challenges that we will discuss in this paper.

Keywords: climate change, climate adaption, adaptation in Kabul metropolitan area, precipitation

Procedia PDF Downloads 246
1097 Evaluation of the Ardabil City Environmental Potential for Urban Development

Authors: Seiied Taghi Seiied Safavian, Ebrahim Fataei, Taghi Ebadi

Abstract:

Urbanized population increasing has been a major driving force for physical development and expansion. In this regard, selecting optimal management strategies for sustainable development of cities as the most important population centers has gotten more attention by the city managers. One of the most important issues in planning a sustainable development is environmental sustainability. In this research, identifying the optimal physical development strategies of Ardabil city in the future condition have been investigated based on land-use planning principles and regularities. Determination of suitable lands of urban development was conducted through natural variables comprised of slope, topography, geology, distance from fault, underground water's depth, land-use strategies and earth shape using hierarchical process method (AHP) in Geographical information system (GIS). Region's potential capabilities and talents were estimated by environmental elements extraction and its measurement based on environmental criteria. Consequently, specified suitable areas for Ardabil city development were introduced. Results of this research showed that the northern part of the Ardabil city is the most suitable sites for physical development of this city regarding the environmental sustainability criteria.

Keywords: urban development, environmental sustainability, Ardabil city, AHP, GIS

Procedia PDF Downloads 424
1096 A Method for Harvesting Atmospheric Lightning-Energy and Utilization of Extra Generated Power of Nuclear Power Plants during the Low Energy Demand Periods

Authors: Akbar Rahmani Nejad, Pejman Rahmani Nejad, Ahmad Rahmani Nejad

Abstract:

we proposed the arresting of atmospheric lightning and passing the electrical current of lightning-bolts through underground water tanks to produce Hydrogen and restoring Hydrogen in reservoirs to be used later as clean and sustainable energy. It is proposed to implement this method for storage of extra electrical power (instead of lightning energy) during low energy demand periods to produce hydrogen as a clean energy source to store in big reservoirs and later generate electricity by burning the stored hydrogen at an appropriate time. This method prevents the complicated process of changing the output power of nuclear power plants. It is possible to pass an electric current through sodium chloride solution to produce chlorine and sodium or human waste to produce Methane, etc. however atmospheric lightning is an accidental phenomenon, but using this free energy just by connecting the output of lightning arresters to the output of power plant during low energy demand period which there is no significant change in the design of power plant or have no cost, can be considered completely an economical design

Keywords: hydrogen gas, lightning energy, power plant, resistive element

Procedia PDF Downloads 133
1095 Speciation and Bioavailability of Heavy Metals in Greenhouse Soils

Authors: Bulent Topcuoglu

Abstract:

Repeated amendments of organic matter and intensive use of fertilizers, metal-enriched chemicals and biocides may cause soil and environmental pollution in greenhouses. Specially, the impact of heavy metal pollution of soils on food metal content and underground water quality has become a public concern. Due to potential toxicity of heavy metals to human life and environment, determining the chemical form of heavy metals in greenhouse soils is an important approach of chemical characterization and can provide useful information on its mobility and bioavailability. A sequential extraction procedure was used to estimate the availability of heavy metals (Zn, Cd, Ni, Pb and Cr) in greenhouse soils of Antalya Aksu. Zn was predominantly associated with Fe-Mn oxide fraction, major portion of Cd associated with carbonate and organic matter fraction, a major portion of (>65 %) Ni and Cr were largely associated with Fe-Mn oxide and residual fractions and Pb was largely associated with organic matter and Fe-Mn oxide fractions. Results of the present study suggest that the mobility and bioavailability of metals probably increase in the following order: Cr < Pb < Ni < Cd < Zn. Among the elements studied, Zn and Cd appeared to be the most readily soluble and potentially bioavailable metals and these metals may carry a potential risk for metal transfer in food chain and contamination to ground water.

Keywords: metal speciation, metal mobility, greenhouse soils, biosystems engineering

Procedia PDF Downloads 404
1094 Comparative Parametric Analysis on the Dynamic Response of Fibre Composite Beams with Debonding

Authors: Indunil Jayatilake, Warna Karunasena

Abstract:

Fiber Reinforced Polymer (FRP) composites enjoy an array of applications ranging from aerospace, marine and military to automobile, recreational and civil industry due to their outstanding properties. A structural glass fiber reinforced polymer (GFRP) composite sandwich panel made from E-glass fiber skin and a modified phenolic core has been manufactured in Australia for civil engineering applications. One of the major mechanisms of damage in FRP composites is skin-core debonding. The presence of debonding is of great concern not only because it severely affects the strength but also it modifies the dynamic characteristics of the structure, including natural frequency and vibration modes. This paper deals with the investigation of the dynamic characteristics of a GFRP beam with single and multiple debonding by finite element based numerical simulations and analyses using the STRAND7 finite element (FE) software package. Three-dimensional computer models have been developed and numerical simulations were done to assess the dynamic behavior. The FE model developed has been validated with published experimental, analytical and numerical results for fully bonded as well as debonded beams. A comparative analysis is carried out based on a comprehensive parametric investigation. It is observed that the reduction in natural frequency is more affected by single debonding than the equally sized multiple debonding regions located symmetrically to the single debonding position. Thus it is revealed that a large single debonding area leads to more damage in terms of natural frequency reduction than isolated small debonding zones of equivalent area, appearing in the GFRP beam. Furthermore, the extents of natural frequency shifts seem mode-dependent and do not seem to have a monotonous trend of increasing with the mode numbers.

Keywords: debonding, dynamic response, finite element modelling, novel FRP beams

Procedia PDF Downloads 112
1093 Analysis of Composite Health Risk Indicators Built at a Regional Scale and Fine Resolution to Detect Hotspot Areas

Authors: Julien Caudeville, Muriel Ismert

Abstract:

Analyzing the relationship between environment and health has become a major preoccupation for public health as evidenced by the emergence of the French national plans for health and environment. These plans have identified the following two priorities: (1) to identify and manage geographic areas, where hotspot exposures are suspected to generate a potential hazard to human health; (2) to reduce exposure inequalities. At a regional scale and fine resolution of exposure outcome prerequisite, environmental monitoring networks are not sufficient to characterize the multidimensionality of the exposure concept. In an attempt to increase representativeness of spatial exposure assessment approaches, risk composite indicators could be built using additional available databases and theoretical framework approaches to combine factor risks. To achieve those objectives, combining data process and transfer modeling with a spatial approach is a fundamental prerequisite that implies the need to first overcome different scientific limitations: to define interest variables and indicators that could be built to associate and describe the global source-effect chain; to link and process data from different sources and different spatial supports; to develop adapted methods in order to improve spatial data representativeness and resolution. A GIS-based modeling platform for quantifying human exposure to chemical substances (PLAINE: environmental inequalities analysis platform) was used to build health risk indicators within the Lorraine region (France). Those indicators combined chemical substances (in soil, air and water) and noise risk factors. Tools have been developed using modeling, spatial analysis and geostatistic methods to build and discretize interest variables from different supports and resolutions on a 1 km2 regular grid within the Lorraine region. By example, surface soil concentrations have been estimated by developing a Kriging method able to integrate surface and point spatial supports. Then, an exposure model developed by INERIS was used to assess the transfer from soil to individual exposure through ingestion pathways. We used distance from polluted soil site to build a proxy for contaminated site. Air indicator combined modeled concentrations and estimated emissions to take in account 30 polluants in the analysis. For water, drinking water concentrations were compared to drinking water standards to build a score spatialized using a distribution unit serve map. The Lden (day-evening-night) indicator was used to map noise around road infrastructures. Aggregation of the different factor risks was made using different methodologies to discuss weighting and aggregation procedures impact on the effectiveness of risk maps to take decisions for safeguarding citizen health. Results permit to identify pollutant sources, determinants of exposure, and potential hotspots areas. A diagnostic tool was developed for stakeholders to visualize and analyze the composite indicators in an operational and accurate manner. The designed support system will be used in many applications and contexts: (1) mapping environmental disparities throughout the Lorraine region; (2) identifying vulnerable population and determinants of exposure to set priorities and target for pollution prevention, regulation and remediation; (3) providing exposure database to quantify relationships between environmental indicators and cancer mortality data provided by French Regional Health Observatories.

Keywords: health risk, environment, composite indicator, hotspot areas

Procedia PDF Downloads 243
1092 Hybrid Velocity Control Approach for Tethered Aerial Vehicle

Authors: Lovesh Goyal, Pushkar Dave, Prajyot Jadhav, GonnaYaswanth, Sakshi Giri, Sahil Dharme, Rushika Joshi, Rishabh Verma, Shital Chiddarwar

Abstract:

With the rising need for human-robot interaction, researchers have proposed and tested multiple models with varying degrees of success. A few of these models performed on aerial platforms are commonly known as Tethered Aerial Systems. These aerial vehicles may be powered continuously by a tether cable, which addresses the predicament of the short battery life of quadcopters. This system finds applications to minimize humanitarian efforts for industrial, medical, agricultural, and service uses. However, a significant challenge in employing such systems is that it necessities attaining smooth and secure robot-human interaction while ensuring that the forces from the tether remain within the standard comfortable range for the humans. To tackle this problem, a hybrid control method that could switch between two control techniques: constant control input and the steady-state solution, is implemented. The constant control approach is implemented when a person is far from the target location, and error is thought to be eventually constant. The controller switches to the steady-state approach when the person reaches within a specific range of the goal position. Both strategies take into account human velocity feedback. This hybrid technique enhances the outcomes by assisting the person to reach the desired location while decreasing the human's unwanted disturbance throughout the process, thereby keeping the interaction between the robot and the subject smooth.

Keywords: unmanned aerial vehicle, tethered system, physical human-robot interaction, hybrid control

Procedia PDF Downloads 89
1091 Urban Freight Station: An Innovative Approach to Urban Freight

Authors: Amit Kumar Jain, Surbhi Jain

Abstract:

The urban freight in a city constitutes 10 to 18 per cent of all city road traffic, and 40 per cent of air pollution and noise emissions, are directly related to commercial transport. The policy measures implemented by urban planners have sought to restrict rather than assist goods-vehicle operations. This approach has temporarily controlled the urban transport demand during peak hours of traffic but has not effectively solved transport congestion. The solution discussed in the paper envisages the development of a comprehensive network of Urban Freight Stations (UFS) connected through underground conveyor belts in the city in line with baggage segregation and distribution in any of the major airports. The transportation of freight shall be done in standard size containers/cars through rail borne carts. The freight can be despatched or received from any of the UFS. Once freight is booked for a destination from any of the UFS, it would be stuffed in the container and digitally tagged for the destination. The container would reach the destination UFS through a network of rail borne carts. The container would be de-stuffed at the destination UFS and sent for further delivery, or the consignee may be asked to collect the consignment from urban freight station. The obvious benefits would be decongestion of roads, reduction in air and noise pollution, saving in manpower used for freight transportation.

Keywords: congestion, urban freight, intelligent transport system, pollution

Procedia PDF Downloads 298
1090 Properties of Hot-Pressed Alumina-Graphene Composites

Authors: P. Rutkowski, G. Górny, L. Stobierski, D. Zientara, W. Piekarczyk, K. Tran

Abstract:

The polycrystalline dense alumina shows thermal conductivity about 30 W/mK and very high electrical resistivity. These last two properties can be modified by introducing commercial relatively cheap graphene nanoparticles which, as two-dimensional flakes show very high thermal and electrical properties. The aim of this work is to show that it is possible to manufacture the anisotropic alumina-graphene material with directed multilayer graphene particles. Such materials can show the anisotropic properties mentioned before.

Keywords: alumina, composite, hot-pressed, graphene, properties

Procedia PDF Downloads 261
1089 A Comparative Study on the Thermophysical and Lubricity Characteristics of Multiwall Carbon Nanotube/Oil and Nanoclay/Oil Nanofluids

Authors: H. Singh, H. Bhowmick

Abstract:

Now-a-days, particle based lubricants have been widely used to enhance the lubrication performance. Use of tailor made micro/nanofluids can reduce the friction losses and dissipate heat in a better way. Use of Carbon Nanotubes (CNTs) has gained interests because of its structure that can endure much better in a system mechanically or thermally in comparison to any other additive in oil. On the other hand, nanoclays have been characterized mechanically and tribologically for the use of clay/polymer composite, and they have been gaining huge interest. Hence it is interesting to be investigated the effect of nanoclays as additive in oil. Thermophysical characteristics of lubricant play a predominant role in defining the friction and wear characteristics of lubricated contacts. However, very limited studies have been carried out to correlate the thermophysical properties of nanolubricants with their lubricity characteristics. Besides, most of the lubricant formulations till dates are found to be optimized for steel/steel contacts. In the present study, Multiwall Carbon Nanotube (MWCNT) and nanoclay are used as particle additives in mineral oil to develop nanofluids of various concentrations. The prepared lubricants are tested for their rheological, thermal and lubricity characteristics under aluminium-steel contacts. From the thermophysical investigation, it is observed that nanoclay particles significantly improve the viscosity of lubricant with an insignificant improvement in thermal conductivity. On the other hand, MWCNT particles moderately increase the viscosity but significantly increase the thermal conductivity of the base oil. Frictional responses of the nanofluids are characterized using a Pin-on-Disc tribometer which reveal some interesting facts. The findings from this study will greatly aid in formulating the particle based lubricants for cutting fluid in metal forming industries as well as fully developed nanolubricants for aluminium and Aluminium Metal Matrix Composite (AMMC) tribocontact for the use in the automotive and their allied industries.

Keywords: MWCNT, Multiwall Carbon Nanotube, nanoclay, nanolubricant, rheology, thermal conductivity

Procedia PDF Downloads 133
1088 Removal of Heavy Metals from Aqueous Solutions by Low-Cost Materials: A Review

Authors: I. Nazari, B. Shaabani, P. Abaasifar

Abstract:

In small quantities certain heavy metals are nutritionally essential for a healthy life. The heavy metals linked most often to human poisoning are lead, mercury, arsenic, and cadmium. Other heavy metals including copper, zinc and chromium are actually required by the body in small quantity but can also be toxic in large doses. Nowadays, we have contamination to this heavy metals in some untreated industrial waste waters and even in several populated cities drinking waters around the world. The contamination of ground and underground water sources to heavy metals can be concentrated and travel up to food chain by drinking water and agricultural products. In recent years, the need for safe and economical methods for removal of heavy metals from contaminated water has necessitated research interest towards the finding low-cost alternatives. Bio-adsorbents have emerged as low-cost and efficient materials for the removal of heavy metals from waste and ground waters. The bio-adsorbents have an affinity for heavy metals ions to form metal complexes or chelates due to having functional groups including carboxyl, hydroxyl, imidazole, and etc. The objective of this study is to review researches in less expensive adsorbents and their utilization possibilities for various low-cost bio-adsorbents such as coffee beans, rice husk, and saw dust for the removal of heavy metals from contaminated waters.

Keywords: heavy metals, water pollution, bio-adsorbents, low cost adsorbents

Procedia PDF Downloads 348
1087 Experimental Study on Use of Crumb Rubber to Mitigate Expansive Soil Pressures on Basement Walls

Authors: Kwestan Salimi, Jenna Jacoby, Michelle Basham, Amy Cerato

Abstract:

The extreme annual weather patterns of the central United States have increased the need for underground shelters for protection from destructive tornadic activity. However, very few residential homes have basements due to the added construction expense and the prevalence of expansive soils covering the central portion of the United States. These expansive soils shrink and swell, increasing earth pressure on basement walls. To mitigate the effect of expansive soils on basement walls, this study performed bench-scale tests using a common natural expansive soil mitigated with a backfill layer of crumb rubber. The results revealed that at 80% soil compaction, a 1:6 backfill height to total height ratio produced a 66% reduction in swell pressure. However, this percent reduction decreased to 27% for 90% soil compaction. It was also found that there is a strong linear correlation between compaction percentage and reduction in swell pressure when using the same backfill height to total height ratio. Using this correlation and extrapolating to 95% compaction, the percent reduction in swell pressure was approximately 12%.

Keywords: expansive soils, swell/shrink, swell pressure, stabilization, crumb rubber

Procedia PDF Downloads 152
1086 Analysis Mechanized Boring (TBM) of Tehran Subway Line 7

Authors: Shahin Shabani, Pouya Pourmadadi

Abstract:

Tunnel boring machines (TBMs) have been used for the construction of various tunnels for mining projects for the purpose of access, conveyance of ore and waste, drainage, exploration, water supply and water diversion. Several mining projects have seen the successful and economic beneficial use of TBMs, and there is an increasing awareness of the benefits of TBMs for mining projects. Key technical considerations for the use of TBMs for the construction of tunnels for mining projects include geological issues (rock type, rock alteration, rock strength, rock abrasivity, durability, ground water inflows), depth of cover and the potential for overstressing/rockbursts, site access and terrain, portal locations, TBM constraints, minimum tunnel size, tunnel support requirements, contractor and labor experience, and project schedule demands. This study focuses on tunnelling mining, with the goal to develop methods and tools to be used to gain understanding of these processes, and to analyze metro of Tehran. The Metro Line 7 of Tehran is one of the Longest (26 Km) and deepest (27m) of projects that’s under implementation. Because of major differences like passing under all geotechnical layers of the town and encountering part of it with underground water table and also using mechanized excavation system, is one of special metro projects.

Keywords: TBM, tunnel boring machines economic, metro, line 7

Procedia PDF Downloads 379