Search results for: slope calculation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1825

Search results for: slope calculation

445 Prediction of Damage to Cutting Tools in an Earth Pressure Balance Tunnel Boring Machine EPB TBM: A Case Study L3 Guadalajara Metro Line (Mexico)

Authors: Silvia Arrate, Waldo Salud, Eloy París

Abstract:

The wear of cutting tools is one of the most decisive elements when planning tunneling works, programming the maintenance stops and saving the optimum stock of spare parts during the evolution of the excavation. Being able to predict the behavior of cutting tools can give a very competitive advantage in terms of costs and excavation performance, optimized to the needs of the TBM itself. The incredible evolution of data science in recent years gives the option to implement it at the time of analyzing the key and most critical parameters related to machinery with the purpose of knowing how the cutting head is performing in front of the excavated ground. Taking this as a case study, Metro Line 3 of Guadalajara in Mexico will develop the feasibility of using Specific Energy versus data science applied over parameters of Torque, Penetration, and Contact Force, among others, to predict the behavior and status of cutting tools. The results obtained through both techniques are analyzed and verified in the function of the wear and the field situations observed in the excavation in order to determine its effectiveness regarding its predictive capacity. In conclusion, the possibilities and improvements offered by the application of digital tools and the programming of calculation algorithms for the analysis of wear of cutting head elements compared to purely empirical methods allow early detection of possible damage to cutting tools, which is reflected in optimization of excavation performance and a significant improvement in costs and deadlines.

Keywords: cutting tools, data science, prediction, TBM, wear

Procedia PDF Downloads 49
444 Development of Probability Distribution Models for Degree of Bending (DoB) in Chord Member of Tubular X-Joints under Bending Loads

Authors: Hamid Ahmadi, Amirreza Ghaffari

Abstract:

Fatigue life of tubular joints in offshore structures is not only dependent on the value of hot-spot stress, but is also significantly influenced by the through-the-thickness stress distribution characterized by the degree of bending (DoB). The DoB exhibits considerable scatter calling for greater emphasis in accurate determination of its governing probability distribution which is a key input for the fatigue reliability analysis of a tubular joint. Although the tubular X-joints are commonly found in offshore jacket structures, as far as the authors are aware, no comprehensive research has been carried out on the probability distribution of the DoB in tubular X-joints. What has been used so far as the probability distribution of the DoB in reliability analyses is mainly based on assumptions and limited observations, especially in terms of distribution parameters. In the present paper, results of parametric equations available for the calculation of the DoB have been used to develop probability distribution models for the DoB in the chord member of tubular X-joints subjected to four types of bending loads. Based on a parametric study, a set of samples was prepared and density histograms were generated for these samples using Freedman-Diaconis method. Twelve different probability density functions (PDFs) were fitted to these histograms. The maximum likelihood method was utilized to determine the parameters of fitted distributions. In each case, Kolmogorov-Smirnov test was used to evaluate the goodness of fit. Finally, after substituting the values of estimated parameters for each distribution, a set of fully defined PDFs have been proposed for the DoB in tubular X-joints subjected to bending loads.

Keywords: tubular X-joint, degree of bending (DoB), probability density function (PDF), Kolmogorov-Smirnov goodness-of-fit test

Procedia PDF Downloads 719
443 Lactobacillus sp. Isolates Slaughterhouse Waste as Probiotics for Broilers

Authors: Nourmalita Safitri Ningsih, Ridwan, Iqri Puspa Yunanda

Abstract:

The aim of this study was to utilize the waste from slaughterhouses for chicken feed ingredients is probiotic. Livestock waste produced by livestock activities such as feces, urine, food remains, as well as water from livestock and cage cleaning. The process starts with the isolation of bacteria. Rumen fluid is taken at Slaughterhouse Giwangan, Yogyakarta. Isolation of Lactobacillus ruminus is done by using de Mann Rogosa Sharpe (MRS) medium. In the sample showed a rod-shaped bacteria are streaked onto an agar plates. After it was incubated at 37ºC for 48 hours, after which it is observed. The observation of these lactic acid bacteria it will show a clear zone at about the colony. These bacterial colonies are white, round, small, shiny on the agar plate mikroenkapsul In the manufacturing process carried out by the method of freeze dried using skim milk in addition capsulated material. Then the results of these capsulated bacteria are mixed with feed for livestock. The results from the mixing of capsulated bacteria in feed are to increase the quality of animal feed so as to provide a good effect on livestock. Scanning electron microscope testing we have done show the results of bacteria have been shrouded in skim milk. It can protect the bacteria so it is more durable in use. The observation of the bacteria showed a sheath on Lactobacillus sp. Preservation of bacteria in this way makes the bacteria more durable for use. As well as skim milk can protect bacteria that are resistant to the outside environment. Results of probiotics in chicken feed showed significant weight gain in chickens. Calculation Anova (P <0.005) shows the average chicken given probiotics her weight increased.

Keywords: chicken, probiotics, waste, Lactobacillus sp, bacteria

Procedia PDF Downloads 319
442 The Influence of Infiltration and Exfiltration Processes on Maximum Wave Run-Up: A Field Study on Trinidad Beaches

Authors: Shani Brathwaite, Deborah Villarroel-Lamb

Abstract:

Wave run-up may be defined as the time-varying position of the landward extent of the water’s edge, measured vertically from the mean water level position. The hydrodynamics of the swash zone and the accurate prediction of maximum wave run-up, play a critical role in the study of coastal engineering. The understanding of these processes is necessary for the modeling of sediment transport, beach recovery and the design and maintenance of coastal engineering structures. However, due to the complex nature of the swash zone, there remains a lack of detailed knowledge in this area. Particularly, there has been found to be insufficient consideration of bed porosity and ultimately infiltration/exfiltration processes, in the development of wave run-up models. Theoretically, there should be an inverse relationship between maximum wave run-up and beach porosity. The greater the rate of infiltration during an event, associated with a larger bed porosity, the lower the magnitude of the maximum wave run-up. Additionally, most models have been developed using data collected on North American or Australian beaches and may have limitations when used for operational forecasting in Trinidad. This paper aims to assess the influence and significance of infiltration and exfiltration processes on wave run-up magnitudes within the swash zone. It also seeks to pay particular attention to how well various empirical formulae can predict maximum run-up on contrasting beaches in Trinidad. Traditional surveying techniques will be used to collect wave run-up and cross-sectional data on various beaches. Wave data from wave gauges and wave models will be used as well as porosity measurements collected using a double ring infiltrometer. The relationship between maximum wave run-up and differing physical parameters will be investigated using correlation analyses. These physical parameters comprise wave and beach characteristics such as wave height, wave direction, period, beach slope, the magnitude of wave setup, and beach porosity. Most parameterizations to determine the maximum wave run-up are described using differing parameters and do not always have a good predictive capability. This study seeks to improve the formulation of wave run-up by using the aforementioned parameters to generate a formulation with a special focus on the influence of infiltration/exfiltration processes. This will further contribute to the improvement of the prediction of sediment transport, beach recovery and design of coastal engineering structures in Trinidad.

Keywords: beach porosity, empirical models, infiltration, swash, wave run-up

Procedia PDF Downloads 357
441 The Emergence of a Hexagonal Pattern in Shear-Thickening Suspension under Orbital Shaking

Authors: Li-Xin Shi, Meng-Fei Hu, Song-Chuan Zhao

Abstract:

Dense particle suspensions composed of mixtures of particles and fluid are omnipresent in natural phenomena and in industrial processes. Dense particle suspension under shear may lose its uniform state to large local density and stress fluctuations which challenge the mean-field description of the suspension system. However, it still remains largely debated and far from fully understood of the internal mechanism. Here, a dynamics of a non-Brownian suspension is explored under horizontal swirling excitations, where high-density patches appear when the excitation frequency is increased beyond a threshold. These density patches are self-assembled into a hexagonal pattern across the system with further increases in frequency. This phenomenon is underlined by the spontaneous growth of density waves (instabilities) along the flow direction, and the motion of these density waves preserves the circular path and the frequency of the oscillation. To investigate the origin of the phenomena, the constitutive relationship calibrated by independent rheological measurements is implemented into a simplified two-phase flow model. And the critical instability frequency in theory calculation matches the experimental measurements quantitatively without free parameters. By further analyzing the model, the instability is found to be closely related to the discontinuous shear thickening transition of the suspension. In addition, the long-standing density waves degenerate into random fluctuations when replacing the free surface with rigid confinement. It indicates that the shear-thickened state is intrinsically heterogeneous, and the boundary conditions are crucial for the development of local disturbance.

Keywords: dense suspension, instability, self-organization, density wave

Procedia PDF Downloads 88
440 Applications of Out-of-Sequence Thrust Movement for Earthquake Mitigation: A Review

Authors: Rajkumar Ghosh

Abstract:

The study presents an overview of the many uses and approaches for estimating out-of-sequence thrust movement in earthquake mitigation. The study investigates how knowing and forecasting thrust movement during seismic occurrences might assist to effective earthquake mitigation measures. The review begins by discussing out-of-sequence thrust movement and its importance in earthquake mitigation strategies. It explores how typical techniques of estimating thrust movement may not capture the full complexity of seismic occurrences and emphasizes the benefits of include out-of-sequence data in the analysis. A thorough review of existing research and studies on out-of-sequence thrust movement estimates for earthquake mitigation. The study demonstrates how to estimate out-of-sequence thrust movement using multiple data sources such as GPS measurements, satellite imagery, and seismic recordings. The study also examines the use of out-of-sequence thrust movement estimates in earthquake mitigation measures. It investigates how precise calculation of thrust movement may help improve structural design, analyse infrastructure risk, and develop early warning systems. The potential advantages of using out-of-sequence data in these applications to improve the efficiency of earthquake mitigation techniques. The difficulties and limits of estimating out-of-sequence thrust movement for earthquake mitigation. It addresses data quality difficulties, modelling uncertainties, and computational complications. To address these obstacles and increase the accuracy and reliability of out-of-sequence thrust movement estimates, the authors recommend topics for additional study and improvement. The study is a helpful resource for seismic monitoring and earthquake risk assessment researchers, engineers, and policymakers, supporting innovations in earthquake mitigation measures based on a better knowledge of thrust movement dynamics.

Keywords: earthquake mitigation, out-of-sequence thrust, satellite imagery, seismic recordings, GPS measurements

Procedia PDF Downloads 84
439 Feature Selection of Personal Authentication Based on EEG Signal for K-Means Cluster Analysis Using Silhouettes Score

Authors: Jianfeng Hu

Abstract:

Personal authentication based on electroencephalography (EEG) signals is one of the important field for the biometric technology. More and more researchers have used EEG signals as data source for biometric. However, there are some disadvantages for biometrics based on EEG signals. The proposed method employs entropy measures for feature extraction from EEG signals. Four type of entropies measures, sample entropy (SE), fuzzy entropy (FE), approximate entropy (AE) and spectral entropy (PE), were deployed as feature set. In a silhouettes calculation, the distance from each data point in a cluster to all another point within the same cluster and to all other data points in the closest cluster are determined. Thus silhouettes provide a measure of how well a data point was classified when it was assigned to a cluster and the separation between them. This feature renders silhouettes potentially well suited for assessing cluster quality in personal authentication methods. In this study, “silhouettes scores” was used for assessing the cluster quality of k-means clustering algorithm is well suited for comparing the performance of each EEG dataset. The main goals of this study are: (1) to represent each target as a tuple of multiple feature sets, (2) to assign a suitable measure to each feature set, (3) to combine different feature sets, (4) to determine the optimal feature weighting. Using precision/recall evaluations, the effectiveness of feature weighting in clustering was analyzed. EEG data from 22 subjects were collected. Results showed that: (1) It is possible to use fewer electrodes (3-4) for personal authentication. (2) There was the difference between each electrode for personal authentication (p<0.01). (3) There is no significant difference for authentication performance among feature sets (except feature PE). Conclusion: The combination of k-means clustering algorithm and silhouette approach proved to be an accurate method for personal authentication based on EEG signals.

Keywords: personal authentication, K-mean clustering, electroencephalogram, EEG, silhouettes

Procedia PDF Downloads 285
438 Model Predictive Control Applied to Thermal Regulation of Thermoforming Process Based on the Armax Linear Model and a Quadratic Criterion Formulation

Authors: Moaine Jebara, Lionel Boillereaux, Sofiane Belhabib, Michel Havet, Alain Sarda, Pierre Mousseau, Rémi Deterre

Abstract:

Energy consumption efficiency is a major concern for the material processing industry such as thermoforming process and molding. Indeed, these systems should deliver the right amount of energy at the right time to the processed material. Recent technical development, as well as the particularities of the heating system dynamics, made the Model Predictive Control (MPC) one of the best candidates for thermal control of several production processes like molding and composite thermoforming to name a few. The main principle of this technique is to use a dynamic model of the process inside the controller in real time in order to anticipate the future behavior of the process which allows the current timeslot to be optimized while taking future timeslots into account. This study presents a procedure based on a predictive control that brings balance between optimality, simplicity, and flexibility of its implementation. The development of this approach is progressive starting from the case of a single zone before its extension to the multizone and/or multisource case, taking thus into account the thermal couplings between the adjacent zones. After a quadratic formulation of the MPC criterion to ensure the thermal control, the linear expression is retained in order to reduce calculation time thanks to the use of the ARMAX linear decomposition methods. The effectiveness of this approach is illustrated by experiment and simulation.

Keywords: energy efficiency, linear decomposition methods, model predictive control, mold heating systems

Procedia PDF Downloads 272
437 Design Study on a Contactless Material Feeding Device for Electro Conductive Workpieces

Authors: Oliver Commichau, Richard Krimm, Bernd-Arno Behrens

Abstract:

A growing demand on the production rate of modern presses leads to higher stroke rates. Commonly used material feeding devices for presses like grippers and roll-feeding systems can only achieve high stroke rates along with high gripper forces, to avoid stick-slip. These forces are limited by the sensibility of the surfaces of the workpieces. Stick-slip leads to scratches on the surface and false positioning of the workpiece. In this paper, a new contactless feeding device is presented, which develops higher feeding force without damaging the surface of the workpiece through gripping forces. It is based on the principle of the linear induction motor. A primary part creates a magnetic field and induces eddy currents in the electrically conductive material. A Lorentz-Force applies to the workpiece in feeding direction as a mutual reaction between the eddy-currents and the magnetic induction. In this study, the FEA model of this approach is shown. The calculation of this model was used to identify the influence of various design parameters on the performance of the feeder and thus showing the promising capabilities and limits of this technology. In order to validate the study, a prototype of the feeding device has been built. An experimental setup was used to measure pulling forces and placement accuracy of the experimental feeder in order to give an outlook of a potential industrial application of this approach.

Keywords: conductive material, contactless feeding, linear induction, Lorentz-Force

Procedia PDF Downloads 179
436 Single Fly Over as a Solution to Congestion of Intersection Junction: Case Study of Jalan Jatingaleh Semarang

Authors: Rachmat Mudiyono, Siti Sumiati

Abstract:

In the next few years, traffic will happen most of the time. This was triggered by the growing rate of vehicles againts the road capacity which is not balance. All the time the congestion in the city of Semarang has been occured at peak hours. Congestion also occured in between Teuku Umar and Setia Budi road Jatingaleh because of a plot intersection (Kesatrian intersection, PLN intersection and Jatingaleh intersection) with the Toll Road. Jatingaleh is located in the southern city of Semarang which is a central meeting point between the upper and lower Semarang where the vehicle flows in through a combination of local current and regional traffic, and the flow of vehicles coming in and out from highway. The main cause of the problems that occurred in the area of Jatingaleh is due to the numbers of vehicles movement that occurs at the intersections. With the above issues, it is necessary to analyse the existing conditions and look into some solutions. Before carrying out an analysis of field surveys at peak hours for example morning (06:00 to 08:00 am) and for the afternoon (04:00 to 06:00 pm)should be conducted, then the number of vehicles is counted manually with “short-breakcounting” according to types of vehicles. From the analysis we found that the degree of saturation (DS) is 1.61 between Teuku Umar and Setia Budi road during the morning peak hours and 1.56 during the afternoon peak hours. This means that the capacity of the existing road is no longer able to accommodate the traffic flow. One of the solutions for the congestion that occurs at the intersection of Jatingaleh is to apply the efficiency of the intersection that is not in a plot with a Fly over, Underpass and the combination of Fly Over-Underpass. Base on the flow reduction calculation with 3 comparative modeling it shows that the Fly Over is the most technically efficient to be applied in this research.

Keywords: single fly over, congestion, intersection, interchange

Procedia PDF Downloads 392
435 A Ground Observation Based Climatology of Winter Fog: Study over the Indo-Gangetic Plains, India

Authors: Sanjay Kumar Srivastava, Anu Rani Sharma, Kamna Sachdeva

Abstract:

Every year, fog formation over the Indo-Gangetic Plains (IGPs) of Indian region during the winter months of December and January is believed to create numerous hazards, inconvenience, and economic loss to the inhabitants of this densely populated region of Indian subcontinent. The aim of the paper is to analyze the spatial and temporal variability of winter fog over IGPs. Long term ground observations of visibility and other meteorological parameters (1971-2010) have been analyzed to understand the formation of fog phenomena and its relevance during the peak winter months of January and December over IGP of India. In order to examine the temporal variability, time series and trend analysis were carried out by using the Mann-Kendall Statistical test. Trend analysis performed by using the Mann-Kendall test, accepts the alternate hypothesis with 95% confidence level indicating that there exists a trend. Kendall tau’s statistics showed that there exists a positive correlation between time series and fog frequency. Further, the Theil and Sen’s median slope estimate showed that the magnitude of trend is positive. Magnitude is higher during January compared to December for the entire IGP except in December when it is high over the western IGP. Decade wise time series analysis revealed that there has been continuous increase in fog days. The net overall increase of 99 % was observed over IGP in last four decades. Diurnal variability and average daily persistence were computed by using descriptive statistical techniques. Geo-statistical analysis of fog was carried out to understand the spatial variability of fog. Geo-statistical analysis of fog revealed that IGP is a high fog prone zone with fog occurrence frequency of more than 66% days during the study period. Diurnal variability indicates the peak occurrence of fog is between 06:00 and 10:00 local time and average daily fog persistence extends to 5 to 7 hours during the peak winter season. The results would offer a new perspective to take proactive measures in reducing the irreparable damage that could be caused due to changing trends of fog.

Keywords: fog, climatology, Mann-Kendall test, trend analysis, spatial variability, temporal variability, visibility

Procedia PDF Downloads 242
434 Health Care using Queuing Theory

Authors: S. Vadivukkarasi, K. Karthi, M. Karthick, C. Dinesh, S. Santhosh, A. Yogaraj

Abstract:

The appointment system was designed to minimize patient’s idle time overlooking patients waiting time in hospitals. This is no longer valid in today’s consumer oriented society. Long waiting times for treatment in the outpatient department followed by short consultations has long been a complaint. Nowadays, customers use waiting time as a decisive factor in choosing a service provider. Queuing theory constitutes a very powerful tool because queuing models require relatively little data and are simple and fast to use. Because of this simplicity and speed, modelers can be used to quickly evaluate and compare various alternatives for providing service. The application of queuing models in the analysis of health care systems is increasingly accepted by health care decision makers. Timely access to care is a key component of high-quality health care. However, patient delays are prevalent throughout health care systems, resulting in dissatisfaction and adverse clinical consequences for patients as well as potentially higher costs and wasted capacity for providers. Arguably, the most critical delays for health care are the ones associated with health care emergencies. The allocation of resources can be divided into three general areas: bed management, staff management, and room facility management. Effective and efficient patient flow is indicated by high patient throughput, low patient waiting times, a short length of stay at the hospital and overtime, while simultaneously maintaining adequate staff utilization rates and low patient’s idle times.

Keywords: appointment system, patient scheduling, bed management, queueing calculation, system analysis

Procedia PDF Downloads 300
433 Efficient Implementation of Finite Volume Multi-Resolution Weno Scheme on Adaptive Cartesian Grids

Authors: Yuchen Yang, Zhenming Wang, Jun Zhu, Ning Zhao

Abstract:

An easy-to-implement and robust finite volume multi-resolution Weighted Essentially Non-Oscillatory (WENO) scheme is proposed on adaptive cartesian grids in this paper. Such a multi-resolution WENO scheme is combined with the ghost cell immersed boundary method (IBM) and wall-function technique to solve Navier-Stokes equations. Unlike the k-exact finite volume WENO schemes which involve large amounts of extra storage, repeatedly solving the matrix generated in a least-square method or the process of calculating optimal linear weights on adaptive cartesian grids, the present methodology only adds very small overhead and can be easily implemented in existing edge-based computational fluid dynamics (CFD) codes with minor modifications. Also, the linear weights of this adaptive finite volume multi-resolution WENO scheme can be any positive numbers on condition that their sum is one. It is a way of bypassing the calculation of the optimal linear weights and such a multi-resolution WENO scheme avoids dealing with the negative linear weights on adaptive cartesian grids. Some benchmark viscous problems are numerical solved to show the efficiency and good performance of this adaptive multi-resolution WENO scheme. Compared with a second-order edge-based method, the presented method can be implemented into an adaptive cartesian grid with slight modification for big Reynolds number problems.

Keywords: adaptive mesh refinement method, finite volume multi-resolution WENO scheme, immersed boundary method, wall-function technique.

Procedia PDF Downloads 148
432 Earthquake Forecasting Procedure Due to Diurnal Stress Transfer by the Core to the Crust

Authors: Hassan Gholibeigian, Kazem Gholibeigian

Abstract:

In this paper, our goal is determination of loading versus time in crust. For this goal, we present a computational procedure to propose a cumulative strain energy time profile which can be used to predict the approximate location and time of the next major earthquake (M > 4.5) along a specific fault, which we believe, is more accurate than many of the methods presently in use. In the coming pages, after a short review of the research works presently going on in the area of earthquake analysis and prediction, earthquake mechanisms in both the jerk and sequence earthquake direction is discussed, then our computational procedure is presented using differential equations of equilibrium which govern the nonlinear dynamic response of a system of finite elements, modified with an extra term to account for the jerk produced during the quake. We then employ Von Mises developed model for the stress strain relationship in our calculations, modified with the addition of an extra term to account for thermal effects. For calculation of the strain energy the idea of Pulsating Mantle Hypothesis (PMH) is used. This hypothesis, in brief, states that the mantle is under diurnal cyclic pulsating loads due to unbalanced gravitational attraction of the sun and the moon. A brief discussion is done on the Denali fault as a case study. The cumulative strain energy is then graphically represented versus time. At the end, based on some hypothetic earthquake data, the final results are verified.

Keywords: pulsating mantle hypothesis, inner core’s dislocation, outer core’s bulge, constitutive model, transient hydro-magneto-thermo-mechanical load, diurnal stress, jerk, fault behaviour

Procedia PDF Downloads 276
431 Comparing Stability Index MAPping (SINMAP) Landslide Susceptibility Models in the Río La Carbonera, Southeast Flank of Pico de Orizaba Volcano, Mexico

Authors: Gabriel Legorreta Paulin, Marcus I. Bursik, Lilia Arana Salinas, Fernando Aceves Quesada

Abstract:

In volcanic environments, landslides and debris flows occur continually along stream systems of large stratovolcanoes. This is the case on Pico de Orizaba volcano, the highest mountain in Mexico. The volcano has a great potential to impact and damage human settlements and economic activities by landslides. People living along the lower valleys of Pico de Orizaba volcano are in continuous hazard by the coalescence of upstream landslide sediments that increased the destructive power of debris flows. These debris flows not only produce floods, but also cause the loss of lives and property. Although the importance of assessing such process, there is few landslide inventory maps and landslide susceptibility assessment. As a result in México, no landslide susceptibility models assessment has been conducted to evaluate advantage and disadvantage of models. In this study, a comprehensive study of landslide susceptibility models assessment using GIS technology is carried out on the SE flank of Pico de Orizaba volcano. A detailed multi-temporal landslide inventory map in the watershed is used as framework for the quantitative comparison of two landslide susceptibility maps. The maps are created based on 1) the Stability Index MAPping (SINMAP) model by using default geotechnical parameters and 2) by using findings of volcanic soils geotechnical proprieties obtained in the field. SINMAP combines the factor of safety derived from the infinite slope stability model with the theory of a hydrologic model to produce the susceptibility map. It has been claimed that SINMAP analysis is reasonably successful in defining areas that intuitively appear to be susceptible to landsliding in regions with sparse information. The validations of the resulting susceptibility maps are performed by comparing them with the inventory map under LOGISNET system which provides tools to compare by using a histogram and a contingency table. Results of the experiment allow for establishing how the individual models predict the landslide location, advantages, and limitations. The results also show that although the model tends to improve with the use of calibrated field data, the landslide susceptibility map does not perfectly represent existing landslides.

Keywords: GIS, landslide, modeling, LOGISNET, SINMAP

Procedia PDF Downloads 313
430 Three-Dimensional Vibration Characteristics of Piezoelectric Semi-Spherical Shell

Authors: Yu-Hsi Huang, Ying-Der Tsai

Abstract:

Piezoelectric circular plates can provide out-of-plane vibrational displacements on low frequency and in-plane vibrational displacements on high frequency. Piezoelectric semi-spherical shell, which is double-curvature structure, can induce three-dimensional vibrational displacements over a large frequency range. In this study, three-dimensional vibrational characteristics of piezoelectric semi-spherical shells with free boundary conditions are investigated using three experimental methods and finite element numerical modeling. For the experimental measurements, amplitude-fluctuation electronic speckle pattern interferometry (AF-ESPI) is used to obtain resonant frequencies and radial and azimuthal mode shapes. This optical technique utilizes a full-field and non-contact optical system that measures both the natural frequency and corresponding vibration mode shape simultaneously in real time. The second experimental technique used, laser displacement meter is a point-wise displacement measurement method that determines the resonant frequencies of the piezoelectric shell. An impedance analyzer is used to determine the in-plane resonant frequencies of the piezoelectric semi-spherical shell. The experimental results of the resonant frequencies and mode shapes for the piezoelectric shell are verified with the result from finite element analysis. Excellent agreement between the experimental measurements and numerical calculation is presented on the three-dimensional vibrational characteristics of the piezoelectric semi-spherical shell.

Keywords: piezoelectric semi-spherical shell, mode shape, resonant frequency, electronic speckle pattern interferometry, radial vibration, azimuthal vibration

Procedia PDF Downloads 234
429 Biodiversity and Climate Change: Consequences for Norway Spruce Mountain Forests in Slovakia

Authors: Jozef Mindas, Jaroslav Skvarenina, Jana Skvareninova

Abstract:

Study of the effects of climate change on Norway Spruce (Picea abies) forests has mainly focused on the diversity of tree species diversity of tree species as a result of the ability of species to tolerate temperature and moisture changes as well as some effects of disturbance regime changes. The tree species’ diversity changes in spruce forests due to climate change have been analyzed via gap model. Forest gap model is a dynamic model for calculation basic characteristics of individual forest trees. Input ecological data for model calculations have been taken from the permanent research plots located in primeval forests in mountainous regions in Slovakia. The results of regional scenarios of the climatic change for the territory of Slovakia have been used, from which the values are according to the CGCM3.1 (global) model, KNMI and MPI (regional) models. Model results for conditions of the climate change scenarios suggest a shift of the upper forest limit to the region of the present subalpine zone, in supramontane zone. N. spruce representation will decrease at the expense of beech and precious broadleaved species (Acer sp., Sorbus sp., Fraxinus sp.). The most significant tree species diversity changes have been identified for the upper tree line and current belt of dwarf pine (Pinus mugo) occurrence. The results have been also discussed in relation to most important disturbances (wind storms, snow and ice storms) and phenological changes which consequences are little known. Special discussion is focused on biomass production changes in relation to carbon storage diversity in different carbon pools.

Keywords: biodiversity, climate change, Norway spruce forests, gap model

Procedia PDF Downloads 288
428 Development of an Instrument for Measurement of Thermal Conductivity and Thermal Diffusivity of Tropical Fruit Juice

Authors: T. Ewetumo, K. D. Adedayo, Festus Ben

Abstract:

Knowledge of the thermal properties of foods is of fundamental importance in the food industry to establish the design of processing equipment. However, for tropical fruit juice, there is very little information in literature, seriously hampering processing procedures. This research work describes the development of an instrument for automated thermal conductivity and thermal diffusivity measurement of tropical fruit juice using a transient thermal probe technique based on line heat principle. The system consists of two thermocouple sensors, constant current source, heater, thermocouple amplifier, microcontroller, microSD card shield and intelligent liquid crystal. A fixed distance of 6.50mm was maintained between the two probes. When heat is applied, the temperature rise at the heater probe measured with time at time interval of 4s for 240s. The measuring element conforms as closely as possible to an infinite line source of heat in an infinite fluid. Under these conditions, thermal conductivity and thermal diffusivity are simultaneously measured, with thermal conductivity determined from the slope of a plot of the temperature rise of the heating element against the logarithm of time while thermal diffusivity was determined from the time it took the sample to attain a peak temperature and the time duration over a fixed diffusivity distance. A constant current source was designed to apply a power input of 16.33W/m to the probe throughout the experiment. The thermal probe was interfaced with a digital display and data logger by using an application program written in C++. Calibration of the instrument was done by determining the thermal properties of distilled water. Error due to convection was avoided by adding 1.5% agar to the water. The instrument has been used for measurement of thermal properties of banana, orange and watermelon. Thermal conductivity values of 0.593, 0.598, 0.586 W/m^o C and thermal diffusivity values of 1.053 ×〖10〗^(-7), 1.086 ×〖10〗^(-7), and 0.959 ×〖10〗^(-7) 〖m/s〗^2 were obtained for banana, orange and water melon respectively. Measured values were stored in a microSD card. The instrument performed very well as it measured the thermal conductivity and thermal diffusivity of the tropical fruit juice samples with statistical analysis (ANOVA) showing no significant difference (p>0.05) between the literature standards and estimated averages of each sample investigated with the developed instrument.

Keywords: thermal conductivity, thermal diffusivity, tropical fruit juice, diffusion equation

Procedia PDF Downloads 357
427 Physical Dynamics of Planet Earth and Their Implications for Global Climate Change and Mitigation: A Case Study of Sistan Plain, Balochistan Region, Southeastern Iran

Authors: Hamidoddin Yousefi, Ahmad Nikbakht

Abstract:

The Sistan Plain, situated in the Balochistan region of southeastern Iran, is renowned for its arid climatic conditions and prevailing winds that persist for approximately 120 days annually. The region faces multiple challenges, including drought susceptibility, exacerbated by wind erosion, temperature fluctuations, and the influence of policies implemented by neighboring Afghanistan and Iran. This study focuses on investigating the characteristics of jet streams within the Sistan Plain and their implications for global climate change. Various models are employed to analyze convective mass fluxes, horizontal moisture transport, temporal variance, and the calculation of radiation convective equilibrium within the atmosphere. Key considerations encompass the distribution of relative humidity, dry air, and absolute humidity. Moreover, the research aims to predict the interplay between jet streams and human activities, particularly regarding their environmental impacts and water scarcity. The investigation encompasses both local and global environmental consequences, drawing upon historical climate change data and comprehensive field research. The anticipated outcomes of this study hold substantial potential for mitigating global climate change and its associated environmental ramifications. By comprehending the dynamics of jet streams and their interconnections with human activities, effective strategies can be formulated to address water scarcity and minimize environmental degradation.

Keywords: Sistani plain, Baluchistan, Hamoun lake, climate change, jet streams, environmental impact, water scarcity, mitigation

Procedia PDF Downloads 73
426 Geomatic Techniques to Filter Vegetation from Point Clouds

Authors: M. Amparo Núñez-Andrés, Felipe Buill, Albert Prades

Abstract:

More and more frequently, geomatics techniques such as terrestrial laser scanning or digital photogrammetry, either terrestrial or from drones, are being used to obtain digital terrain models (DTM) used for the monitoring of geological phenomena that cause natural disasters, such as landslides, rockfalls, debris-flow. One of the main multitemporal analyses developed from these models is the quantification of volume changes in the slopes and hillsides, either caused by erosion, fall, or land movement in the source area or sedimentation in the deposition zone. To carry out this task, it is necessary to filter the point clouds of all those elements that do not belong to the slopes. Among these elements, vegetation stands out as it is the one we find with the greatest presence and its constant change, both seasonal and daily, as it is affected by factors such as wind. One of the best-known indexes to detect vegetation on the image is the NVDI (Normalized Difference Vegetation Index), which is obtained from the combination of the infrared and red channels. Therefore it is necessary to have a multispectral camera. These cameras are generally of lower resolution than conventional RGB cameras, while their cost is much higher. Therefore we have to look for alternative indices based on RGB. In this communication, we present the results obtained in Georisk project (PID2019‐103974RB‐I00/MCIN/AEI/10.13039/501100011033) by using the GLI (Green Leaf Index) and ExG (Excessive Greenness), as well as the change to the Hue-Saturation-Value (HSV) color space being the H coordinate the one that gives us the most information for vegetation filtering. These filters are applied both to the images, creating binary masks to be used when applying the SfM algorithms, and to the point cloud obtained directly by the photogrammetric process without any previous filter or the one obtained by TLS (Terrestrial Laser Scanning). In this last case, we have also tried to work with a Riegl VZ400i sensor that allows the reception, as in the aerial LiDAR, of several returns of the signal. Information to be used for the classification on the point cloud. After applying all the techniques in different locations, the results show that the color-based filters allow correct filtering in those areas where the presence of shadows is not excessive and there is a contrast between the color of the slope lithology and the vegetation. As we have advanced in the case of using the HSV color space, it is the H coordinate that responds best for this filtering. Finally, the use of the various returns of the TLS signal allows filtering with some limitations.

Keywords: RGB index, TLS, photogrammetry, multispectral camera, point cloud

Procedia PDF Downloads 154
425 Body Composition Analyser Parameters and Their Comparison with Manual Measurements

Authors: I. Karagjozova, B. Dejanova, J. Pluncevic, S. Petrovska, V. Antevska, L. Todorovska

Abstract:

Introduction: Medical checking assessment is important in sports medicine. To follow the health condition in subjects who perform sports, body composition parameters, such as intracellular water, extracellular water, protein and mineral content, muscle and fat mass might be useful. The aim of the study was to show available parameters and to compare them to manual assessment. Material and methods: A number of 20 subjects (14 male and 6 female) at age of 20±2 years were determined in the study, 5 performed recreational sports, while others were professional ones. The mean height was 175±7 cm, the mean weight was 72±9 cm, and the body mass index (BMI) was 23±2 kg/m2. The measured compartments were as following: intracellular water (IW), extracellular water (EW), protein component (PC), mineral component (MC), skeletal muscle mass (SMM) and body fat mass (BFM). Lean balance were examined for right and left arm (LA), trunk (T), right leg (RL) and left leg (LL). The comparison was made between the calculation derived by manual made measurements, using Matejka formula and parameters obtained by body composition analyzer (BCA) - Inbody 720 BCA Biospace. Used parameters for the comparison were muscle mass (SMM), body fat mass (BFM). Results: BCA obtained values were for: IW - 22.6±5L, EW - 13.5±2 L, PC - 9.8±0.9 kg, MC - 3.5±0.3, SMM - 27±3 kg, BFM - 13.8±4 kg. Lean balance showed following values for: RA - 2.45±0.2 kg, LA - 2.37±0.4, T - 20.9±5 kg, RL - 7.43±1 kg, and LL - 7.49 ±1.5 kg. SMM showed statistical difference between manual obtained value, 51±01% to BCA parameter 45.5±3% (p<0.001). Manual obtained values for BFM was lower (17±2%) than BCA obtained one, 19.5±5.9% (p<0.02). Discussion: The obtained results showed appropriate values for the examined age, regarding to all examined parameters which contribute to overview the body compartments, important for sport performing. Due to comparison between the manual and BCA assessment, we may conclude that manual measurements may differ from the certain ones, which is confirmed by statistical significance.

Keywords: athletes, body composition, bio electrical impedance, sports medicine

Procedia PDF Downloads 477
424 Object-Based Image Analysis for Gully-Affected Area Detection in the Hilly Loess Plateau Region of China Using Unmanned Aerial Vehicle

Authors: Hu Ding, Kai Liu, Guoan Tang

Abstract:

The Chinese Loess Plateau suffers from serious gully erosion induced by natural and human causes. Gully features detection including gully-affected area and its two dimension parameters (length, width, area et al.), is a significant task not only for researchers but also for policy-makers. This study aims at gully-affected area detection in three catchments of Chinese Loess Plateau, which were selected in Changwu, Ansai, and Suide by using unmanned aerial vehicle (UAV). The methodology includes a sequence of UAV data generation, image segmentation, feature calculation and selection, and random forest classification. Two experiments were conducted to investigate the influences of segmentation strategy and feature selection. Results showed that vertical and horizontal root-mean-square errors were below 0.5 and 0.2 m, respectively, which were ideal for the Loess Plateau region. The segmentation strategy adopted in this paper, which considers the topographic information, and optimal parameter combination can improve the segmentation results. Besides, the overall extraction accuracy in Changwu, Ansai, and Suide achieved was 84.62%, 86.46%, and 93.06%, respectively, which indicated that the proposed method for detecting gully-affected area is more objective and effective than traditional methods. This study demonstrated that UAV can bridge the gap between field measurement and satellite-based remote sensing, obtaining a balance in resolution and efficiency for catchment-scale gully erosion research.

Keywords: unmanned aerial vehicle (UAV), object-analysis image analysis, gully erosion, gully-affected area, Loess Plateau, random forest

Procedia PDF Downloads 217
423 Aseismic Stiffening of Architectural Buildings as Preventive Restoration Using Unconventional Materials

Authors: Jefto Terzovic, Ana Kontic, Isidora Ilic

Abstract:

In the proposed design concept, laminated glass and laminated plexiglass, as ”unconventional materials”, are considered as a filling in a steel frame on which they overlap by the intermediate rubber layer, thereby forming a composite assembly. In this way vertical elements of stiffening are formed, capable for reception of seismic force and integrated into the structural system of the building. The applicability of such a system was verified by experiments in laboratory conditions where the experimental models based on laminated glass and laminated plexiglass had been exposed to the cyclic loads that simulate the seismic force. In this way the load capacity of composite assemblies was tested for the effects of dynamic load that was parallel to assembly plane. Thus, the stress intensity to which composite systems might be exposed was determined as well as the range of the structure stiffening referring to the expressed deformation along with the advantages of a particular type of filling compared to the other one. Using specialized software whose operation is based on the finite element method, a computer model of the structure was created and processed in the case study; the same computer model was used for analyzing the problem in the first phase of the design process. The stiffening system based on composite assemblies tested in laboratories is implemented in the computer model. The results of the modal analysis and seismic calculation from the computer model with stiffeners applied showed an efficacy of such a solution, thus rounding the design procedures for aseismic stiffening by using unconventional materials.

Keywords: laminated glass, laminated plexiglass, aseismic stiffening, experiment, laboratory testing, computer model, finite element method

Procedia PDF Downloads 78
422 Aerodynamic Analysis by Computational Fluids Dynamics in Building: Case Study

Authors: Javier Navarro Garcia, Narciso Vazquez Carretero

Abstract:

Eurocode 1, part 1-4, wind actions, includes in its article 1.5 the possibility of using numerical calculation methods to obtain information on the loads acting on a building. On the other hand, the analysis using computational fluids dynamics (CFD) in aerospace, aeronautical, and industrial applications is already in widespread use. The application of techniques based on CFD analysis on the building to study its aerodynamic behavior now opens a whole alternative field of possibilities for civil engineering and architecture; optimization of the results with respect to those obtained by applying the regulations, the possibility of obtaining information on pressures, speeds at any point of the model for each moment, the analysis of turbulence and the possibility of modeling any geometry or configuration. The present work compares the results obtained on a building, with respect to its aerodynamic behavior, from a mathematical model based on the analysis by CFD with the results obtained by applying Eurocode1, part1-4, wind actions. It is verified that the results obtained by CFD techniques suppose an optimization of the wind action that acts on the building with respect to the wind action obtained by applying the Eurocode1, part 1-4, wind actions. In order to carry out this verification, a 45m high square base truncated pyramid building has been taken. The mathematical model on CFD, based on finite volumes, has been calculated using the FLUENT commercial computer application using a scale-resolving simulation (SRS) type large eddy simulation (LES) turbulence model for an atmospheric boundary layer wind with turbulent component in the direction of the flow.

Keywords: aerodynamic, CFD, computacional fluids dynamics, computational mechanics

Procedia PDF Downloads 137
421 Using Rainfall Simulators to Design and Assess the Post-Mining Erosional Stability

Authors: Ashraf M. Khalifa, Hwat Bing So, Greg Maddocks

Abstract:

Changes to the mining environmental approvals process in Queensland have been rolled out under the MERFP Act (2018). This includes requirements for a Progressive Rehabilitation and Closure Plan (PRC Plan). Key considerations of the landform design report within the PRC Plan must include: (i) identification of materials available for landform rehabilitation, including their ability to achieve the required landform design outcomes, (ii) erosion assessments to determine landform heights, gradients, profiles, and material placement, (iii) slope profile design considering the interactions between soil erodibility, rainfall erosivity, landform height, gradient, and vegetation cover to identify acceptable erosion rates over a long-term average, (iv) an analysis of future stability based on the factors described above e.g., erosion and /or landform evolution modelling. ACARP funded an extensive and thorough erosion assessment program using rainfall simulators from 1998 to 2010. The ACARP program included laboratory assessment of 35 soil and spoil samples from 16 coal mines and samples from a gold mine in Queensland using 3 x 0.8 m laboratory rainfall simulator. The reliability of the laboratory rainfall simulator was verified through field measurements using larger flumes 20 x 5 meters and catchment scale measurements at three sites (3 different catchments, average area of 2.5 ha each). Soil cover systems are a primary component of a constructed mine landform. The primary functions of a soil cover system are to sustain vegetation and limit the infiltration of water and oxygen into underlying reactive mine waste. If the external surface of the landform erodes, the functions of the cover system cannot be maintained, and the cover system will most likely fail. Assessing a constructed landform’s potential ‘long-term’ erosion stability requires defensible erosion rate thresholds below which rehabilitation landform designs are considered acceptably erosion-resistant or ‘stable’. The process used to quantify erosion rates using rainfall simulators (flumes) to measure rill and inter-rill erosion on bulk samples under laboratory conditions or on in-situ material under field conditions will be explained.

Keywords: open-cut, mining, erosion, rainfall simulator

Procedia PDF Downloads 101
420 Influence of CA, SR and BA Substitution on lafeo3Performances During Chemical Looping Processes

Authors: Rong Sun, Laihong Shen

Abstract:

La-based perovskite oxygen carriers, especially the doped-La(M)FeO₃, showed excellent performances during chemical looping processes. However, the mechanisms of the undoped and doped La(M)FeO₃ are not clear at present, making the mechanisms clear may help the development of chemical looping technologies. In this paper, the method based on the density function theory (DFT) was used to analysis the influence of Ca, Sr, and Ba doping of La on the electronic structure, while the CO oxidation mechanisms on the surface of LaFeO₃ and Ca-doped LaFeO₃ oxygen carriers were also analyzed. The results showed that the band gap was decreased by the doping of low valence. While the doping of low valence element Ca, Sr, and Ba at La site simultaneously resulted to the moving of the valence band toward high energy and made the valence band cross the Fermi energy level. This was resulted from the holes generated by divalent ion substitution. The holes can change the total magnetization from antiferromagnet to weakly ferromagnetism. The calculation results about the formation of oxygen vacancy showed that substitutions of Ca, Sr, and Ba caused a large drop in oxygen vacancy formation energy, indicating that the bulk oxygen transport was improved. Based on the optimized bulk of the undoped and Ca-doped LaFeO₃(010) surface, the CO adsorption was analyzed. The results indicated that the adsorption energy increased by divalent ion substitution, meaning that the adsorption stability decreased. The results can provide a certain theoretical basis for the development of perovskite oxides in chemical looping technologies.

Keywords: chemical looping technologies, lanthanum ferrate (LaFeO₃), divalent ion substitution, CO oxidation

Procedia PDF Downloads 102
419 Beam Spatio-Temporal Multiplexing Approach for Improving Control Accuracy of High Contrast Pulse

Authors: Ping Li, Bing Feng, Junpu Zhao, Xudong Xie, Dangpeng Xu, Kuixing Zheng, Qihua Zhu, Xiaofeng Wei

Abstract:

In laser driven inertial confinement fusion (ICF), the control of the temporal shape of the laser pulse is a key point to ensure an optimal interaction of laser-target. One of the main difficulties in controlling the temporal shape is the foot part control accuracy of high contrast pulse. Based on the analysis of pulse perturbation in the process of amplification and frequency conversion in high power lasers, an approach of beam spatio-temporal multiplexing is proposed to improve the control precision of high contrast pulse. In the approach, the foot and peak part of high contrast pulse are controlled independently, which propagate separately in the near field, and combine together in the far field to form the required pulse shape. For high contrast pulse, the beam area ratio of the two parts is optimized, and then beam fluence and intensity of the foot part are increased, which brings great convenience to the control of pulse. Meanwhile, the near field distribution of the two parts is also carefully designed to make sure their F-numbers are the same, which is another important parameter for laser-target interaction. The integrated calculation results show that for a pulse with a contrast of up to 500, the deviation of foot part can be improved from 20% to 5% by using beam spatio-temporal multiplexing approach with beam area ratio of 1/20, which is almost the same as that of peak part. The research results are expected to bring a breakthrough in power balance of high power laser facility.

Keywords: inertial confinement fusion, laser pulse control, beam spatio-temporal multiplexing, power balance

Procedia PDF Downloads 147
418 Modeling Flow and Deposition Characteristics of Solid CO2 during Choked Flow of CO2 Pipeline in CCS

Authors: Teng lin, Li Yuxing, Han Hui, Zhao Pengfei, Zhang Datong

Abstract:

With the development of carbon capture and storage (CCS), the flow assurance of CO2 transportation becomes more important, particularly for supercritical CO2 pipelines. The relieving system using the choke valve is applied to control the pressure in CO2 pipeline. However, the temperature of fluid would drop rapidly because of Joule-Thomson cooling (JTC), which may cause solid CO2 form and block the pipe. In this paper, a Computational Fluid Dynamic (CFD) model, using the modified Lagrangian method, Reynold's Stress Transport model (RSM) for turbulence and stochastic tracking model (STM) for particle trajectory, was developed to predict the deposition characteristic of solid carbon dioxide. The model predictions were in good agreement with the experiment data published in the literature. It can be observed that the particle distribution affected the deposition behavior. In the region of the sudden expansion, the smaller particles accumulated tightly on the wall were dominant for pipe blockage. On the contrary, the size of solid CO2 particles deposited near the outlet usually was bigger and the stacked structure was looser. According to the calculation results, the movement of the particles can be regarded as the main four types: turbulent motion close to the sudden expansion structure, balanced motion at sudden expansion-middle region, inertial motion near the outlet and the escape. Furthermore the particle deposits accumulated primarily in the sudden expansion region, reattachment region and outlet region because of the four type of motion. Also the Stokes number had an effect on the deposition ratio and it is recommended for Stokes number to avoid 3-8St.

Keywords: carbon capture and storage, carbon dioxide pipeline, gas-particle flow, deposition

Procedia PDF Downloads 368
417 Research on Level Adjusting Mechanism System of Large Space Environment Simulator

Authors: Han Xiao, Zhang Lei, Huang Hai, Lv Shizeng

Abstract:

Space environment simulator is a device for spacecraft test. KM8 large space environment simulator built in Tianjing Space City is the largest as well as the most advanced space environment simulator in China. Large deviation of spacecraft level will lead to abnormally work of the thermal control device in spacecraft during the thermal vacuum test. In order to avoid thermal vacuum test failure, level adjusting mechanism system is developed in the KM8 large space environment simulator as one of the most important subsystems. According to the level adjusting requirements of spacecraft’s thermal vacuum tests, the four fulcrums adjusting model is established. By means of collecting level instruments and displacement sensors data, stepping motors controlled by PLC drive four supporting legs simultaneous movement. In addition, a PID algorithm is used to control the temperature of supporting legs and level instruments which long time work under the vacuum cold and black environment in KM8 large space environment simulator during thermal vacuum tests. Based on the above methods, the data acquisition and processing, the analysis and calculation, real time adjustment and fault alarming of the level adjusting mechanism system are implemented. The level adjusting accuracy reaches 1mm/m, and carrying capacity is 20 tons. Debugging showed that the level adjusting mechanism system of KM8 large space environment simulator can meet the thermal vacuum test requirement of the new generation spacecraft. The performance and technical indicators of the level adjusting mechanism system which provides important support for the development of spacecraft in China have been ahead of similar equipment in the world.

Keywords: space environment simulator, thermal vacuum test, level adjusting, spacecraft, parallel mechanism

Procedia PDF Downloads 247
416 A Parametric Study of the Effect of Size, Position, and Number of Flexible Membranes Attached to a Circular Cylinder on the Fluid Flow Behavior

Authors: Nabaouia.Maktouf, Ali Ben Moussa, Saïd Turki

Abstract:

This paper discusses the effect of an attached flexible membrane on the control of fluid around a circular cylinder. A parametric study has been investigated for different positions, sizes, modes as well as frequencies of oscillation of the flexible membrane. The numerical investigation was conducted for a Reynolds number equal to 150 using the commercial code Fluent 16.0 and parallel calculation into 4 processors. The motion of the flexible membrane was managed by the dynamic mesh and compiled into Fluent as a user-defined function. The first part of this paper discusses the effect of changing the position of a flexible membrane sized 8° as an angle of aperture on the aerodynamic coefficients. Results show that the flexible membrane placed at 110° from the stagnation point presents more non-linearity on the behavior of the drag coefficient compared to the drag behavior when placed at 180°, relative to the stagnation point. The effect of the size of the flexible surface was studied for the corresponding angles of aperture: 32° and 42°, respectively. The effect of modes (modes 1, 2, and 3) of vibrations has been investigated at a constant frequency of vibration f=2Hz for angles 32° and 42°. All the calculations have been done with a constant amplitude A =0.001m. A non-linearity of the drag coefficient was clearly observed for all the sizes, modes as well as frequencies of excitation. The Fast Fourier transformation shows the appearance of the natural shedding frequency and the multiples of the frequency of excitation. An increase in the modes of oscillation leads to a more linear behavior of the drag coefficient.

Keywords: fluid flow control, numerical simulation, dynamic mesh, aerodynamic forces, flexible membrane

Procedia PDF Downloads 75