Search results for: hepatitis C virus (HCV) CAD (Computer Aided Design)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 15079

Search results for: hepatitis C virus (HCV) CAD (Computer Aided Design)

13699 Proposing Sky Exposure Plane Concept for Urban Open Public Spaces in Gulseren Street

Authors: Pooya Lotfabadi

Abstract:

In today's world, sustainability is a critical concern, particularly in the building industry, which is a significant contributor to energy consumption. Buildings must be considered in relation to their urban surroundings, highlighting the importance of collaboration between architecture and urban design. Natural light plays a vital role in enhancing a building's thermal and visual comfort and promoting the well-being of outdoor residents. Therefore, architects and urban designers are responsible for maximizing sunlight exposure in urban settings. Key factors such as building height and orientation are essential for optimizing natural light. Without proper attention, standalone projects can negatively affect their urban environment. Regulations like the Sky Exposure Plane- a virtual sloping plane that determines minimum building heights and spacing- serve as effective tools for guiding urban development. This study aims to define the Sky Exposure Plane in public open spaces, proposing an optimal angle for buildings on Gulseren Street in Famagusta, North Cyprus. Utilizing computer simulations, the research examines the role of sunlight in public streets and offers guidelines to improve natural lighting in urban planning.

Keywords: public open space, sky exposure plane, street natural lighting, sustainable urban design

Procedia PDF Downloads 22
13698 Urban Networks as Model of Sustainable Design

Authors: Agryzkov Taras, Oliver Jose L., Tortosa Leandro, Vicent Jose

Abstract:

This paper aims to demonstrate how the consideration of cities as a special kind of complex network, called urban network, may lead to the use of design tools coming from network theories which, in fact, results in a quite sustainable approach. There is no doubt that the irruption in contemporary thought of Gaia as an essential political agent proposes a narrative that has been extended to the field of creative processes in which, of course, the activity of Urban Design is found. The rationalist paradigm is put in crisis, and from the so-called sciences of complexity, its way of describing reality and of intervening in it is questioned. Thus, a new way of understanding reality surges, which has to do with a redefinition of the human being's own place in what is now understood as a delicate and complex network. In this sense, we know that in these systems of connected and interdependent elements, the influences generated by them originate emergent properties and behaviors for the whole that, individually studied, would not make sense. We believe that the design of cities cannot remain oblivious to these principles, and therefore this research aims to demonstrate the potential that they have for decision-making in the urban environment. Thus, we will see an example of action in the field of public mobility, another example in the design of commercial areas, and a third example in the field of redensification of sprawl areas, in which different aspects of network theory have been applied to change the urban design. We think that even though these actions have been developed in European cities, and more specifically in the Mediterranean area in Spain, the reflections and tools could have a broader scope of action.

Keywords: graphs, complexity sciences, urban networks, urban design

Procedia PDF Downloads 154
13697 Excitation and Active Control of Charge Density Waves at Degenerately Doped PN++ Junctions

Authors: R. K. Vinnakota, D. A. Genov, Z. Dong, A. F. Briggs, L. Nordin, S. R. Bank, D. Wasserman

Abstract:

We present a semiconductor-based plasmonic electro-optic modulator based on excitation and active control of surface plasmon polaritons (SPPs) at the interface of degenerately doped In₀.₅₃Ga₀.₄₇As pn++ junctions. Set of devices, which we refer to as a surface plasmon polariton diode (SPPD), are fabricated and characterized electrically and optically. Optical characterization predicts far-field voltage-aided reflectivity modulation for mid-IR wavelengths. Numerical device characterizations using a self-consistent electro-optic multiphysics model have been performed to confirm the experimental findings were predicting data rates up to 1Gbits/s and 3dB bandwidth as high as 2GHz. Our findings also show that decreasing the device dimensions can potentially lead to data rates of more than 50Gbits/s, thus potentially providing a pathway toward fast all-semiconductor-based plasmotronic devices.

Keywords: plasmonics, optoelectronics, PN junctions, surface plasmon polaritons

Procedia PDF Downloads 111
13696 Analysis of Train Passenger Seat Using Ergonomic Function Deployment Method

Authors: Robertoes K. K. Wibowo, Siswoyo Soekarno, Irma Puspitasari

Abstract:

Indonesian people use trains for their transportation, especially they use economy class train transportation because it is cheaper and has a more precise schedule than any other ground transportation. Nevertheless, the economy class passenger seat raises some inconvenience issues for passengers. This is due to the design of the chair on the economic class of trains that did not adjusted to the shape of anthropometry of Indonesian people. Thus, research needs to be conducted on the design of the seats in the economic class of trains. The purpose of this research is to make the design of economy class passenger seats ergonomic. This research method uses questionnaires and anthropometry measurements. The data obtained is processed using House of Quality of Ergonomic Function Development. From the results of analysis and data processing were obtained important changes from the original design. Ergonomic chair design according to the analysis is a stainless steel frame, seat height 390 mm, with a seat width for each passenger of 400 mm and a depth of 400 mm. Design of the backrest has a height of 840 mm, width of 430 mm and length of 300 mm that can move at the angle of 105-115 degrees. The width of the footrest is 42 mm and 400 mm length. The thickness of the seat cushion is 100 mm.

Keywords: chair, ergonomics, function development, train passenger

Procedia PDF Downloads 294
13695 Performance Analysis of Arithmetic Units for IoT Applications

Authors: Nithiya C., Komathi B. J., Praveena N. G., Samuda Prathima

Abstract:

At present, the ultimate aim in digital system designs, especially at the gate level and lower levels of design abstraction, is power optimization. Adders are a nearly universal component of today's integrated circuits. Most of the research was on the design of high-speed adders to execute addition based on various adder structures. This paper discusses the ideal path for selecting an arithmetic unit for IoT applications. Based on the analysis of eight types of 16-bit adders, we found out Carry Look-ahead (CLA) produces low power. Additionally, multiplier and accumulator (MAC) unit is implemented with the Booth multiplier by using the low power adders in the order of preference. The design is synthesized and verified using Synopsys Design Compiler and VCS. Then it is implemented by using Cadence Encounter. The total power consumed by the CLA based booth multiplier is 0.03527mW, the total area occupied is 11260 um², and the speed is 2034 ps.

Keywords: carry look-ahead, carry select adder, CSA, internet of things, ripple carry adder, design rule check, power delay product, multiplier and accumulator

Procedia PDF Downloads 118
13694 Overcoming the Problems Affecting Drip Irrigation System through the Design of an Efficient Filtration and Flushing System

Authors: Stephen A. Akinlabi, Esther T. Akinlabi

Abstract:

The drip irrigation system is one of the important areas that affect the livelihood of farmers directly. The use of drip irrigation system has been the most efficient system compared to the other types of irrigations systems because the drip irrigation helps to save water and increase the productivity of crops. But like any other system, it can be considered inefficient when the filters and the emitters get clogged while in operation. The efficiency of the entire system is reduced when the emitters are clogged and blocked. This consequently impact and affect the farm operations which may result in scarcity of farm products and increase the demand. This design work focuses on how to overcome some of the challenges affecting drip irrigation system through the design of an efficient filtration and flushing system.

Keywords: drip irrigation system, filters, soil texture, mechanical engineering design, analysis

Procedia PDF Downloads 383
13693 A Transformer-Based Approach for Multi-Human 3D Pose Estimation Using Color and Depth Images

Authors: Qiang Wang, Hongyang Yu

Abstract:

Multi-human 3D pose estimation is a challenging task in computer vision, which aims to recover the 3D joint locations of multiple people from multi-view images. In contrast to traditional methods, which typically only use color (RGB) images as input, our approach utilizes both color and depth (D) information contained in RGB-D images. We also employ a transformer-based model as the backbone of our approach, which is able to capture long-range dependencies and has been shown to perform well on various sequence modeling tasks. Our method is trained and tested on the Carnegie Mellon University (CMU) Panoptic dataset, which contains a diverse set of indoor and outdoor scenes with multiple people in varying poses and clothing. We evaluate the performance of our model on the standard 3D pose estimation metrics of mean per-joint position error (MPJPE). Our results show that the transformer-based approach outperforms traditional methods and achieves competitive results on the CMU Panoptic dataset. We also perform an ablation study to understand the impact of different design choices on the overall performance of the model. In summary, our work demonstrates the effectiveness of using a transformer-based approach with RGB-D images for multi-human 3D pose estimation and has potential applications in real-world scenarios such as human-computer interaction, robotics, and augmented reality.

Keywords: multi-human 3D pose estimation, RGB-D images, transformer, 3D joint locations

Procedia PDF Downloads 80
13692 Art, Space and Nature in Design: Analysing the Perception of Landscape Architecture Students

Authors: M. Danial Ismail, Turkan Sultan Yasar Ismail, Mehmet Cetin

Abstract:

Eco-design issues are seldom addressed as a major importance in most projects in Turkey. Cities undergo a rapid urban expansion with less awareness and focus on green spaces. The aim of this paper is firstly to analyse the graduating landscape architecture students of Kastamonu University’s perception on the new course content that discusses the relationship of art, space and nature in the context of landscape architectural design using the perception analysis methodology. Secondly, this paper also addresses how these elements synthesize together in an artistic perception in concept and form. In this study, a new coursework subject was introduced as a part of the curriculum for the 4th year students of the undergraduate program and project proposals dealing with the concept of art, space and nature were discussed and graded. Simulations of contemporary art installations in gallery spaces are built upon the concept of critical awareness to ecological problems. These concepts and simulations are important as they will influence future developments and projects. This paper will give an insight to scholars and professionals regarding new concepts of multidisciplinary education strategies and its positive effects on critical and creative design thinking within the scope of ecological design.

Keywords: art, ecological design, landscape architecture curriculum, space and nature

Procedia PDF Downloads 346
13691 Understanding the 3R's Element in the Creation of Ecological Form That Leads to Ecodesign

Authors: Mohd Hasni Chumiran

Abstract:

The rapid growth of global industrialism over the past few decades has led to various environmental issues and ecological instability, all due to human activity. In order to solve this global issue, the manufacturers alike have begun to embrace the use of ecodesign products. However, when considering a specific field, multiple questions have been raised and industrial designers (the practising designer's R&D group) have been unable to define the ecological cycle methodology. In this paper, we investigate the validation of problematic in the creation of ecodesign products with the 'reduce, reuse and recycle' (3R’s) method, which is an untested product design theory. The aim of this research is to address the 3R’s method can be extracted in order to transmit an ecological form of ecodesign, specifically among Malaysian furniture manufacturers. By operating the Descriptive Study I (DS-I) phase: Design Research Methodology (DRM), the research has applied two research approaches by the methodological triangulation tradition. To achieve the result, this validation of descriptive structure (design theory) shall be matched with the research hypothesis along the use of research questions.

Keywords: design research methodology, ecodesign, ecological form, industrial design

Procedia PDF Downloads 232
13690 Architecture Design of the Robots Operability Assessment Simulation Testbed

Authors: Sang Yeong Choi, Woo Sung Park

Abstract:

This paper presents the architecture design of the robot operability assessment simulation testbed (called "ROAST") for the resolution of robot operability problems occurred during interactions between human operators and robots. The basic idea of the ROAST architecture design is to enable the easy composition of legacy or new simulation models according to its purpose. ROAST architecture is based on IEEE1516 High Level Architecture (HLA) of defense modeling and simulation. The ROAST architecture is expected to provide the foundation framework for the easy construction of a simulation testbed to order to assess the robot operability during the robotic system design. Some of ROAST implementations and its usefulness are demonstrated through a simple illustrative example.

Keywords: robotic system, modeling and simulation, simulation architecture, operability assessment

Procedia PDF Downloads 365
13689 Modelling and Simulation of the Freezing Systems and Heat Pumps Using Unisim® Design

Authors: C. Patrascioiu

Abstract:

The paper describes the modeling and simulation of the heat pumps domain processes. The main objective of the study is the use of the heat pump in propene–propane distillation processes. The modeling and simulation instrument is the Unisim® Design simulator. The paper is structured in three parts: An overview of the compressing gases, the modeling and simulation of the freezing systems, and the modeling and simulation of the heat pumps. For each of these systems, there are presented the Unisim® Design simulation diagrams, the input–output system structure and the numerical results. Future studies will consider modeling and simulation of the propene–propane distillation process with heat pump.

Keywords: distillation, heat pump, simulation, unisim design

Procedia PDF Downloads 363
13688 Development and Application of the Proctoring System with Face Recognition for User Registration on the Educational Information Portal

Authors: Meruyert Serik, Nassipzhan Duisegaliyeva, Danara Tleumagambetova, Madina Ermaganbetova

Abstract:

This research paper explores the process of creating a proctoring system by evaluating the implementation of practical face recognition algorithms. Students of educational programs reviewed the research work "6B01511-Computer Science", "7M01511-Computer Science", "7M01525- STEM Education," and "8D01511-Computer Science" of Eurasian National University named after L.N. Gumilyov. As an outcome, a proctoring system will be created, enabling the conduction of tests and ensuring academic integrity checks within the system. Due to the correct operation of the system, test works are carried out. The result of the creation of the proctoring system will be the basis for the automation of the informational, educational portal developed by machine learning.

Keywords: artificial intelligence, education portal, face recognition, machine learning, proctoring

Procedia PDF Downloads 126
13687 Design of a New Package for Saffron Using Kansei Engineering

Authors: Sotiris Papantonopoulos, Marianna Bortziou

Abstract:

This study aimed at developing a new package of saffron using emotional design and specifically the Kansei Engineering method. Kansei Engineering is a proactive product development methodology, which aims to improve the product development process and to translate consumers' feelings and image of a product into design elements. A survey was conducted with two major purposes: (1) to determine the target group of saffron use and to collect information about the adequacy of the product’s promotion and the importance of its packaging, (2) to collect the most important properties of a package according to consumers and to evaluate the existing saffron packages according to these properties (benchmarking). The interaction with the general public conducted by the distribution of online questionnaires and personal interviews as well as the statistical analysis of the results were performed using the SPSS software. The results of the survey were used in all stages of Kansei Engineering. Based on the results, a new saffron package was designed by using various designing and image processing software. This improved package is expected to achieve a better promotion and increased sales of the product.

Keywords: design, emotional design, Kansei Engineering, packaging, saffron

Procedia PDF Downloads 162
13686 Development of Tutorial Courseware on Selected Topics in Mathematics, Science and the English Language

Authors: Alice D. Dioquino, Olivia N. Buzon, Emilio F. Aguinaldo, Ruel Avila, Erwin R. Callo, Cristy Ocampo, Malvin R. Tabajen, Marla C. Papango, Marilou M. Ubina, Josephine Tondo, Cromwell L. Valeriano

Abstract:

The main purpose of this study was to develop, evaluate and validate courseware on Selected Topics in Mathematics, Science, and the English Language. Specifically, it aimed to: 1. Identify the appropriate Instructional Systems Design (ISD) model in the development of the courseware material; 2. Assess the courseware material according to its: a. Content Characteristics; b. Instructional Characteristics; and c. Technical Characteristics 3. Find out if there is a significant difference in the performance of students before and after using the tutorial CAI. This research is developmental as well as a one group pretest-posttest design. The study had two phases. Phase I includes the needs analysis, writing of lessons and storyboard by the respective experts in each field. Phase II includes the digitization or the actual development of the courseware by the faculty of the ICT department. In this phase it adapted an instructional systems design (ISD) model which is the ADDIE model. ADDIE stands for Analysis, Design, Development, Implementation and Evaluation. Formative evaluation was conducted simultaneously with the different phases to detect and remedy any bugs in the courseware along the areas of content, instructional and technical characteristics. The expected output are the digitized lessons in Algebra, Biology, Chemistry, Physics and Communication Arts in English. Students and some IT experts validated the CAI material using the Evaluation Form by Wong & Wong. They validated the CAI materials as Highly Acceptable with an overall mean rating of 4.527and standard deviation of 0 which means that they were one in the ratings they have given the CAI materials. A mean gain was recorded and computing the t-test for dependent samples it showed that there were significant differences in the mean achievement of the students before and after the treatment (using CAI). The identified ISD model used in the development of the tutorial courseware was the ADDIE model. The quantitative analyses of data based on ratings given by the respondents’ shows that the tutorial courseware possess the characteristics and or qualities of a very good computer-based courseware. The ratings given by the different evaluators with regard to content, instructional, and technical aspects of the Tutorial Courseware are in conformity towards being excellent. Students performed better in mathematics, biology chemistry, physics and the English Communication Arts after they were exposed to the tutorial courseware.

Keywords: CAI, tutorial courseware, Instructional Systems Design (ISD) Model, education

Procedia PDF Downloads 346
13685 Identifying Chaotic Architecture: Origins of Nonlinear Design Theory

Authors: Mohammadsadegh Zanganehfar

Abstract:

Since the modernism, movement, and appearance of modern architecture, an aggressive desire for a general design theory in the theoretical works of architects in the form of books and essays emerges. Since Robert Venturi and Denise Scott Brown’s published complexity and contradiction in architecture in 1966, the discourse of complexity and volumetric composition has been an important and controversial issue in the discipline. Ever since various theories and essays were involved in this discourse, this paper attempt to identify chaos theory as a scientific model of complexity and its relation to architecture design theory by conducting a qualitative analysis and multidisciplinary critical approach through architecture and basic sciences resources. As a result, we identify chaotic architecture as the correlation of chaos theory and architecture as an independent nonlinear design theory with specific characteristics and properties.

Keywords: architecture complexity, chaos theory, fractals, nonlinear dynamic systems, nonlinear ontology

Procedia PDF Downloads 374
13684 The Design, Development, and Optimization of a Capacitive Pressure Sensor Utilizing an Existing 9DOF Platform

Authors: Andrew Randles, Ilker Ocak, Cheam Daw Don, Navab Singh, Alex Gu

Abstract:

Nine Degrees of Freedom (9 DOF) systems are already in development in many areas. In this paper, an integrated pressure sensor is proposed that will make use of an already existing monolithic 9 DOF inertial MEMS platform. Capacitive pressure sensors can suffer from limited sensitivity for a given size of membrane. This novel pressure sensor design increases the sensitivity by over 5 times compared to a traditional array of square diaphragms while still fitting within a 2 mm x 2 mm chip and maintaining a fixed static capacitance. The improved design uses one large diaphragm supported by pillars with fixed electrodes placed above the areas of maximum deflection. The design optimization increases the sensitivity from 0.22 fF/kPa to 1.16 fF/kPa. Temperature sensitivity was also examined through simulation.

Keywords: capacitive pressure sensor, 9 DOF, 10 DOF, sensor, capacitive, inertial measurement unit, IMU, inertial navigation system, INS

Procedia PDF Downloads 547
13683 Interactive Winding Geometry Design of Power Transformers

Authors: Paffrath Meinhard, Zhou Yayun, Guo Yiqing, Ertl Harald

Abstract:

Winding geometry design is an important part of power transformer electrical design. Conventionally, the winding geometry is designed manually, which is a time-consuming job because it involves many iteration steps in order to meet all cost, manufacturing and electrical requirements. Here a method is presented which automatically generates the winding geometry for given user parameters and allows the user to interactively set and change parameters. To achieve this goal, the winding problem is transferred to a mixed integer nonlinear optimization problem. The relevant geometrical design parameters are defined as optimization variables. The cost and other requirements are modeled as constraints. For the solution, a stochastic ant colony optimization algorithm is applied. It is well-known, that an optimizer can get stuck in a local minimum. For the winding problem, we present efficient strategies to come out of local minima, furthermore a reduced variable search range helps to accelerate the solution process. Numerical examples show that the optimization result is delivered within seconds such that the user can interactively change the variable search area and constraints to improve the design.

Keywords: ant colony optimization, mixed integer nonlinear programming, power transformer, winding design

Procedia PDF Downloads 380
13682 Design Optimization of a Compact Quadrupole Electromagnet for CLS 2.0

Authors: Md. Armin Islam, Les Dallin, Mark Boland, W. J. Zhang

Abstract:

This paper reports a study on the optimal magnetic design of a compact quadrupole electromagnet for the Canadian Light Source (CLS 2.0). The nature of the design is to determine a quadrupole with low relative higher order harmonics and better field quality. The design problem was formulated as an optimization model, in which the objective function is the higher order harmonics (multipole errors) and the variable to be optimized is the material distribution on the pole. The higher order harmonics arose in the quadrupole due to truncating the ideal hyperbola at a certain point to make the pole. In this project, the arisen harmonics have been optimized both transversely and longitudinally by adjusting material on the poles in a controlled way. For optimization, finite element analysis (FEA) has been conducted. A better higher order harmonics amplitudes and field quality have been achieved through the optimization. On the basis of the optimized magnetic design, electrical and cooling calculation has been performed for the magnet.

Keywords: drift, electrical, and cooling calculation, integrated field, magnetic field gradient, multipole errors, quadrupole

Procedia PDF Downloads 143
13681 End-of-Life Vehicle Framework in Bumper Development Process

Authors: Majid Davoodi Makinejad, Reza Ghaeli

Abstract:

Developing sustainable and environment-friendly products has become a major concern in the car manufacturing industry. New legislation ‘End of Life Vehicle’ increased design complexities of bumper system parameters e.g. design for disassembly, design for remanufacturing and recycling. ELV processing employs dismantling, shredding and landfill. The bumper is designed to prevent physical damage, reduce aerodynamic drag force as well as being aesthetically pleasing to the consumer. Design for dismantling is the first step in ELVs approach in the bumper system. This study focused on the analysis of ELV value in redesign solutions of the bumper system in comparison with the conventional concept. It provided a guideline to address the critical consideration in material, manufacturing and joining methods of bumper components to take advantages in easy dismounting, separation and recycling.

Keywords: sustainable development, environmental friendly, bumper system, end of life vehicle

Procedia PDF Downloads 385
13680 Development, Optimization, and Validation of a Synchronous Fluorescence Spectroscopic Method with Multivariate Calibration for the Determination of Amlodipine and Olmesartan Implementing: Experimental Design

Authors: Noha Ibrahim, Eman S. Elzanfaly, Said A. Hassan, Ahmed E. El Gendy

Abstract:

Objectives: The purpose of the study is to develop a sensitive synchronous spectrofluorimetric method with multivariate calibration after studying and optimizing the different variables affecting the native fluorescence intensity of amlodipine and olmesartan implementing an experimental design approach. Method: In the first step, the fractional factorial design used to screen independent factors affecting the intensity of both drugs. The objective of the second step was to optimize the method performance using a Central Composite Face-centred (CCF) design. The optimal experimental conditions obtained from this study were; a temperature of (15°C ± 0.5), the solvent of 0.05N HCl and methanol with a ratio of (90:10, v/v respectively), Δλ of 42 and the addition of 1.48 % surfactant providing a sensitive measurement of amlodipine and olmesartan. The resolution of the binary mixture with a multivariate calibration method has been accomplished mainly by using partial least squares (PLS) model. Results: The recovery percentage for amlodipine besylate and atorvastatin calcium in tablets dosage form were found to be (102 ± 0.24, 99.56 ± 0.10, for amlodipine and Olmesartan, respectively). Conclusion: Method is valid according to some International Conference on Harmonization (ICH) guidelines, providing to be linear over a range of 200-300, 500-1500 ng mL⁻¹ for amlodipine and Olmesartan. The methods were successful to estimate amlodipine besylate and olmesartan in bulk powder and pharmaceutical preparation.

Keywords: amlodipine, central composite face-centred design, experimental design, fractional factorial design, multivariate calibration, olmesartan

Procedia PDF Downloads 150
13679 Regional Flood-Duration-Frequency Models for Norway

Authors: Danielle M. Barna, Kolbjørn Engeland, Thordis Thorarinsdottir, Chong-Yu Xu

Abstract:

Design flood values give estimates of flood magnitude within a given return period and are essential to making adaptive decisions around land use planning, infrastructure design, and disaster mitigation. Often design flood values are needed at locations with insufficient data. Additionally, in hydrologic applications where flood retention is important (e.g., floodplain management and reservoir design), design flood values are required at different flood durations. A statistical approach to this problem is a development of a regression model for extremes where some of the parameters are dependent on flood duration in addition to being covariate-dependent. In hydrology, this is called a regional flood-duration-frequency (regional-QDF) model. Typically, the underlying statistical distribution is chosen to be the Generalized Extreme Value (GEV) distribution. However, as the support of the GEV distribution depends on both its parameters and the range of the data, special care must be taken with the development of the regional model. In particular, we find that the GEV is problematic when developing a GAMLSS-type analysis due to the difficulty of proposing a link function that is independent of the unknown parameters and the observed data. We discuss these challenges in the context of developing a regional QDF model for Norway.

Keywords: design flood values, bayesian statistics, regression modeling of extremes, extreme value analysis, GEV

Procedia PDF Downloads 72
13678 Automated Computer-Vision Analysis Pipeline of Calcium Imaging Neuronal Network Activity Data

Authors: David Oluigbo, Erik Hemberg, Nathan Shwatal, Wenqi Ding, Yin Yuan, Susanna Mierau

Abstract:

Introduction: Calcium imaging is an established technique in neuroscience research for detecting activity in neural networks. Bursts of action potentials in neurons lead to transient increases in intracellular calcium visualized with fluorescent indicators. Manual identification of cell bodies and their contours by experts typically takes 10-20 minutes per calcium imaging recording. Our aim, therefore, was to design an automated pipeline to facilitate and optimize calcium imaging data analysis. Our pipeline aims to accelerate cell body and contour identification and production of graphical representations reflecting changes in neuronal calcium-based fluorescence. Methods: We created a Python-based pipeline that uses OpenCV (a computer vision Python package) to accurately (1) detect neuron contours, (2) extract the mean fluorescence within the contour, and (3) identify transient changes in the fluorescence due to neuronal activity. The pipeline consisted of 3 Python scripts that could both be easily accessed through a Python Jupyter notebook. In total, we tested this pipeline on ten separate calcium imaging datasets from murine dissociate cortical cultures. We next compared our automated pipeline outputs with the outputs of manually labeled data for neuronal cell location and corresponding fluorescent times series generated by an expert neuroscientist. Results: Our results show that our automated pipeline efficiently pinpoints neuronal cell body location and neuronal contours and provides a graphical representation of neural network metrics accurately reflecting changes in neuronal calcium-based fluorescence. The pipeline detected the shape, area, and location of most neuronal cell body contours by using binary thresholding and grayscale image conversion to allow computer vision to better distinguish between cells and non-cells. Its results were also comparable to manually analyzed results but with significantly reduced result acquisition times of 2-5 minutes per recording versus 10-20 minutes per recording. Based on these findings, our next step is to precisely measure the specificity and sensitivity of the automated pipeline’s cell body and contour detection to extract more robust neural network metrics and dynamics. Conclusion: Our Python-based pipeline performed automated computer vision-based analysis of calcium image recordings from neuronal cell bodies in neuronal cell cultures. Our new goal is to improve cell body and contour detection to produce more robust, accurate neural network metrics and dynamic graphs.

Keywords: calcium imaging, computer vision, neural activity, neural networks

Procedia PDF Downloads 82
13677 Interaction Issues at Patan Stepwell in Western India

Authors: Shekhar Chatterjee

Abstract:

Architectural marvels of the Patan stepwell in Gujarat state in India were studied, to look into the cultural and design attributes in them. Direct observation, photography and interviewing the local people (especially senior citizens) were the methodology adopted. The aim was to look for clues into how culture and design affected architectural marvels of a building and convey that to the tourists. These interpretations from this building can offer many ideas to the contemporary design world in the form of design of modern day garments for various occasions, ornaments or accessory products for daily usage like bags, shoes and similar products. These monuments currently lack proper information system for guiding a tourist. Absence of any qualified tourist guides at the site compounds the problem further. This project investigates the feasibility of making the space more interactive for the tourist through proper digital information design and installations at places. Along with this, illumination and sound are also being used to narrate the history of these ancient monuments so that tourists get a flavor of the medieval past. Most importantly, all these digital interventions are low cost and done with easily available throw-away materials and can be replicated for other monuments as well.

Keywords: interaction, well, building, context

Procedia PDF Downloads 272
13676 The Design of a Computer Simulator to Emulate Pathology Laboratories: A Model for Optimising Clinical Workflows

Authors: M. Patterson, R. Bond, K. Cowan, M. Mulvenna, C. Reid, F. McMahon, P. McGowan, H. Cormican

Abstract:

This paper outlines the design of a simulator to allow for the optimisation of clinical workflows through a pathology laboratory and to improve the laboratory’s efficiency in the processing, testing, and analysis of specimens. Often pathologists have difficulty in pinpointing and anticipating issues in the clinical workflow until tests are running late or in error. It can be difficult to pinpoint the cause and even more difficult to predict any issues which may arise. For example, they often have no indication of how many samples are going to be delivered to the laboratory that day or at a given hour. If we could model scenarios using past information and known variables, it would be possible for pathology laboratories to initiate resource preparations, e.g. the printing of specimen labels or to activate a sufficient number of technicians. This would expedite the clinical workload, clinical processes and improve the overall efficiency of the laboratory. The simulator design visualises the workflow of the laboratory, i.e. the clinical tests being ordered, the specimens arriving, current tests being performed, results being validated and reports being issued. The simulator depicts the movement of specimens through this process, as well as the number of specimens at each stage. This movement is visualised using an animated flow diagram that is updated in real time. A traffic light colour-coding system will be used to indicate the level of flow through each stage (green for normal flow, orange for slow flow, and red for critical flow). This would allow pathologists to clearly see where there are issues and bottlenecks in the process. Graphs would also be used to indicate the status of specimens at each stage of the process. For example, a graph could show the percentage of specimen tests that are on time, potentially late, running late and in error. Clicking on potentially late samples will display more detailed information about those samples, the tests that still need to be performed on them and their urgency level. This would allow any issues to be resolved quickly. In the case of potentially late samples, this could help to ensure that critically needed results are delivered on time. The simulator will be created as a single-page web application. Various web technologies will be used to create the flow diagram showing the workflow of the laboratory. JavaScript will be used to program the logic, animate the movement of samples through each of the stages and to generate the status graphs in real time. This live information will be extracted from an Oracle database. As well as being used in a real laboratory situation, the simulator could also be used for training purposes. ‘Bots’ would be used to control the flow of specimens through each step of the process. Like existing software agents technology, these bots would be configurable in order to simulate different situations, which may arise in a laboratory such as an emerging epidemic. The bots could then be turned on and off to allow trainees to complete the tasks required at that step of the process, for example validating test results.

Keywords: laboratory-process, optimization, pathology, computer simulation, workflow

Procedia PDF Downloads 286
13675 Regulating User Experience Design, in the European Union, as a Way to Narrow Down the Gap Between Consumers’ Protection and Algorithms Employment

Authors: Prisecaru Diana-Sorina

Abstract:

The paper will show that, while the EU legislator tackled a series of UX patterns used in e-commerce to induce the consumers take actions that they would not normally undertake, it leaves out many other aspects related to misuse or poor UX design that adversely affect EU consumers. Further, the paper proposes a reevaluation of the regulatory addressability of the issue and hand and focuses on explaining why a joint strategy, based on the interplay between provisions aiming consumer protection and personal data protection is the key approach to this matter.

Keywords: algorithms, consumer protection, European Union, user experience design

Procedia PDF Downloads 136
13674 Exploiting Charges on Medicinal Synthetic Aluminum Magnesium Silicate's {Al₄ (SiO₄)₃ + 3Mg₂SiO₄ → 2Al₂Mg₃ (SiO₄)₃} Nanoparticles in Treating Viral Diseases, Tumors, Antimicrobial Resistant Infections

Authors: M. C. O. Ezeibe, F. I. O. Ezeibe

Abstract:

Reasons viral diseases (including AI, HIV/AIDS, and COVID-19), tumors (including Cancers and Prostrate enlargement), and antimicrobial-resistant infections (AMR) are difficult to cure are features of the pathogens which normal cells do not have or need (biomedical markers) have not been identified; medicines that can counter the markers have not been invented; strategies and mechanisms for their treatments have not been developed. When cells become abnormal, they acquire negative electrical charges, and viruses are either positively charged or negatively charged, while normal cells remain neutral (without electrical charges). So, opposite charges' electrostatic attraction is a treatment mechanism for viral diseases and tumors. Medicines that have positive electrical charges would mop abnormal (infected and tumor) cells and DNA viruses (negatively charged), while negatively charged medicines would mop RNA viruses (positively charged). Molecules of Aluminum-magnesium silicate [AMS: Al₂Mg₃ (SiO₄)₃], an approved medicine and pharmaceutical stabilizing agent, consist of nanoparticles which have both positive electrically charged ends and negative electrically charged ends. The very small size (0.96 nm) of the nanoparticles allows them to reach all cells in every organ. By stabilizing antimicrobials, AMS reduces the rate at which the body metabolizes them so that they remain at high concentrations for extended periods. When drugs remain at high concentrations for longer periods, their efficacies improve. Again, nanoparticles enhance the delivery of medicines to effect targets. Both remaining at high concentrations for longer periods and better delivery to effect targets improve efficacy and make lower doses achieve desired effects so that side effects of medicines are reduced to allow the immunity of patients to be enhanced. Silicates also enhance the immune responses of treated patients. Improving antimicrobial efficacies and enhancing patients` immunity terminate infections so that none remains that could develop resistance. Some countries do not have natural deposits of AMS, but they may have Aluminum silicate (AS: Al₄ (SiO₄)₃) and Magnesium silicate (MS: Mg₂SiO₄), which are also approved medicines. So, AS and MS were used to formulate an AMS-brand, named Medicinal synthetic AMS {Al₄ (SiO₄)₃ + 3Mg₂SiO₄ → 2Al₂Mg₃ (SiO₄)₃}. To overcome the challenge of AMS, AS, and MS being un-absorbable, Dextrose monohydrate is incorporated in MSAMS-formulations for the simple sugar to convey the electrically charged nanoparticles into blood circulation by the principle of active transport so that MSAMS-antimicrobial formulations function systemically. In vitro, MSAMS reduced (P≤0.05) titers of viruses, including Avian influenza virus and HIV. When used to treat virus-infected animals, it cured Newcastle disease and Infectious bursa disease of chickens, Parvovirus disease of dogs, and Peste des petits ruminants disease of sheep and goats. A number of HIV/AIDS patients treated with it have been reported to become HIV-negative (antibody and antigen). COVID-19 patients are also reported to recover and test virus negative when treated with MSAMS. PSA titers of prostate cancer/enlargement patients normalize (≤4) following treatment with MSAMS. MSAMS has also potentiated ampicillin trihydrate, sulfadimidin, cotrimoxazole, piparazine citrate and chloroquine phosphate to achieve ≥ 95 % infection-load reductions (AMR-prevention). At 75 % of doses of ampicillin, cotrimoxazole, and streptomycin, supporting MSAMS-formulations' treatments with antioxidants led to the termination of even already resistant infections.

Keywords: electrical charges, viruses, abnormal cells, aluminum-magnesium silicate

Procedia PDF Downloads 63
13673 Evaluation of the Sustainability of Greek Vernacular Architecture in Different Climate Zones: Architectural Typology and Building Physics

Authors: Christina Kalogirou

Abstract:

Investigating the integration of bioclimatic design into vernacular architecture could lead to interesting results regarding the preservation of cultural heritage while enhancing the energy efficiency of historic buildings. Furthermore, these recognized principles and systems of bioclimatic design in vernacular settlements could be applied to modern architecture and thus to new buildings in such areas. This study introduces an approach to categorizing distinct technologies and design principles of bioclimatic design based on a thoughtful approach to various climatic zones and environment in Greece (mountainous areas, islands and lowlands). For this purpose, various types of dwellings are evaluated for their response to climate, regarding the layout of the buildings (orientation, floor plans’ shape, semi-open spaces), the site planning, the openings (size, position, protection), the building envelope (walls: construction materials-thickness, roof construction detailing) and the migratory living pattern according to seasonal needs. As a result, various passive design principles (that could be adapted to current architectural practice in such areas, in order to optimize the relationship between site, building, climate and energy efficiency) are proposed.

Keywords: bioclimatic design, buildings physics, climatic zones, energy efficiency, vernacular architecture

Procedia PDF Downloads 387
13672 Observer-Based Control Design for Double Integrators Systems with Long Sampling Periods and Actuator Uncertainty

Authors: Tomas Menard

Abstract:

The design of control-law for engineering systems has been investigated for many decades. While many results are concerned with continuous systems with continuous output, nowadays, many controlled systems have to transmit their output measurements through network, hence making it discrete-time. But it is well known that the sampling of a system whose control-law is based on the continuous output may render the system unstable, especially when this sampling period is long compared to the system dynamics. The control design then has to be adapted in order to cope with this issue. In this paper, we consider systems which can be modeled as double integrator with uncertainty on the input since many mechanical systems can be put under such form. We present a control scheme based on an observer using only discrete time measurement and which provides continuous time estimation of the state, combined with a continuous control law, which stabilized a system with second-order dynamics even in the presence of uncertainty. It is further shown that arbitrarily long sampling periods can be dealt with properly setting the control scheme parameters.

Keywords: dynamical system, control law design, sampled output, observer design

Procedia PDF Downloads 187
13671 New Design of a Broadband Microwave Zero Bias Power Limiter

Authors: K. Echchakhaoui, E. Abdelmounim, J. Zbitou, H. Bennis, N. Ababssi, M. Latrach

Abstract:

In this paper a new design of a broadband microwave power limiter is presented and validated into simulation by using ADS software (Advanced Design System) from Agilent technologies. The final circuit is built on microstrip lines by using identical Zero Bias Schottky diodes. The power limiter is designed by Associating 3 stages Schottky diodes. The obtained simulation results permit to validate this circuit with a threshold input power level of 0 dBm until a maximum input power of 30 dBm.

Keywords: Limiter, microstrip, zero-biais, ADS

Procedia PDF Downloads 466
13670 Modern State of the Universal Modeling for Centrifugal Compressors

Authors: Y. Galerkin, K. Soldatova, A. Drozdov

Abstract:

The 6th version of Universal modeling method for centrifugal compressor stage calculation is described. Identification of the new mathematical model was made. As a result of identification the uniform set of empirical coefficients is received. The efficiency definition error is 0,86 % at a design point. The efficiency definition error at five flow rate points (except a point of the maximum flow rate) is 1,22 %. Several variants of the stage with 3D impellers designed by 6th version program and quasi three-dimensional calculation programs were compared by their gas dynamic performances CFD (NUMECA FINE TURBO). Performance comparison demonstrated general principles of design validity and leads to some design recommendations.

Keywords: compressor design, loss model, performance prediction, test data, model stages, flow rate coefficient, work coefficient

Procedia PDF Downloads 412