Search results for: deep seated gravitational slope deformation
2300 Geochemical Characterization of Geothermal Waters in Albania, Preliminary Results
Authors: Aurela Jahja, Katarzyna Wątor, Arjan Beqiraj, Piotr Rusiniak, Nevton Kodhelaj
Abstract:
Albanian geological terrains represent an important node of the Alpine – Mediterranean mountain belt and are divided into several predominantly NNW - SSE striking geotectonic units, which, based on the presence or lack of Cretaceous transgression and magmatic rocks, belong to Internal or External Albanides. The internal (Korabi, Mirdita and Gashi) units are characterized by the Lower Cretaceous discordance and the presence of abundant magmatic rocks whereas in the external (Alps, Krasta-Cukali, Kruja, Ionian, Sazani and Peri Adriatic Depression) units an almost continuous sedimentation from Triassic to Paleogene is evidenced. The internal and external units show relevant differences in both geothermal and heat flow density values. The gradient values vary from 15-21.3 to 36 mK/m, while the heat flow density ranges from 42 to 60 mW/m2, in the external (Preadriatic Depression) and internal (ophiolitic belt) units, respectively. The geothermal fluids, which are found in natural springs and deep oil wells of Albania, are located in four thermo-mineral provinces: a) Peshkopi (Korabi) province; b) Kruja province; c) Preadriatic basin province, and d) South Ionian province. Thirteen geothermal waters were sampled from 11 natural springs and 2 deep wells, of which 6 springs and 2 wells from Kruja, 1 spring from Peshkopia, 2 springs from Preadriatic basin and 2 springs South Ionian province. Temperature, pH and Electrical Conductivity were measured in situ, while in laboratory were analyzed by ICP method major anions and cations and several trace elements (B, Li, Sr, Rb, I, Br, etc.). The measured values of temperature, pH and electrical conductivity range within 17-63°C, 6.26-7.92 and 724- 26856µS/cm intervals, respectively. The chemical type of the Albania thermal waters is variable. In the Kruja province prevail the Cl-SO4-NaCa and Cl-Na-Ca water types; while SO4-Ca, HCO3-Ca and Cl-HCO3-Na-Ca, and Cl-Na are found in the provinces of Peshkopi, Ionian and Preadriatic basin, respectively. In the Cl-SO4-HCO3 triangular diagram most of the geothermal waters are close to the chloride corner that belong to “mature waters”, typical of geothermal deep and hot fluids. Only samples from the Ionian province are located within the region of high bicarbonate concentration and they can be classified as peripheral waters that may have mixed with cold groundwater. In the Na-Ca-Mg and Na-K-Mg triangular diagram the majority of waters fall in the corner of sodium, suggesting that their cation ratios are controlled by mineral-solution equilibrium. There is a linear relationship between Cl and B which indicates the mixing of geothermal water with cold water, where the low-chlorine thermal waters from Ionian basin and Preadriatic depression provinces are distinguished by high-chlorine thermal waters from Kruja province. The Cl/Br molar ration of the thermal waters from Kruja province ranges from 1000 to 2660 and separates them from the thermal waters of Ionian basin and Preadriatic depression provinces having Cl/Br molar ratio lower than 650. The apparent increase of Cl/Br molar ratio that correlates with the increasing of the chloride, is probably related with dissolution of the Halite.Keywords: geothermal fluids, geotectonic units, natural springs, deep wells, mature waters, peripheral waters
Procedia PDF Downloads 2172299 Effectiveness of Interactive Integrated Tutorial in Teaching Medical Subjects to Dental Students: A Pilot Study
Authors: Mohammad Saleem, Neeta Kumar, Anita Sharma, Sazina Muzammil
Abstract:
It is observed that some of the dental students in our setting take less interest in medical subjects. Various teaching methods are focus of research interest currently and being tried to generate interest among students. An approach of interactive integrated tutorial was used to assess its feasibility in teaching medical subjects to dental undergraduates. The aim was to generate interest and promote active self-learning among students. The objectives were to (1) introduce the integrated interactive learning method through two departments, (2) get feedback from the students and faculty on feasibility and effectiveness of this method. Second-year students in Bachelor of Dental Surgery course were divided into two groups. Each group was asked to study physiology and pathology of a common and important condition (anemia and hypertension) in a week’s time. During the tutorial, students asked questions on physiology and pathology of that condition from each other in the presence of teachers of both physiology and pathology departments. The teachers acted only as facilitators. After the session, the feedback from students and faculty on this alternative learning method was obtained. Results: Majority of the students felt that this method of learning is enjoyable, helped to develop reasoning skills and ability to correlate and integrate the knowledge from two related fields. Majority of the students felt that this kind of learning led to better understanding of the topic and motivated them towards deep learning. Teachers observed that the study promoted interdepartmental cross-discipline collaboration and better students’ linkages. Conclusion: Interactive integrated tutorial is effective in motivating dental students for better and deep learning of medical subjects.Keywords: active learning, education, integrated, interactive, self-learning, tutorials
Procedia PDF Downloads 3142298 Harnessing Deep-Level Metagenomics to Explore the Three Dynamic One Health Areas: Healthcare, Domiciliary and Veterinary
Authors: Christina Killian, Katie Wall, Séamus Fanning, Guerrino Macori
Abstract:
Deep-level metagenomics offers a useful technical approach to explore the three dynamic One Health axes: healthcare, domiciliary and veterinary. There is currently limited understanding of the composition of complex biofilms, natural abundance of AMR genes and gene transfer occurrence in these ecological niches. By using a newly established small-scale complex biofilm model, COMBAT has the potential to provide new information on microbial diversity, antimicrobial resistance (AMR)-encoding gene abundance, and their transfer in complex biofilms of importance to these three One Health axes. Shotgun metagenomics has been used to sample the genomes of all microbes comprising the complex communities found in each biofilm source. A comparative analysis between untreated and biocide-treated biofilms is described. The basic steps include the purification of genomic DNA, followed by library preparation, sequencing, and finally, data analysis. The use of long-read sequencing facilitates the completion of metagenome-assembled genomes (MAG). Samples were sequenced using a PromethION platform, and following quality checks, binning methods, and bespoke bioinformatics pipelines, we describe the recovery of individual MAGs to identify mobile gene elements (MGE) and the corresponding AMR genotypes that map to these structures. High-throughput sequencing strategies have been deployed to characterize these communities. Accurately defining the profiles of these niches is an essential step towards elucidating the impact of the microbiota on each niche biofilm environment and their evolution.Keywords: COMBAT, biofilm, metagenomics, high-throughput sequencing
Procedia PDF Downloads 562297 An Investigation on the Energy Absorption of Sandwich Panels With Aluminium Foam Core under Perforation Test
Authors: Minoo Tavakoli, Mojtaba Zebarjad, Golestanipour
Abstract:
Metallic sandwich structures with aluminum foam core are good energy absorbers. In this paper, perforation test were carried out on different samples to study energy absorption. In the experiments, effect of several parameters, i.e. skin thickness and thickness of foam core, on the energy absorption, delamination zone of back faces and deformation strain(φ) are discussed. Results show that increasing plates thickness will results in more absorbed energy and delamination. Moreover, thickening foam core has the same effect.Keywords: sandwich panel, aluminium foam, perforation, energy absorption
Procedia PDF Downloads 4232296 Intelligent Fault Diagnosis for the Connection Elements of Modular Offshore Platforms
Authors: Jixiang Lei, Alexander Fuchs, Franz Pernkopf, Katrin Ellermann
Abstract:
Within the Space@Sea project, funded by the Horizon 2020 program, an island consisting of multiple platforms was designed. The platforms are connected by ropes and fenders. The connection is critical with respect to the safety of the whole system. Therefore, fault detection systems are investigated, which could detect early warning signs for a possible failure in the connection elements. Previously, a model-based method called Extended Kalman Filter was developed to detect the reduction of rope stiffness. This method detected several types of faults reliably, but some types of faults were much more difficult to detect. Furthermore, the model-based method is sensitive to environmental noise. When the wave height is low, a long time is needed to detect a fault and the accuracy is not always satisfactory. In this sense, it is necessary to develop a more accurate and robust technique that can detect all rope faults under a wide range of operational conditions. Inspired by this work on the Space at Sea design, we introduce a fault diagnosis method based on deep neural networks. Our method cannot only detect rope degradation by using the acceleration data from each platform but also estimate the contributions of the specific acceleration sensors using methods from explainable AI. In order to adapt to different operational conditions, the domain adaptation technique DANN is applied. The proposed model can accurately estimate rope degradation under a wide range of environmental conditions and help users understand the relationship between the output and the contributions of each acceleration sensor.Keywords: fault diagnosis, deep learning, domain adaptation, explainable AI
Procedia PDF Downloads 1802295 Evaluation of the Effect of Turbulence Caused by the Oscillation Grid on Oil Spill in Water Column
Authors: Mohammad Ghiasvand, Babak Khorsandi, Morteza Kolahdoozan
Abstract:
Under the influence of waves, oil in the sea is subject to vertical scattering in the water column. Scientists' knowledge of how oil is dispersed in the water column is one of the lowest levels of knowledge among other processes affecting oil in the marine environment, which highlights the need for research and study in this field. Therefore, this study investigates the distribution of oil in the water column in a turbulent environment with zero velocity characteristics. Lack of laboratory results to analyze the distribution of petroleum pollutants in deep water for information Phenomenon physics on the one hand and using them to calibrate numerical models on the other hand led to the development of laboratory models in research. According to the aim of the present study, which is to investigate the distribution of oil in homogeneous and isotropic turbulence caused by the oscillating Grid, after reaching the ideal conditions, the crude oil flow was poured onto the water surface and oil was distributed in deep water due to turbulence was investigated. In this study, all experimental processes have been implemented and used for the first time in Iran, and the study of oil diffusion in the water column was considered one of the key aspects of pollutant diffusion in the oscillating Grid environment. Finally, the required oscillation velocities were taken at depths of 10, 15, 20, and 25 cm from the water surface and used in the analysis of oil diffusion due to turbulence parameters. The results showed that with the characteristics of the present system in two static modes and network motion with a frequency of 0.8 Hz, the results of oil diffusion in the four mentioned depths at a frequency of 0.8 Hz compared to the static mode from top to bottom at 26.18, 57 31.5, 37.5 and 50% more. Also, after 2.5 minutes of the oil spill at a frequency of 0.8 Hz, oil distribution at the mentioned depths increased by 49, 61.5, 85, and 146.1%, respectively, compared to the base (static) state.Keywords: homogeneous and isotropic turbulence, oil distribution, oscillating grid, oil spill
Procedia PDF Downloads 752294 Development of a Novel Clinical Screening Tool, Using the BSGE Pain Questionnaire, Clinical Examination and Ultrasound to Predict the Severity of Endometriosis Prior to Laparoscopic Surgery
Authors: Marlin Mubarak
Abstract:
Background: Endometriosis is a complex disabling disease affecting young females in the reproductive period mainly. The aim of this project is to generate a diagnostic model to predict severity and stage of endometriosis prior to Laparoscopic surgery. This will help to improve the pre-operative diagnostic accuracy of stage 3 & 4 endometriosis and as a result, refer relevant women to a specialist centre for complex Laparoscopic surgery. The model is based on the British Society of Gynaecological Endoscopy (BSGE) pain questionnaire, clinical examination and ultrasound scan. Design: This is a prospective, observational, study, in which women completed the BSGE pain questionnaire, a BSGE requirement. Also, as part of the routine preoperative assessment patient had a routine ultrasound scan and when recto-vaginal and deep infiltrating endometriosis was suspected an MRI was performed. Setting: Luton & Dunstable University Hospital. Patients: Symptomatic women (n = 56) scheduled for laparoscopy due to pelvic pain. The age ranged between 17 – 52 years of age (mean 33.8 years, SD 8.7 years). Interventions: None outside the recognised and established endometriosis centre protocol set up by BSGE. Main Outcome Measure(s): Sensitivity and specificity of endometriosis diagnosis predicted by symptoms based on BSGE pain questionnaire, clinical examinations and imaging. Findings: The prevalence of diagnosed endometriosis was calculated to be 76.8% and the prevalence of advanced stage was 55.4%. Deep infiltrating endometriosis in various locations was diagnosed in 32/56 women (57.1%) and some had DIE involving several locations. Logistic regression analysis was performed on 36 clinical variables to create a simple clinical prediction model. After creating the scoring system using variables with P < 0.05, the model was applied to the whole dataset. The sensitivity was 83.87% and specificity 96%. The positive likelihood ratio was 20.97 and the negative likelihood ratio was 0.17, indicating that the model has a good predictive value and could be useful in predicting advanced stage endometriosis. Conclusions: This is a hypothesis-generating project with one operator, but future proposed research would provide validation of the model and establish its usefulness in the general setting. Predictive tools based on such model could help organise the appropriate investigation in clinical practice, reduce risks associated with surgery and improve outcome. It could be of value for future research to standardise the assessment of women presenting with pelvic pain. The model needs further testing in a general setting to assess if the initial results are reproducible.Keywords: deep endometriosis, endometriosis, minimally invasive, MRI, ultrasound.
Procedia PDF Downloads 3532293 Geographical Information System-Based Approach for Vertical Takeoff and Landing Takeoff and Landing Site Selection
Authors: Chamnan Kumsap, Somsarit Sinnung, Suriyawate Boonthalarath, Teeranai Srithamarong
Abstract:
This research paper addresses the GIS analysis approach to the investigation of suitable sites for a vertical takeoff and landing drone. The study manipulated GIS and terrain layers into a proper input before the spatial analysis that included slope, reclassify, classify, and buffer was applied to the individual layers. The output layers were weighted, and multi-criteria analyzed before those patches failing to comply with filtering out criteria were discarded. Field survey for each suitable candidate site was conducted to cross-check the proposed approach with the real world. Conclusion was extracted for the VTOL takeoff and landing sites, and discussion was provided with further study being suggested on the mission simulation of selected takeoff and landing sites.Keywords: GIS approach, site selection, VTOL, takeoff and landing
Procedia PDF Downloads 1042292 Functional Performance of Unpaved Roads Reinforced with Treated Coir Geotextiles
Authors: Priya Jaswal, Vivek, S. K. Sinha
Abstract:
One of the most important and complicated factors influencing the functional performance of unpaved roads is traffic loading. The complexity of traffic loading is caused by the variable magnitude and frequency of load, which causes unpaved roads to fail prematurely. Unpaved roads are low-volume roads, and as peri-urbanization increases, unpaved roads act as a means to boost the rural economy. This has also increased traffic on unpaved roads, intensifying the issue of settlement, rutting, and fatigue failure. This is a major concern for unpaved roads built on poor subgrade soil, as excessive rutting caused by heavy loads can cause driver discomfort, vehicle damage, and an increase in maintenance costs. Some researchers discovered that when a consistent static load is exerted as opposed to a rapidly changing load, the rate of deformation of unpaved roads increases. Previously, some of the most common methods for overcoming the problem of rutting and fatigue failure included chemical stabilisation, fibre reinforcement, and so on. However, due to their high cost, engineers' attention has shifted to geotextiles which are used as reinforcement in unpaved roads. Geotextiles perform the function of filtration, lateral confinement of base material, vertical restraint of subgrade soil, and the tension membrane effect. The use of geotextiles in unpaved roads increases the strength of unpaved roads and is an economically viable method because it reduces the required aggregate thickness, which would need less earthwork, and is thus recommended for unpaved road applications. The majority of geotextiles used previously were polymeric, but with a growing awareness of sustainable development to preserve the environment, researchers' focus has shifted to natural fibres. Coir is one such natural fibre that possesses the advantage of having a higher tensile strength than other bast fibres, being eco-friendly, low in cost, and biodegradable. However, various researchers have discovered that the surface of coir fibre is covered with various impurities, voids, and cracks, which act as a plane of weakness and limit the potential application of coir geotextiles. To overcome this limitation, chemical surface modification of coir geotextiles is widely accepted by researchers because it improves the mechanical properties of coir geotextiles. The current paper reviews the effect of using treated coir geotextiles as reinforcement on the load-deformation behaviour of a two-layered unpaved road model.Keywords: coir, geotextile, treated, unpaved
Procedia PDF Downloads 942291 Investigation on the stability of rock slopes subjected to tension cracks via limit analysis
Authors: Weigao. Wu, Stefano. Utili
Abstract:
Based on the kinematic approach of limit analysis, a full set of upper bound solutions for the stability of homogeneous rock slopes subjected to tension cracks are obtained. The generalized Hoek-Brown failure criterion is employed to describe the non-linear strength envelope of rocks. In this paper, critical failure mechanisms are determined for cracks of known depth but unspecified location, cracks of known location but unknown depth, and cracks of unspecified location and depth. It is shown that there is a nearly up to 50% drop in terms of the stability factors for the rock slopes intersected by a tension crack compared with intact ones. Tables and charts of solutions in dimensionless forms are presented for ease of use by practitioners.Keywords: Hoek-Brown failure criterion, limit analysis, rock slope, tension cracks
Procedia PDF Downloads 3442290 Nonlinear Finite Element Modeling of Deep Beam Resting on Linear and Nonlinear Random Soil
Authors: M. Seguini, D. Nedjar
Abstract:
An accuracy nonlinear analysis of a deep beam resting on elastic perfectly plastic soil is carried out in this study. In fact, a nonlinear finite element modeling for large deflection and moderate rotation of Euler-Bernoulli beam resting on linear and nonlinear random soil is investigated. The geometric nonlinear analysis of the beam is based on the theory of von Kàrmàn, where the Newton-Raphson incremental iteration method is implemented in a Matlab code to solve the nonlinear equation of the soil-beam interaction system. However, two analyses (deterministic and probabilistic) are proposed to verify the accuracy and the efficiency of the proposed model where the theory of the local average based on the Monte Carlo approach is used to analyze the effect of the spatial variability of the soil properties on the nonlinear beam response. The effect of six main parameters are investigated: the external load, the length of a beam, the coefficient of subgrade reaction of the soil, the Young’s modulus of the beam, the coefficient of variation and the correlation length of the soil’s coefficient of subgrade reaction. A comparison between the beam resting on linear and nonlinear soil models is presented for different beam’s length and external load. Numerical results have been obtained for the combination of the geometric nonlinearity of beam and material nonlinearity of random soil. This comparison highlighted the need of including the material nonlinearity and spatial variability of the soil in the geometric nonlinear analysis, when the beam undergoes large deflections.Keywords: finite element method, geometric nonlinearity, material nonlinearity, soil-structure interaction, spatial variability
Procedia PDF Downloads 4142289 Exploring the Impact of Input Sequence Lengths on Long Short-Term Memory-Based Streamflow Prediction in Flashy Catchments
Authors: Farzad Hosseini Hossein Abadi, Cristina Prieto Sierra, Cesar Álvarez Díaz
Abstract:
Predicting streamflow accurately in flashy catchments prone to floods is a major research and operational challenge in hydrological modeling. Recent advancements in deep learning, particularly Long Short-Term Memory (LSTM) networks, have shown to be promising in achieving accurate hydrological predictions at daily and hourly time scales. In this work, a multi-timescale LSTM (MTS-LSTM) network was applied to the context of regional hydrological predictions at an hourly time scale in flashy catchments. The case study includes 40 catchments allocated in the Basque Country, north of Spain. We explore the impact of hyperparameters on the performance of streamflow predictions given by regional deep learning models through systematic hyperparameter tuning - where optimal regional values for different catchments are identified. The results show that predictions are highly accurate, with Nash-Sutcliffe (NSE) and Kling-Gupta (KGE) metrics values as high as 0.98 and 0.97, respectively. A principal component analysis reveals that a hyperparameter related to the length of the input sequence contributes most significantly to the prediction performance. The findings suggest that input sequence lengths have a crucial impact on the model prediction performance. Moreover, employing catchment-scale analysis reveals distinct sequence lengths for individual basins, highlighting the necessity of customizing this hyperparameter based on each catchment’s characteristics. This aligns with well known “uniqueness of the place” paradigm. In prior research, tuning the length of the input sequence of LSTMs has received limited focus in the field of streamflow prediction. Initially it was set to 365 days to capture a full annual water cycle. Later, performing limited systematic hyper-tuning using grid search, revealed a modification to 270 days. However, despite the significance of this hyperparameter in hydrological predictions, usually studies have overlooked its tuning and fixed it to 365 days. This study, employing a simultaneous systematic hyperparameter tuning approach, emphasizes the critical role of input sequence length as an influential hyperparameter in configuring LSTMs for regional streamflow prediction. Proper tuning of this hyperparameter is essential for achieving accurate hourly predictions using deep learning models.Keywords: LSTMs, streamflow, hyperparameters, hydrology
Procedia PDF Downloads 692288 A CFD Analysis of Flow through a High-Pressure Natural Gas Pipeline with an Undeformed and Deformed Orifice Plate
Authors: R. Kiš, M. Malcho, M. Janovcová
Abstract:
This work aims to present a numerical analysis of the natural gas which flows through a high-pressure pipeline and an orifice plate, through the use of CFD methods. The paper contains CFD calculations for the flow of natural gas in a pipe with different geometry used for the orifice plates. One of them has a standard geometry and a shape without any deformation and the other is deformed by the action of the pressure differential. It shows the behaviour of natural gas in a pipeline using the velocity profiles and pressure fields of the gas in both models with their differences. The entire research is based on the elimination of any inaccuracy which should appear in the flow of the natural gas measured in the high-pressure pipelines of the gas industry and which is currently not given in the relevant standard.Keywords: orifice plate, high-pressure pipeline, natural gas, CFD analysis
Procedia PDF Downloads 3822287 A Discrete Element Method Centrifuge Model of Monopile under Cyclic Lateral Loads
Authors: Nuo Duan, Yi Pik Cheng
Abstract:
This paper presents the data of a series of two-dimensional Discrete Element Method (DEM) simulations of a large-diameter rigid monopile subjected to cyclic loading under a high gravitational force. At present, monopile foundations are widely used to support the tall and heavy wind turbines, which are also subjected to significant from wind and wave actions. A safe design must address issues such as rotations and changes in soil stiffness subject to these loadings conditions. Design guidance on the issue is limited, so are the availability of laboratory and field test data. The interpretation of these results in sand, such as the relation between loading and displacement, relies mainly on empirical correlations to pile properties. Regarding numerical models, most data from Finite Element Method (FEM) can be found. They are not comprehensive, and most of the FEM results are sensitive to input parameters. The micro scale behaviour could change the mechanism of the soil-structure interaction. A DEM model was used in this paper to study the cyclic lateral loads behaviour. A non-dimensional framework is presented and applied to interpret the simulation results. The DEM data compares well with various set of published experimental centrifuge model test data in terms of lateral deflection. The accumulated permanent pile lateral displacements induced by the cyclic lateral loads were found to be dependent on the characteristics of the applied cyclic load, such as the extent of the loading magnitudes and directions.Keywords: cyclic loading, DEM, numerical modelling, sands
Procedia PDF Downloads 3202286 A Fundamental Study for Real-Time Safety Evaluation System of Landing Pier Using FBG Sensor
Authors: Heungsu Lee, Youngseok Kim, Jonghwa Yi, Chul Park
Abstract:
A landing pier is subjected to safety assessment by visual inspection and design data, but it is difficult to check the damage in real-time. In this study, real - time damage detection and safety evaluation methods were studied. As a result of structural analysis of the arbitrary landing pier structure, the inflection point of deformation and moment occurred at 10%, 50%, and 90% of pile length. The critical value of Fiber Bragg Grating (FBG) sensor was set according to the safety factor, and the FBG sensor application method for real - time safety evaluation was derived.Keywords: FBG sensor, harbor structure, maintenance, safety evaluation system
Procedia PDF Downloads 2182285 Response of Diaphragmatic Excursion to Inspiratory Muscle Trainer Post Thoracotomy
Authors: H. M. Haytham, E. A. Azza, E.S. Mohamed, E. G. Nesreen
Abstract:
Thoracotomy is a great surgery that has serious pulmonary complications, so purpose of this study was to determine the response of diaphragmatic excursion to inspiratory muscle trainer post thoracotomy. Thirty patients of both sexes (16 men and 14 women) with age ranged from 20 to 40 years old had done thoracotomy participated in this study. The practical work was done in cardiothoracic department, Kasr-El-Aini hospital at faculty of medicine for individuals 3 days Post operatively. Patients were assigned into two groups: group A (study group) included 15 patients (8 men and 7 women) who received inspiratory muscle training by using inspiratory muscle trainer for 20 minutes and routine chest physiotherapy (deep breathing, cough and early ambulation) twice daily, 3 days per week for one month. Group B (control group) included 15 patients (8 men and 7 women) who received the routine chest physiotherapy only (deep breathing, cough and early ambulation) twice daily, 3 days per week for one month. Ultrasonography was used to evaluate the changes in diaphragmatic excursion before and after training program. Statistical analysis revealed a significant increase in diaphragmatic excursion in the study group (59.52%) more than control group (18.66%) after using inspiratory muscle trainer post operatively in patients post thoracotomy. It was concluded that the inspiratory muscle training device increases diaphragmatic excursion in patients post thoracotomy through improving inspiratory muscle strength and improving mechanics of breathing and using of inspiratory muscle trainer as a method of physical therapy rehabilitation to reduce post-operative pulmonary complications post thoracotomy.Keywords: diaphragmatic excursion, inspiratory muscle trainer, ultrasonography, thoracotomy
Procedia PDF Downloads 3192284 Comparison of GIS-Based Soil Erosion Susceptibility Models Using Support Vector Machine, Binary Logistic Regression and Artificial Neural Network in the Southwest Amazon Region
Authors: Elaine Lima Da Fonseca, Eliomar Pereira Da Silva Filho
Abstract:
The modeling of areas susceptible to soil loss by hydro erosive processes consists of a simplified instrument of reality with the purpose of predicting future behaviors from the observation and interaction of a set of geoenvironmental factors. The models of potential areas for soil loss will be obtained through binary logistic regression, artificial neural networks, and support vector machines. The choice of the municipality of Colorado do Oeste in the south of the western Amazon is due to soil degradation due to anthropogenic activities, such as agriculture, road construction, overgrazing, deforestation, and environmental and socioeconomic configurations. Initially, a soil erosion inventory map constructed through various field investigations will be designed, including the use of remotely piloted aircraft, orbital imagery, and the PLANAFLORO/RO database. 100 sampling units with the presence of erosion will be selected based on the assumptions indicated in the literature, and, to complement the dichotomous analysis, 100 units with no erosion will be randomly designated. The next step will be the selection of the predictive parameters that exert, jointly, directly, or indirectly, some influence on the mechanism of occurrence of soil erosion events. The chosen predictors are altitude, declivity, aspect or orientation of the slope, curvature of the slope, composite topographic index, flow power index, lineament density, normalized difference vegetation index, drainage density, lithology, soil type, erosivity, and ground surface temperature. After evaluating the relative contribution of each predictor variable, the erosion susceptibility model will be applied to the municipality of Colorado do Oeste - Rondônia through the SPSS Statistic 26 software. Evaluation of the model will occur through the determination of the values of the R² of Cox & Snell and the R² of Nagelkerke, Hosmer and Lemeshow Test, Log Likelihood Value, and Wald Test, in addition to analysis of the Confounding Matrix, ROC Curve and Accumulated Gain according to the model specification. The validation of the synthesis map resulting from both models of the potential risk of soil erosion will occur by means of Kappa indices, accuracy, and sensitivity, as well as by field verification of the classes of susceptibility to erosion using drone photogrammetry. Thus, it is expected to obtain the mapping of the following classes of susceptibility to erosion very low, low, moderate, very high, and high, which may constitute a screening tool to identify areas where more detailed investigations need to be carried out, applying more efficient social resources.Keywords: modeling, susceptibility to erosion, artificial intelligence, Amazon
Procedia PDF Downloads 662283 Experimental Study of the Modifications of the Bed of a River under Extreme Flow Conditions
Authors: A. Ghenaim, A. Terfous
Abstract:
In this work, degradation phenomena in fluvial beds having uniform sediments are explored experimentally under extreme flow conditions. Laboratory experiments were conducted in a rectangular cross-section channel for different flow conditions, channel characteristics, and sediment properties at the National Institute of Applied Sciences (Strasbourg, France). Tests were carried out in two conditions: (1) equilibrium condition, where, once the steady and uniform flow conditions were achieved for a given slope and discharge, the channel was fed with variable sediment discharges until the bed-load sediment transport achieved an equilibrium condition; and (2) nonequilibrium condition, where the sediment feeding was instantaneously stopped, and the bed levels were measured over time. Experimental results enabled assessing the erosion rates and determining the empirical mathematical model to predict the bed level changes.Keywords: fluvial beds, sediment, uniform flow conditions, nonequilibrium condition, sediment disposition, erosion
Procedia PDF Downloads 942282 Dynamic Two-Way FSI Simulation for a Blade of a Small Wind Turbine
Authors: Alberto Jiménez-Vargas, Manuel de Jesús Palacios-Gallegos, Miguel Ángel Hernández-López, Rafael Campos-Amezcua, Julio Cesar Solís-Sanchez
Abstract:
An optimal wind turbine blade design must be able of capturing as much energy as possible from the wind source available at the area of interest. Many times, an optimal design means the use of large quantities of material and complicated processes that make the wind turbine more expensive, and therefore, less cost-effective. For the construction and installation of a wind turbine, the blades may cost up to 20% of the outline pricing, and become more important due to they are part of the rotor system that is in charge of transmitting the energy from the wind to the power train, and where the static and dynamic design loads for the whole wind turbine are produced. The aim of this work is the develop of a blade fluid-structure interaction (FSI) simulation that allows the identification of the major damage zones during the normal production situation, and thus better decisions for design and optimization can be taken. The simulation is a dynamic case, since we have a time-history wind velocity as inlet condition instead of a constant wind velocity. The process begins with the free-use software NuMAD (NREL), to model the blade and assign material properties to the blade, then the 3D model is exported to ANSYS Workbench platform where before setting the FSI system, a modal analysis is made for identification of natural frequencies and modal shapes. FSI analysis is carried out with the two-way technic which begins with a CFD simulation to obtain the pressure distribution on the blade surface, then these results are used as boundary condition for the FEA simulation to obtain the deformation levels for the first time-step. For the second time-step, CFD simulation is reconfigured automatically with the next time-step inlet wind velocity and the deformation results from the previous time-step. The analysis continues the iterative cycle solving time-step by time-step until the entire load case is completed. This work is part of a set of projects that are managed by a national consortium called “CEMIE-Eólico” (Mexican Center in Wind Energy Research), created for strengthen technological and scientific capacities, the promotion of creation of specialized human resources, and to link the academic with private sector in national territory. The analysis belongs to the design of a rotor system for a 5 kW wind turbine design thought to be installed at the Isthmus of Tehuantepec, Oaxaca, Mexico.Keywords: blade, dynamic, fsi, wind turbine
Procedia PDF Downloads 4822281 Synergistic Extraction Study of Cobalt (II) from Sulfate Medium by Mixtures of Capric Acid and Tri-N-Octylphosphine Oxide in Chloroform
Authors: F. Adjel, S. Almi, D. Barkat
Abstract:
The synergistic solvent extraction of cobalt (II) from 0.33 mol dm-3 Na2SO4 aqueous solutions with capric acid (HL) in the absence and presence of tri-n-octylphosphine oxide (TOPO) in chloroform at 25°C, has been studied. The extracted species when the capric acid compound was used alone, is CoL2(HL)2. In the presence of TOPO, a remarkable enhancement on the extraction of nickel (II) with 0.02 mol dm-3 capric acid was observed upon the addition of 0.0025 to 0.01 mol dm-3 TOPO in chloroform. From an synergistic extraction- equilibrium study, the synergistic enhancement was ascribed to the adduct formation CoL2(HL)2 n(TOPO). The TOPO-HL interaction strongly influences the synergistic extraction efficiency. The synergistic extraction stoichiometry of cobalt (II) with capric acid and TOPO is studied with the methods of slope analysis. The equilibrium constants were determined.Keywords: solvent extraction, cobalt (II), capric acid, TOPO, synergism
Procedia PDF Downloads 5242280 Deep Learning for SAR Images Restoration
Authors: Hossein Aghababaei, Sergio Vitale, Giampaolo Ferraioli
Abstract:
In the context of Synthetic Aperture Radar (SAR) data, polarization is an important source of information for Earth's surface monitoring. SAR Systems are often considered to transmit only one polarization. This constraint leads to either single or dual polarimetric SAR imaging modalities. Single polarimetric systems operate with a fixed single polarization of both transmitted and received electromagnetic (EM) waves, resulting in a single acquisition channel. Dual polarimetric systems, on the other hand, transmit in one fixed polarization and receive in two orthogonal polarizations, resulting in two acquisition channels. Dual polarimetric systems are obviously more informative than single polarimetric systems and are increasingly being used for a variety of remote sensing applications. In dual polarimetric systems, the choice of polarizations for the transmitter and the receiver is open. The choice of circular transmit polarization and coherent dual linear receive polarizations forms a special dual polarimetric system called hybrid polarimetry, which brings the properties of rotational invariance to geometrical orientations of features in the scene and optimizes the design of the radar in terms of reliability, mass, and power constraints. The complete characterization of target scattering, however, requires fully polarimetric data, which can be acquired with systems that transmit two orthogonal polarizations. This adds further complexity to data acquisition and shortens the coverage area or swath of fully polarimetric images compared to the swath of dual or hybrid polarimetric images. The search for solutions to augment dual polarimetric data to full polarimetric data will therefore take advantage of full characterization and exploitation of the backscattered field over a wider coverage with less system complexity. Several methods for reconstructing fully polarimetric images using hybrid polarimetric data can be found in the literature. Although the improvements achieved by the newly investigated and experimented reconstruction techniques are undeniable, the existing methods are, however, mostly based upon model assumptions (especially the assumption of reflectance symmetry), which may limit their reliability and applicability to vegetation and forest scenarios. To overcome the problems of these techniques, this paper proposes a new framework for reconstructing fully polarimetric information from hybrid polarimetric data. The framework uses Deep Learning solutions to augment hybrid polarimetric data without relying on model assumptions. A convolutional neural network (CNN) with a specific architecture and loss function is defined for this augmentation problem by focusing on different scattering properties of the polarimetric data. In particular, the method controls the CNN training process with respect to several characteristic features of polarimetric images defined by the combination of different terms in the cost or loss function. The proposed method is experimentally validated with real data sets and compared with a well-known and standard approach from the literature. From the experiments, the reconstruction performance of the proposed framework is superior to conventional reconstruction methods. The pseudo fully polarimetric data reconstructed by the proposed method also agree well with the actual fully polarimetric images acquired by radar systems, confirming the reliability and efficiency of the proposed method.Keywords: SAR image, polarimetric SAR image, convolutional neural network, deep learnig, deep neural network
Procedia PDF Downloads 672279 Study on Heat Transfer Capacity Limits of Heat Pipe with Working Fluids Ammonia and Water
Authors: M. Heydari, A. Ghanami
Abstract:
Heat pipe is simple heat transfer device which combines the conduction and phase change phenomena to control the heat transfer without any need for external power source. At hot surface of heat pipe, the liquid phase absorbs heat and changes to vapor phase. The vapor phase flows to condenser region and with the loss of heat changes to liquid phase. Due to gravitational force the liquid phase flows to evaporator section. In HVAC systems the working fluid is chosen based on the operating temperature. The heat pipe has significant capability to reduce the humidity in HVAC systems. Each HVAC system which uses heater, humidifier or dryer is a suitable nominate for the utilization of heat pipes. Generally heat pipes have three main sections: condenser, adiabatic region, and evaporator. Performance investigation and optimization of heat pipes operation in order to increase their efficiency is crucial. In the present article, a parametric study is performed to improve the heat pipe performance. Therefore, the heat capacity of heat pipe with respect to geometrical and confining parameters is investigated. For the better observation of heat pipe operation in HVAC systems, a CFD simulation in Eulerian- Eulerian multiphase approach is also performed. The results show that heat pipe heat transfer capacity is higher for water as working fluid with the operating temperature of 340 K. It is also showed that the vertical orientation of heat pipe enhances it’s heat transfer capacity.used in the abstract.Keywords: heat pipe, HVAC system, grooved heat pipe, heat pipe limits
Procedia PDF Downloads 4002278 A World Map of Seabed Sediment Based on 50 Years of Knowledge
Authors: T. Garlan, I. Gabelotaud, S. Lucas, E. Marchès
Abstract:
Production of a global sedimentological seabed map has been initiated in 1995 to provide the necessary tool for searches of aircraft and boats lost at sea, to give sedimentary information for nautical charts, and to provide input data for acoustic propagation modelling. This original approach had already been initiated one century ago when the French hydrographic service and the University of Nancy had produced maps of the distribution of marine sediments of the French coasts and then sediment maps of the continental shelves of Europe and North America. The current map of the sediment of oceans presented was initiated with a UNESCO's general map of the deep ocean floor. This map was adapted using a unique sediment classification to present all types of sediments: from beaches to the deep seabed and from glacial deposits to tropical sediments. In order to allow good visualization and to be adapted to the different applications, only the granularity of sediments is represented. The published seabed maps are studied, if they present an interest, the nature of the seabed is extracted from them, the sediment classification is transcribed and the resulted map is integrated in the world map. Data come also from interpretations of Multibeam Echo Sounder (MES) imagery of large hydrographic surveys of deep-ocean. These allow a very high-quality mapping of areas that until then were represented as homogeneous. The third and principal source of data comes from the integration of regional maps produced specifically for this project. These regional maps are carried out using all the bathymetric and sedimentary data of a region. This step makes it possible to produce a regional synthesis map, with the realization of generalizations in the case of over-precise data. 86 regional maps of the Atlantic Ocean, the Mediterranean Sea, and the Indian Ocean have been produced and integrated into the world sedimentary map. This work is permanent and permits a digital version every two years, with the integration of some new maps. This article describes the choices made in terms of sediment classification, the scale of source data and the zonation of the variability of the quality. This map is the final step in a system comprising the Shom Sedimentary Database, enriched by more than one million punctual and surface items of data, and four series of coastal seabed maps at 1:10,000, 1:50,000, 1:200,000 and 1:1,000,000. This step by step approach makes it possible to take into account the progresses in knowledge made in the field of seabed characterization during the last decades. Thus, the arrival of new classification systems for seafloor has improved the recent seabed maps, and the compilation of these new maps with those previously published allows a gradual enrichment of the world sedimentary map. But there is still a lot of work to enhance some regions, which are still based on data acquired more than half a century ago.Keywords: marine sedimentology, seabed map, sediment classification, world ocean
Procedia PDF Downloads 2322277 Influence of Machine Resistance Training on Selected Strength Variables among Two Categories of Body Composition
Authors: Hassan Almoslim
Abstract:
Background: The machine resistance training is an exercise that uses the equipment as loads to strengthen and condition the musculoskeletal system and improving muscle tone. The machine resistance training is easy to use, allow the individual to train with heavier weights without assistance, useful for beginners and elderly populations and specific muscle groups. Purpose: The purpose of this study was to examine the impact of nine weeks of machine resistance training on maximum strength among lean and normal weight male college students. Method: Thirty-six male college students aged between 19 and 21 years from King Fahd University of petroleum & minerals participated in the study. The subjects were divided into two an equal groups called Lean Group (LG, n = 18) and Normal Weight Group (NWG, n = 18). The subjects whose body mass index (BMI) is less than 18.5 kg / m2 is considered lean and who is between 18.5 to 24.9 kg / m2 is normal weight. Both groups performed machine resistance training nine weeks, twice per week for 40 min per training session. The strength measurements, chest press, leg press and abdomen exercises were performed before and after the training period. 1RM test was used to determine the maximum strength of all subjects. The training program consisted of several resistance machines such as leg press, abdomen, chest press, pulldown, seated row, calf raises, leg extension, leg curls and back extension. The data were analyzed using independent t-test (to compare mean differences) and paired t-test. The level of significance was set at 0.05. Results: No change was (P ˃ 0.05) observed in all body composition variables between groups after training. In chest press, the NWG recorded a significantly greater mean different value than the LG (19.33 ± 7.78 vs. 13.88 ± 5.77 kg, respectively, P ˂ 0.023). In leg press and abdomen exercises, both groups revealed similar mean different values (P ˃ 0.05). When the post-test was compared with the pre-test, the NWG showed significant increases in the chest press by 47% (from 41.16 ± 12.41 to 60.49 ± 11.58 kg, P ˂ 001), abdomen by 34% (from 45.46 ± 6.97 to 61.06 ± 6.45 kg, P ˂ 0.001) and leg press by 23.6% (from 85.27 ± 15.94 to 105.48 ± 21.59 kg, P ˂ 0.001). The LG also illustrated significant increases by 42.6% in the chest press (from 32.58 ± 7.36 to 46.47 ± 8.93 kg, P ˂ 0.001), the abdomen by 28.5% (from 38.50 ± 7.84 to 49.50 ± 7.88 kg, P ˂ 0.001) and the leg press by 30.8% (from 70.2 ± 20.57 to 92.01 ± 22.83 kg, P ˂ 0.001). Conclusion: It was concluded that the lean and the normal weight male college students can benefit from the machine resistance-training program remarkably.Keywords: body composition, lean, machine resistance training, normal weight
Procedia PDF Downloads 3562276 Rheological Modeling for Shape-Memory Thermoplastic Polymers
Authors: H. Hosseini, B. V. Berdyshev, I. Iskopintsev
Abstract:
This paper presents a rheological model for producing shape-memory thermoplastic polymers. Shape-memory occurs as a result of internal rearrangement of the structural elements of a polymer. A non-linear viscoelastic model was developed that allows qualitative and quantitative prediction of the stress-strain behavior of shape-memory polymers during heating. This research was done to develop a technique to determine the maximum possible change in size of heat-shrinkable products during heating. The rheological model used in this work was particularly suitable for defining process parameters and constructive parameters of the processing equipment.Keywords: elastic deformation, heating, shape-memory polymers, stress-strain behavior, viscoelastic model
Procedia PDF Downloads 3232275 Some Fundamental Physical Properties of BiGaO₃ Cubic Perovskite
Authors: B. Gueridi, T. Chihi, M. Fatmi, A. Faci
Abstract:
Some fundamental physical properties of BiGaO₃ were investigated under pressure and temperature effect using generalized gradient approximation and local density approximation approaches. The effect of orientation on Debye temperature and sound waves velocities were estimated from elastic constants. The value of the bulk modulus of BiGaO₃ is a sign of its high hardness because it is linked to an isotropic deformation. BiGaO₃ is a semiconductor and ductile material with covalent bonding (Ga–O), and the Bi-O bonding is ionic. The optical transitions were observed when electrons pass from the top of the valence band (O-2p) to the bottom of the conduction band (Ga-4p or Bi-6p). The thermodynamic parameters are determined in temperature and pressure ranging from 0 to 1800 K and 0 to 50 GPa.Keywords: BiGaO₃ perovskite, optical absorption, first principle, band structure
Procedia PDF Downloads 1272274 On the Lithology of Paleocene-Lower Eocene Deposits of the Achara-Trialeti Fold Zone: The Lesser Caucasus
Authors: Nino Kobakhidze, Endi Varsimashvili, Davit Makadze
Abstract:
The Caucasus is a link of the Alpine-Himalayan fold belt and involves the Greater Caucasus and the Lesser Caucasus fold systems and the Intermountain area. The study object is located within the northernmost part of the Lesser Caucasus orogen, in the eastern part of Achara-Trialeti fold -thrust belt. This area was rather well surveyed in 70th of the twentieth century in terms of oil-and-gas potential, but to our best knowledge, detailed sedimentological studies have not been conducted so far. In order to fill this gap, the authors of the present thesis started research in this direction. One of the objects selected for the research was the deposits of the Kavtura river valley situated on the northern slope of the Trialeti ridge. Paleocene-Lower Eocene deposits known in scientific literature as ‘Borjomi Flysch’ (Turbidites) are exposed in the mentioned area. During the research, the following methodologies were applied: selection of key cross sections, a collection of rock samples, microscopic description of thin sections, mineralogical and petrological analysis of material and identification of trace fossils. The study of Paleocene-Lower Eocene deposits starts with Kavtura river valley in the east, where they are well characterized by microfauna. The cross-section of the deposits starts with Danian variegated marlstone conformably overlain by the alternation of thick and thin-bedded sandstones (thickness 40-50 cm). They are continued with interbedded of thin-bedded sandstones and shales(thickness 4-5 m). On the sole surface of sandstones ichnogenera ‘Helmintopsis’ and ‘Scolicia’ are recorded and within the bed –‘Chondrites’ is found. Towards the Riverhead, there is a 1-2 m gap in sedimentation; then again the Paleocene-Lower Eocene sediments crop out. They starting with alternation of grey-green medium-grained sandstones and shales enclosing dark color plant detritus. They are overlain by the interbedded of calcareous sandstones and marls, where the thickness of sandstones is variable (20-70 cm). Ichnogenus – ‘Scolicia’ is found here. Upwards the above-mentioned deposits pass into Middle Eocenian volcanogenic-sedimentary suits. In the Kavtura river valley, the thickness of the Paleocene-Lower Eocene deposits is 300-400 m. In the process of research, the following activities are conducted: the facial analysis of host rocks, correlation of the study section with other cross sections and interpretation of depositional environment of the area. In the area the authors have found and described ichnogenera; their preliminary determination have shown that they belong to pre-depositional (‘Helmintopsis’) and post-depositional (‘Chondrites’) forms. As known, during the Cretaceous-Paleogene time, the Achara-Trialeti fold-thrust belt extensional basin was the accumulation area with great thicknesses (from shallow to deep marine sediments). It is confirmed once more by the authors investigations preliminary results of paleoichnological studies inclusive.Keywords: flysh deposits, lithology, The Lesser Caucasus, trace fossils
Procedia PDF Downloads 1642273 Denial among Women Living with Cancer: An Exploratory Study to Understand the Consequences of Cancer and the Denial Mechanism
Authors: Judith Partouche-Sebban, Saeedeh Rezaee Vessal
Abstract:
Because of the rising number of new cases of cancer, especially among women, it is more than essential to better understand how women experience cancer in order to bring them adapted to support and care and enhance their well-being and patient experience. Cancer stands for a traumatic experience in which the diagnosis, its medical treatments, and the related side effects lead to deep physical and psychological changes that may arouse considerable stress and anxiety. In order to reduce these negative emotions, women tend to use various defense mechanisms, among which denial has been defined as the most frequent mechanism used by breast cancer patients. This study aims to better understand the consequences of the experience of cancer and their link with the adoption of a denial strategy. The empirical research was done among female cancer survivors in France. Since the topic of this study is relatively unexplored, a qualitative methodology and open-ended interviews were employed. In total, 25 semi-directive interviews were conducted with a female with different cancers, different stages of treatment, and different ages. A systematic inductive method was performed to analyze data. The content analysis enabled to highlight three different denial-related behaviors among women with cancer, which serve a self-protective function. First, women who expressed high levels of anxiety confessed they tended to completely deny the existence of their cancer immediately after the diagnosis of their illness. These women mainly exhibit many fears and a deep distrust toward the medical context and professionals. This coping mechanism is defined by the patient as being unconscious. Second, other women deliberately decided to deny partial information about their cancer, whether this information is related to the stages of the illness, the emotional consequences, or the behavioral consequences of the illness. These women use this strategy as a way to avoid the reality of the illness and its impact on the different aspects of their life as if cancer does not exist. Third, some women tend to reinterpret and give meaning to their cancer as a way to reduce its impact on their life. To this end, they may use magical thinking or positive reframing, or reinterpretation. Because denial may lead to delays in medical treatments, this topic deserves a deep investigation, especially in the context of oncology. As denial is defined as a specific defense mechanism, this study contributes to the existing literature in service marketing which focuses on emotions and emotional regulation in healthcare services which is a crucial issue. Moreover, this study has several managerial implications for healthcare professionals who interact with patients in order to implement better care and support for the patients.Keywords: cancer, coping mechanisms, denial, healthcare services
Procedia PDF Downloads 852272 On the Creep of Concrete Structures
Authors: A. Brahma
Abstract:
Analysis of deferred deformations of concrete under sustained load shows that the creep has a leading role on deferred deformations of concrete structures. Knowledge of the creep characteristics of concrete is a Necessary starting point in the design of structures for crack control. Such knowledge will enable the designer to estimate the probable deformation in pre-stressed concrete or reinforced and the appropriate steps can be taken in design to accommodate this movement. In this study, we propose a prediction model that involves the acting principal parameters on the deferred behaviour of concrete structures. For the estimation of the model parameters Levenberg-Marquardt method has proven very satisfactory. A confrontation between the experimental results and the predictions of models designed shows that it is well suited to describe the evolution of the creep of concrete structures.Keywords: concrete structure, creep, modelling, prediction
Procedia PDF Downloads 2912271 Deep Learning Based Polarimetric SAR Images Restoration
Authors: Hossein Aghababaei, Sergio Vitale, Giampaolo ferraioli
Abstract:
In the context of Synthetic Aperture Radar (SAR) data, polarization is an important source of information for Earth's surface monitoring . SAR Systems are often considered to transmit only one polarization. This constraint leads to either single or dual polarimetric SAR imaging modalities. Single polarimetric systems operate with a fixed single polarization of both transmitted and received electromagnetic (EM) waves, resulting in a single acquisition channel. Dual polarimetric systems, on the other hand, transmit in one fixed polarization and receive in two orthogonal polarizations, resulting in two acquisition channels. Dual polarimetric systems are obviously more informative than single polarimetric systems and are increasingly being used for a variety of remote sensing applications. In dual polarimetric systems, the choice of polarizations for the transmitter and the receiver is open. The choice of circular transmit polarization and coherent dual linear receive polarizations forms a special dual polarimetric system called hybrid polarimetry, which brings the properties of rotational invariance to geometrical orientations of features in the scene and optimizes the design of the radar in terms of reliability, mass, and power constraints. The complete characterization of target scattering, however, requires fully polarimetric data, which can be acquired with systems that transmit two orthogonal polarizations. This adds further complexity to data acquisition and shortens the coverage area or swath of fully polarimetric images compared to the swath of dual or hybrid polarimetric images. The search for solutions to augment dual polarimetric data to full polarimetric data will therefore take advantage of full characterization and exploitation of the backscattered field over a wider coverage with less system complexity. Several methods for reconstructing fully polarimetric images using hybrid polarimetric data can be found in the literature. Although the improvements achieved by the newly investigated and experimented reconstruction techniques are undeniable, the existing methods are, however, mostly based upon model assumptions (especially the assumption of reflectance symmetry), which may limit their reliability and applicability to vegetation and forest scenarios. To overcome the problems of these techniques, this paper proposes a new framework for reconstructing fully polarimetric information from hybrid polarimetric data. The framework uses Deep Learning solutions to augment hybrid polarimetric data without relying on model assumptions. A convolutional neural network (CNN) with a specific architecture and loss function is defined for this augmentation problem by focusing on different scattering properties of the polarimetric data. In particular, the method controls the CNN training process with respect to several characteristic features of polarimetric images defined by the combination of different terms in the cost or loss function. The proposed method is experimentally validated with real data sets and compared with a well-known and standard approach from the literature. From the experiments, the reconstruction performance of the proposed framework is superior to conventional reconstruction methods. The pseudo fully polarimetric data reconstructed by the proposed method also agree well with the actual fully polarimetric images acquired by radar systems, confirming the reliability and efficiency of the proposed method.Keywords: SAR image, deep learning, convolutional neural network, deep neural network, SAR polarimetry
Procedia PDF Downloads 90