Search results for: whole genome single nucleotide polymorphisms
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4991

Search results for: whole genome single nucleotide polymorphisms

3641 Millimeter-Wave Silicon Power Amplifiers for 5G Wireless Communications

Authors: Kyoungwoon Kim, Cuong Huynh, Cam Nguyen

Abstract:

Exploding demands for more data, faster data transmission speed, less interference, more users, more wireless devices, and better reliable service-far exceeding those provided in the current mobile communications networks in the RF spectrum below 6 GHz-has led the wireless communication industry to focus on higher, previously unallocated spectrums. High frequencies in RF spectrum near (around 28 GHz) or within the millimeter-wave regime is the logical solution to meet these demands. This high-frequency RF spectrum is of increasingly important for wireless communications due to its large available bandwidths that facilitate various applications requiring large-data high-speed transmissions, reaching up to multi-gigabit per second, of vast information. It also resolves the traffic congestion problems of signals from many wireless devices operating in the current RF spectrum (below 6 GHz), hence handling more traffic. Consequently, the wireless communication industries are moving towards 5G (fifth generation) for next-generation communications such as mobile phones, autonomous vehicles, virtual reality, and the Internet of Things (IoT). The U.S. Federal Communications Commission (FCC) proved on 14th July 2016 three frequency bands for 5G around 28, 37 and 39 GHz. We present some silicon-based RFIC power amplifiers (PA) for possible implementation for 5G wireless communications around 28, 37 and 39 GHz. The 16.5-28 GHz PA exhibits measured gain of more than 34.5 dB and very flat output power of 19.4±1.2 dBm across 16.5-28 GHz. The 25.5/37-GHz PA exhibits gain of 21.4 and 17 dB, and maximum output power of 16 and 13 dBm at 25.5 and 37 GHz, respectively, in the single-band mode. In the dual-band mode, the maximum output power is 13 and 9.5 dBm at 25.5 and 37 GHz, respectively. The 10-19/23-29/33-40 GHz PA has maximum output powers of 15, 13.3, and 13.8 dBm at 15, 25, and 35 GHz, respectively, in the single-band mode. When this PA is operated in dual-band mode, it has maximum output powers of 11.4/8.2 dBm at 15/25 GHz, 13.3/3 dBm at 15/35 GHz, and 8.7/6.7 dBm at 25/35 GHz. In the tri-band mode, it exhibits 8.8/5.4/3.8 dBm maximum output power at 15/25/35 GHz. Acknowledgement: This paper was made possible by NPRP grant # 6-241-2-102 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors

Keywords: Microwaves, Millimeter waves, Power Amplifier, Wireless communications

Procedia PDF Downloads 180
3640 The Effects of Resident Fathers on the Children in South Africa: The Case of Selected Household in Golf View, Alice Town, Eastern Cape Province

Authors: Gabriel Acha Ekobi

Abstract:

Fathers play a crucial role in meeting family needs such as affection, protection, and socio-economic needs of children in the world in general and South Africa in particular. Fathers’ role in children’s lives is important in providing socialization, leadership skills, and teaching societal norms. Fathers influence is very significant for children’s well-being and development as it provides the child with moral lessons, guidance, and economic support. However, there is a paucity of information regarding the effects of fathers on children. In addition, despite legal frameworks such as the African Charter on the Rights and Welfare of the child (1999) introduced by the African Union to promote child rights nevertheless, it appears maltreatment, abuse, and poor health care continue to face children. Also, the Constitution of 1996 of the Republic of South Africa (Section 28 of the Bill of Rights) and the Children’s Act 38 of 2005 were introduced by the South African government to foster the rights of children. Nevertheless, these legal frameworks remain ineffective as children’s rights are still neglected by resident fathers. This paper explores the impact of resident fathers on children in the Golf View, Alice town of the Eastern Cape Province, South Africa. A qualitative research method and an exploratory research design were utilized, and 30 participants took part in the study. The participants comprised of single mothers or caregivers of children, resident fathers and social workers. Eighteen (18) single mothers or caregivers, 10 resident fathers, and two (2) social workers participated in the study. Data was collected using semi-structured and unstructured interviews and analysed thematically. Two main themes were identified: the role of fathers on children and the effects of resident fathers on children. The study found that the presence of fathers in the lives of children prevented psychosocial issues such as stress, depression, violence, and substance abuse. A father’s presence in a household was crucial in instilling moral values in children. This allowed them to build positive characters such as respect, kindness, humility, and compassion. Children with more involved fathers tend to have fewer impulse control problems, longer attention spans, and a higher level of sociability. The study concludes that the fathers’ role prevented anxiety, depression, and stress and led to the improvement of children’s education performance. Nevertheless, the absence of a father as a role model to act as a leader by instilling moral values hinders positive behaviours in children. This study recommended that occupational training and life skills programmes should be introduced by the government and other stakeholders to empower the fathers as this might provide the platform for them to bring up their children properly.

Keywords: children, fathering, household, resident, single parent

Procedia PDF Downloads 47
3639 Molecular Dissection of Late Flowering under a Photoperiod-Insensitive Genetic Background in Soybean

Authors: Fei Sun, Meilan Xu, Jianghui Zhu, Maria Stefanie Dwiyanti, Cheolwoo Park, Fanjiang Kong, Baohui Liu, Tetsuya Yamada, Jun Abe

Abstract:

Reduced or lack of sensitivity to long daylengths is a key character for soybean, a short-day crop, to adapt to higher latitudinal environments. However, the photoperiod-insensitivity often results in a reduction of the duration of vegetative growth and final yield. To overcome this limitation, a photoperiod insensitive line (RIL16) was developed in this study that delayed flowering from the recombinant inbred population derived from a cross between a photoperiod-insensitive cultivar AGS292 and a late-flowering Thai cultivar K3. Expression analyses under SD and LD conditions revealed that the expression levels of FLOWERING LOCUS T (FT) orthologues, FT2a and FT5a, were lowered in RIL16 relative to AGS292, although the expression of E1, a soybean-specific suppressor for FTs, was inhibited in both conditions. A soybean orthologue of TARGET OF EAT1 (TOE1), another suppressor of FT, showed an upregulated expression in RIL16, which appeared to reflect a lower expression of miR172a. Our data suggest that the delayed flowering of RIL16 most likely is controlled by genes involved in an age-dependent pathway in flowering. The QTL analysis based on 1,125 SNPs obtained from Restriction Site Associated DNA Sequencing revealed two major QTLs for flowering dates in Chromosome 16 and two minor QTLs in Chromosome 4, all of which accounted for 55% and 48% of the whole variations observed in natural day length and artificially-induced long day length conditions, respectively. The intervals of the major QTLs harbored FT2a and FT5a, respectively, on the basis of annotated genes in the Williams 82 reference genome. Sequencing analysis further revealed a nonsynonymous mutation in FT2a and an SNP in the 3′ UTR region of FT5a. A further study may elucidate a detailed mechanism underlying the QTL for late flowering. The alleles from K3 at the two QTLs can be used singly or in combination to retain an appropriate duration of vegetative growth to maximize the final yield of photoperiod-insensitive soybeans.

Keywords: FT genes, miR72a, photoperiod-insensitive, soybean flowering

Procedia PDF Downloads 214
3638 Computational Approaches to Study Lineage Plasticity in Human Pancreatic Ductal Adenocarcinoma

Authors: Almudena Espin Perez, Tyler Risom, Carl Pelz, Isabel English, Robert M. Angelo, Rosalie Sears, Andrew J. Gentles

Abstract:

Pancreatic ductal adenocarcinoma (PDAC) is one of the most deadly malignancies. The role of the tumor microenvironment (TME) is gaining significant attention in cancer research. Despite ongoing efforts, the nature of the interactions between tumors, immune cells, and stromal cells remains poorly understood. The cell-intrinsic properties that govern cell lineage plasticity in PDAC and extrinsic influences of immune populations require technically challenging approaches due to the inherently heterogeneous nature of PDAC. Understanding the cell lineage plasticity of PDAC will improve the development of novel strategies that could be translated to the clinic. Members of the team have demonstrated that the acquisition of ductal to neuroendocrine lineage plasticity in PDAC confers therapeutic resistance and is a biomarker of poor outcomes in patients. Our approach combines computational methods for deconvolving bulk transcriptomic cancer data using CIBERSORTx and high-throughput single-cell imaging using Multiplexed Ion Beam Imaging (MIBI) to study lineage plasticity in PDAC and its relationship to the infiltrating immune system. The CIBERSORTx algorithm uses signature matrices from immune cells and stroma from sorted and single-cell data in order to 1) infer the fractions of different immune cell types and stromal cells in bulked gene expression data and 2) impute a representative transcriptome profile for each cell type. We studied a unique set of 300 genomically well-characterized primary PDAC samples with rich clinical annotation. We deconvolved the PDAC transcriptome profiles using CIBERSORTx, leveraging publicly available single-cell RNA-seq data from normal pancreatic tissue and PDAC to estimate cell type proportions in PDAC, and digitally reconstruct cell-specific transcriptional profiles from our study dataset. We built signature matrices and optimized by simulations and comparison to ground truth data. We identified cell-type-specific transcriptional programs that contribute to cancer cell lineage plasticity, especially in the ductal compartment. We also studied cell differentiation hierarchies using CytoTRACE and predict cell lineage trajectories for acinar and ductal cells that we believe are pinpointing relevant information on PDAC progression. Collaborators (Angelo lab, Stanford University) has led the development of the Multiplexed Ion Beam Imaging (MIBI) platform for spatial proteomics. We will use in the very near future MIBI from tissue microarray of 40 PDAC samples to understand the spatial relationship between cancer cell lineage plasticity and stromal cells focused on infiltrating immune cells, using the relevant markers of PDAC plasticity identified from the RNA-seq analysis.

Keywords: deconvolution, imaging, microenvironment, PDAC

Procedia PDF Downloads 125
3637 Detecting Memory-Related Gene Modules in sc/snRNA-seq Data by Deep-Learning

Authors: Yong Chen

Abstract:

To understand the detailed molecular mechanisms of memory formation in engram cells is one of the most fundamental questions in neuroscience. Recent single-cell RNA-seq (scRNA-seq) and single-nucleus RNA-seq (snRNA-seq) techniques have allowed us to explore the sparsely activated engram ensembles, enabling access to the molecular mechanisms that underlie experience-dependent memory formation and consolidation. However, the absence of specific and powerful computational methods to detect memory-related genes (modules) and their regulatory relationships in the sc/snRNA-seq datasets has strictly limited the analysis of underlying mechanisms and memory coding principles in mammalian brains. Here, we present a deep-learning method named SCENTBOX, to detect memory-related gene modules and causal regulatory relationships among themfromsc/snRNA-seq datasets. SCENTBOX first constructs codifferential expression gene network (CEGN) from case versus control sc/snRNA-seq datasets. It then detects the highly correlated modules of differential expression genes (DEGs) in CEGN. The deep network embedding and attention-based convolutional neural network strategies are employed to precisely detect regulatory relationships among DEG genes in a module. We applied them on scRNA-seq datasets of TRAP; Ai14 mouse neurons with fear memory and detected not only known memory-related genes, but also the modules and potential causal regulations. Our results provided novel regulations within an interesting module, including Arc, Bdnf, Creb, Dusp1, Rgs4, and Btg2. Overall, our methods provide a general computational tool for processing sc/snRNA-seq data from case versus control studie and a systematic investigation of fear-memory-related gene modules.

Keywords: sc/snRNA-seq, memory formation, deep learning, gene module, causal inference

Procedia PDF Downloads 117
3636 Morphological Studies of the Gills of the Red Swamp Freshwater Crayfish Procambarus clarkii (Crustacea: Decapoda: Cambarids) (Girard 1852) from the River Nile and Its Branches in Egypt

Authors: Mohamed M. A. Abumandour

Abstract:

The red swamp freshwater crayfish breathe through three types of feather-like trichobranchiate gills; podobranchiae, arthrobranchiae and pleurobranchiae. All gills have the same general structure and appearance; plume-like with single broad setiferous, and single axis. The gill consists of axis with numerous finger-like filaments, having three morphological types; round, pointed and somewhat hooked shaped. The direction of filaments vary according their position; in middle region were nearly perpendicular to gill axis while in the apex were nearly parallel to axis. There were characteristic system of gill spines on; central axis (two types were distinguishable by presence of socket), basal plate, setobranch (long non-branched and short multidenticulate) and on the bilobed epipodal plate. There are four shape of spinated-like distal region of setobranch seta; two pointed processes (longitudinal arrangement and irregular arranged) and two broad processes (transverse triangular and multidenticulate). The bilobed epipodal plate devoid from any filaments and extended from outer side of podobranchiae as triangular basal part then extended between the gills as cord-like middle part then pass under the gill to lies against the thoracic body wall. By SEM, the apical part of bilobed epipodal plate have serrated free border and corrugated surface while the middle part have none serrated free border. There are two methods of gill cleaning mechanism in crayfish; passive and active method. The passive method occurred by; setae of setobranch, branchiostegite, bilobed epipodal plate, setiferous arthrodial lamellae and reversing the respiratory water through a narrow spaced branchial chamber.

Keywords: crayfis, gill spines, setobranch, gill setae, cleaning mechanisms

Procedia PDF Downloads 406
3635 A Scientific Method of Drug Development Based on Ayurvedic Bhaishajya Knowledge

Authors: Rajesh S. Mony, Vaidyaratnam Oushadhasala

Abstract:

An attempt is made in this study to evolve a drug development modality based on classical Ayurvedic knowledge base as well as on modern scientific methodology. The present study involves (a) identification of a specific ailment condition, (b) the selection of a polyherbal formulation, (c) deciding suitable extraction procedure, (d) confirming the efficacy of the combination by in-vitro trials and (e) fixing up the recommended dose. The ailment segment selected is arthritic condition. The selected herbal combination is Kunturushka, Vibhitaki, Guggulu, Haridra, Maricha and Nirgundi. They were selected as per Classical Ayurvedic references, Authentified as per API (Ayurvedic Pharmacopeia of India), Extraction of each drug was done by different ratios of Hydroalcoholic menstrums, Invitro assessment of each extract after removing residual solvent for anti-Inflammatory, anti-arthritic activities (by UV-Vis. Spectrophotometer with positive control), Invitro assessment of each extract for COX enzyme inhibition (by UV-Vis. Spectrophotometer with positive control), Selection of the extracts was made having good in-vitro activity, Performed the QC testing of each selected extract including HPTLC, that is the in process QC specifications, h. Decision of the single dose with mixtures of selected extracts was made as per the level of in-vitro activity and available toxicology data, Quantification of major groups like Phenolics, Flavonoids, Alkaloids and Bitters was done with both standard Spectrophotometric and Gravimetric methods, Method for Marker assay was developed and validated by HPTLC and a good resolved HPTLC finger print was developed for the single dosage API (Active Pharmaceutical Ingredient mixture of extracts), Three batches was prepared to fix the in process and API (Active Pharmaceutical Ingredient) QC specifications.

Keywords: drug development, antiinflammatory, quality stardardisation, planar chromatography

Procedia PDF Downloads 94
3634 Optimized Passive Heating for Multifamily Dwellings

Authors: Joseph Bostick

Abstract:

A method of decreasing the heating load of HVAC systems in a single-dwelling model of a multifamily building, by controlling movable insulation through the optimization of flux, time, surface incident solar radiation, and temperature thresholds. Simulations are completed using a co-simulation between EnergyPlus and MATLAB as an optimization tool to find optimal control thresholds. Optimization of the control thresholds leads to a significant decrease in total heating energy expenditure.

Keywords: energy plus, MATLAB, simulation, energy efficiency

Procedia PDF Downloads 171
3633 Competitive DNA Calibrators as Quality Reference Standards (QRS™) for Germline and Somatic Copy Number Variations/Variant Allelic Frequencies Analyses

Authors: Eirini Konstanta, Cedric Gouedard, Aggeliki Delimitsou, Stefania Patera, Samuel Murray

Abstract:

Introduction: Quality reference DNA standards (QRS) for molecular testing by next-generation sequencing (NGS) are essential for accurate quantitation of copy number variations (CNV) for germline and variant allelic frequencies (VAF) for somatic analyses. Objectives: Presently, several molecular analytics for oncology patients are reliant upon quantitative metrics. Test validation and standardisation are also reliant upon the availability of surrogate control materials allowing for understanding test LOD (limit of detection), sensitivity, specificity. We have developed a dual calibration platform allowing for QRS pairs to be included in analysed DNA samples, allowing for accurate quantitation of CNV and VAF metrics within and between patient samples. Methods: QRS™ blocks up to 500nt were designed for common NGS panel targets incorporating ≥ 2 identification tags (IDTDNA.com). These were analysed upon spiking into gDNA, somatic, and ctDNA using a proprietary CalSuite™ platform adaptable to common LIMS. Results: We demonstrate QRS™ calibration reproducibility spiked to 5–25% at ± 2.5% in gDNA and ctDNA. Furthermore, we demonstrate CNV and VAF within and between samples (gDNA and ctDNA) with the same reproducibility (± 2.5%) in a clinical sample of lung cancer and HBOC (EGFR and BRCA1, respectively). CNV analytics was performed with similar accuracy using a single pair of QRS calibrators when using multiple single targeted sequencing controls. Conclusion: Dual paired QRS™ calibrators allow for accurate and reproducible quantitative analyses of CNV, VAF, intrinsic sample allele measurement, inter and intra-sample measure not only simplifying NGS analytics but allowing for monitoring clinically relevant biomarker VAF across patient ctDNA samples with improved accuracy.

Keywords: calibrator, CNV, gene copy number, VAF

Procedia PDF Downloads 150
3632 Investigating the Neural Heterogeneity of Developmental Dyscalculia

Authors: Fengjuan Wang, Azilawati Jamaludin

Abstract:

Developmental Dyscalculia (DD) is defined as a particular learning difficulty with continuous challenges in learning requisite math skills that cannot be explained by intellectual disability or educational deprivation. Recent studies have increasingly recognized that DD is a heterogeneous, instead of monolithic, learning disorder with not only cognitive and behavioral deficits but so too neural dysfunction. In recent years, neuroimaging studies employed group comparison to explore the neural underpinnings of DD, which contradicted the heterogenous nature of DD and may obfuscate critical individual differences. This research aimed to investigate the neural heterogeneity of DD using case studies with functional near-infrared spectroscopy (fNIRS). A total of 54 aged 6-7 years old of children participated in this study, comprising two comprehensive cognitive assessments, an 8-minute resting state, and an 8-minute one-digit addition task. Nine children met the criteria of DD and scored at or below 85 (i.e., the 16th percentile) on the Mathematics or Math Fluency subtest of the Wechsler Individual Achievement Test, Third Edition (WIAT-III) (both subtest scores were 90 and below). The remaining 45 children formed the typically developing (TD) group. Resting-state data and brain activation in the inferior frontal gyrus (IFG), superior frontal gyrus (SFG), and intraparietal sulcus (IPS) were collected for comparison between each case and the TD group. Graph theory was used to analyze the brain network under the resting state. This theory represents the brain network as a set of nodes--brain regions—and edges—pairwise interactions across areas to reveal the architectural organizations of the nervous network. Next, a single-case methodology developed by Crawford et al. in 2010 was used to compare each case’s brain network indicators and brain activation against 45 TD children’s average data. Results showed that three out of the nine DD children displayed significant deviation from TD children’s brain indicators. Case 1 had inefficient nodal network properties. Case 2 showed inefficient brain network properties and weaker activation in the IFG and IPS areas. Case 3 displayed inefficient brain network properties with no differences in activation patterns. As a rise above, the present study was able to distill differences in architectural organizations and brain activation of DD vis-à-vis TD children using fNIRS and single-case methodology. Although DD is regarded as a heterogeneous learning difficulty, it is noted that all three cases showed lower nodal efficiency in the brain network, which may be one of the neural sources of DD. Importantly, although the current “brain norm” established for the 45 children is tentative, the results from this study provide insights not only for future work in “developmental brain norm” with reliable brain indicators but so too the viability of single-case methodology, which could be used to detect differential brain indicators of DD children for early detection and interventions.

Keywords: brain activation, brain network, case study, developmental dyscalculia, functional near-infrared spectroscopy, graph theory, neural heterogeneity

Procedia PDF Downloads 50
3631 Spatial Differentiation of Elderly Care Facilities in Mountainous Cities: A Case Study of Chongqing

Authors: Xuan Zhao, Wen Jiang

Abstract:

In this study, a web crawler was used to collect POI sample data from 38 districts and counties of Chongqing in 2022, and ArcGIS was combined to coordinate and projection conversion and realize data visualization. Nuclear density analysis and spatial correlation analysis were used to explore the spatial distribution characteristics of elderly care facilities in Chongqing, and K mean cluster analysis was carried out with GeoDa to study the spatial concentration degree of elderly care resources in 38 districts and counties. Finally, the driving force of spatial differentiation of elderly care facilities in various districts and counties of Chongqing is studied by using the method of geographic detector. The results show that: (1) in terms of spatial distribution structure, the distribution of elderly care facilities in Chongqing is unbalanced, showing a distribution pattern of ‘large dispersion and small agglomeration’ and the asymmetric pattern of ‘west dense and east sparse, north dense and south sparse’ is prominent. (2) In terms of the spatial matching between elderly care resources and the elderly population, there is a weak coordination between the input of elderly care resources and the distribution of the elderly population at the county level in Chongqing. (3) The analysis of the results of the geographical detector shows that the single factor influence is mainly the number of elderly population, public financial revenue and district and county GDP. The high single factor influence is mainly caused by the elderly population, public financial income, and district and county GDP. The influence of each influence factor on the spatial distribution of elderly care facilities is not simply superimposed but has a nonlinear enhancement effect or double factor enhancement. It is necessary to strengthen the synergistic effect of two factors and promote the synergistic effect of multiple factors.

Keywords: aging, elderly care facilities, spatial differentiation, geographical detector, driving force analysis, Mountain city

Procedia PDF Downloads 34
3630 Application of Building Information Modelling In Analysing IGBC® Ratings (Sustainability Analyses)

Authors: Lokesh Harshe

Abstract:

The building construction sector is using 36% of global energy consumption with 39% of CO₂ emission. Professionals in the Built Environment Sector have long been aware of the industry’s contribution towards CO₂ emissions and are now moving towards more sustainable practices. As a result of this, many organizations have introduced rating systems to address the issue of global warming in the construction sector by ranking construction projects based on sustainability parameters. The pre-construction phase of any building project is the most essential time to make decisions for addressing the sustainability aspects. Traditionally, it is very difficult to collect data from different stakeholders and bring it together to form a decision based on factual data to perform sustainability analyses in the pre-construction phase. Building Information Modelling (BIM) is the solution where one single model is the result of the collaborative approach of BIM processes where all the information is shared, extracted, communicated, and stored on a single platform that everyone can access and make decisions based on real-time data. The focus of this research is on the Indian Green Rating System IGBC® with the objective of understanding IGBC® requirements and developing a framework to create the relationship between the rating processes and BIM. A Hypothetical (Architectural) model of a hostel building is developed using AutoCAD 2019 & Revit Arch. 2019, where the framework is applied to generate results on sustainability analysis using Green Building Studio (GBS) and Revit Add-ins. The results of any sustainability analysis are generated within a fraction of a minute, which is very quick in comparison with traditional sustainability analysis. This may save a considerable amount of time as well as cost. The future scope is to integrate Architectural, Structural, and MEP Models to perform accurate sustainability analyses with inputs from industry professionals working on real-life Green BIM projects.

Keywords: sustainability analyses, BIM, green rating systems, IGBC®, LEED

Procedia PDF Downloads 49
3629 Effects of Different Thermal Processing Routes and Their Parameters on the Formation of Voids in PA6 Bonded Aluminum Joints

Authors: Muhammad Irfan, Guillermo Requena, Jan Haubrich

Abstract:

Adhesively bonded aluminum joints are common in automotive and aircraft industries and are one of the enablers of lightweight construction to minimize the carbon emissions during transportation for a sustainable life. This study is focused on the effects of two thermal processing routes, i.e., by direct and induction heating, and their parameters on void formation in PA6 bonded aluminum EN-AW6082 joints. The joints were characterized microanalytically as well as by lap shear experiments. The aging resistance of the joints was studied by accelerated aging tests at 80°C hot water. It was found that the processing of single lap joints by direct heating in a convection oven causes the formation of a large number of voids in the bond line. The formation of voids in the convection oven was due to longer processing times and was independent of any surface pretreatments of the metal as well as the processing temperature. However, when processing at low temperatures, a large number of small-sized voids were observed under the optical microscope, and they were larger in size but reduced in numbers at higher temperatures. An induction heating process was developed, which not only successfully reduced or eliminated the voids in PA6 bonded joints but also reduced the processing times for joining significantly. Consistent with the trend in direct heating, longer processing times and higher temperatures in induction heating also led to an increased formation of voids in the bond line. Subsequent single lap shear tests revealed that the increasing void contents led to a 21% reduction in lap shear strengths (i.e., from ~47 MPa for induction heating to ~37 MPa for direct heating). Also, there was a 17% reduction in lap shear strengths when the consolidation temperature was raised from 220˚C to 300˚C during induction heating. However, below a certain threshold of void contents, there was no observable effect on the lap shear strengths as well as on hydrothermal aging resistance of the joints consolidated by the induction heating process.

Keywords: adhesive, aluminium, convection oven, induction heating, mechanical properties, nylon6 (PA6), pretreatment, void

Procedia PDF Downloads 117
3628 Comparative Study of sLASER and PRESS Techniques in Magnetic Resonance Spectroscopy of Normal Brain

Authors: Shin Ku Kim, Yun Ah Oh, Eun Hee Seo, Chang Min Dae, Yun Jung Bae

Abstract:

Objectives: The commonly used PRESS technique in magnetic resonance spectroscopy (MRS) has a limitation of incomplete water suppression. The recently developed sLASER technique is known for its improved effectiveness in suppressing water signal. However, no prior study has compared both sequences in a normal human brain. In this study, we firstly aimed to compare the performances of both techniques in brain MRS. Materials and methods: From January 2023 to July 2023, thirty healthy participants (mean age 38 years, 17 male, 13 female) without underlying neurological diseases were enrolled in this study. All participants underwent single-voxel MRS using both PRESS and sLASER techniques on 3T MRI. Two regions-of-interest were allocated in the left medial thalamus and left parietal white matter (WM) by a single reader. The SpectroView Analysis (SW5, Philips, Netherlands) provided automatic measurements, including signal-to-noise ratio (SNR) and peak_height of water, N-acetylaspartate (NAA)-water/Choline (Cho)-water/Creatine (Cr)-water ratios, and NAA-Cr/Cho-Cr ratios. The measurements from PRESS and sLASER techniques were compared using paired T-tests and Bland-Altman methods, and the variability was assessed using coefficients of variation (CV). Results: SNR and peak_heights of the water were significantly lower with sLASER compared to PRESS (left medial thalamus, sLASER SNR/peak_height 2092±475/328±85 vs. PRESS 2811±549/440±105); left parietal WM, 5422±1016/872±196 vs. 7152±1305/1150±278; all, P<0.001, respectively). Accordingly, NAA-water/Cho-water/Cr-water ratios and NAA-Cr/Cho-Cr ratios were significantly higher with sLASER than with PRESS (all, P< 0.001, respectively). The variabilities of NAA-water/Cho-water/Cr-water ratios and Cho-Cr ratio in the left medial thalamus were lower with sLASER than with PRESS (CV, sLASER vs. PRESS, 19.9 vs. 58.1/19.8 vs. 54.7/20.5 vs. 43.9 and 11.5 vs. 16.2) Conclusion: The sLASER technique demonstrated enhanced background water suppression, resulting in increased signals and reduced variability in brain metabolite measurements of MRS. Therefore, sLASER could offer a more precise and stable method for identifying brain metabolites.

Keywords: Magnetic resonance spectroscopy, Brain, sLASER, PRESS

Procedia PDF Downloads 41
3627 Geometric Optimisation of Piezoelectric Fan Arrays for Low Energy Cooling

Authors: Alastair Hales, Xi Jiang

Abstract:

Numerical methods are used to evaluate the operation of confined face-to-face piezoelectric fan arrays as pitch, P, between the blades is varied. Both in-phase and counter-phase oscillation are considered. A piezoelectric fan consists of a fan blade, which is clamped at one end, and an extremely low powered actuator. This drives the blade tip’s oscillation at its first natural frequency. Sufficient blade tip speed, created by the high oscillation frequency and amplitude, is required to induce vortices and downstream volume flow in the surrounding air. A single piezoelectric fan may provide the ideal solution for low powered hot spot cooling in an electronic device, but is unable to induce sufficient downstream airflow to replace a conventional air mover, such as a convection fan, in power electronics. Piezoelectric fan arrays, which are assemblies including multiple fan blades usually in face-to-face orientation, must be developed to widen the field of feasible applications for the technology. The potential energy saving is significant, with a 50% power demand reduction compared to convection fans even in an unoptimised state. A numerical model of a typical piezoelectric fan blade is derived and validated against experimental data. Numerical error is found to be 5.4% and 9.8% using two data comparison methods. The model is used to explore the variation of pitch as a function of amplitude, A, for a confined two-blade piezoelectric fan array in face-to-face orientation, with the blades oscillating both in-phase and counter-phase. It has been reported that in-phase oscillation is optimal for generating maximum downstream velocity and flow rate in unconfined conditions, due at least in part to the beneficial coupling between the adjacent blades that leads to an increased oscillation amplitude. The present model demonstrates that confinement has a significant detrimental effect on in-phase oscillation. Even at low pitch, counter-phase oscillation produces enhanced downstream air velocities and flow rates. Downstream air velocity from counter-phase oscillation can be maximally enhanced, relative to that generated from a single blade, by 17.7% at P = 8A. Flow rate enhancement at the same pitch is found to be 18.6%. By comparison, in-phase oscillation at the same pitch outputs 23.9% and 24.8% reductions in peak downstream air velocity and flow rate, relative to that generated from a single blade. This optimal pitch, equivalent to those reported in the literature, suggests that counter-phase oscillation is less affected by confinement. The optimal pitch for generating bulk airflow from counter-phase oscillation is large, P > 16A, due to the small but significant downstream velocity across the span between adjacent blades. However, by considering design in a confined space, counterphase pitch should be minimised to maximise the bulk airflow generated from a certain cross-sectional area within a channel flow application. Quantitative values are found to deviate to a small degree as other geometric and operational parameters are varied, but the established relationships are maintained.

Keywords: piezoelectric fans, low energy cooling, power electronics, computational fluid dynamics

Procedia PDF Downloads 215
3626 Characterization of Defense-Related Genes and Metabolite Profiling in Oil Palm Elaeis guineensis during Interaction with Ganoderma boninense

Authors: Mohammad Nazri Abdul Bahari, Nurshafika Mohd Sakeh, Siti Nor Akmar Abdullah

Abstract:

Basal stem rot (BSR) is the most devastating disease in oil palm. Among the oil palm pathogenic fungi, the most prevalent and virulent species associated with BSR is Ganoderma boninense. Early detection of G. boninense attack in oil palm wherein physical symptoms has not yet appeared can offer opportunities to prevent the spread of the necrotrophic fungus. However, poor understanding of molecular defense responses and roles of antifungal metabolites in oil palm against G. boninense has complicated the resolving measures. Hence, characterization of defense-related molecular responses and production of antifungal compounds during early interaction with G. boninense is of utmost important. Four month-old oil palm (Elaeis guineensis) seedlings were artificially infected with G. boninense-inoculated rubber wood block via sitting technique. RNA of samples were extracted from roots and leaves tissues at 0, 3, 7 and 11 days post inoculation (d.p.i) followed with sequencing using RNA-Seq method. Differentially-expressed genes (DEGs) of oil palm-G. boninense interaction were identified, while changes in metabolite profile will be scrutinized related to the DEGs. The RNA-Seq data generated a total of 113,829,376 and 313,293,229 paired-end clean reads from untreated (0 d.p.i) and treated (3, 7, 11 d.p.i) samples respectively, each with two biological replicates. The paired-end reads were mapped to Elaeis guineensis reference genome to screen out non-oil palm genes and subsequently generated 74,794 coding sequences. DEG analysis of phytohormone biosynthetic genes in oil palm roots revealed that at p-value ≤ 0.01, ethylene and jasmonic acid may act in antagonistic manner with salicylic acid to coordinate defense response at early interaction with G. boninense. Findings on metabolite profiling of G. boninense-infected oil palm roots and leaves are hoped to explain the defense-related compounds elicited by Elaeis guineensis in response to G. boninense colonization. The study aims to shed light on molecular defense response of oil palm at early interaction with G. boninense and promote prevention measures against Ganoderma infection.

Keywords: Ganoderma boninense, metabolites, phytohormones, RNA-Seq

Procedia PDF Downloads 259
3625 An Investigation on the Pulse Electrodeposition of Ni-TiO2/TiO2 Multilayer Structures

Authors: S. Mohajeri

Abstract:

Electrocodeposition of Ni-TiO2 nanocomposite single layers and Ni-TiO2/TiO2 multilayers from Watts bath containing TiO2 sol was carried out on copper substrate. Pulse plating and pulse reverse plating techniques were applied to facilitate higher incorporations of TiO2 nanoparticles in Ni-TiO2 nanocomposite single layers, and the results revealed that by prolongation of the current-off durations and the anodic cycles, deposits containing 11.58 wt.% and 13.16 wt.% TiO2 were produced, respectively. Multilayer coatings which consisted of Ni-TiO2 and TiO2-rich layers were deposited by pulse potential deposition through limiting the nickel deposition by diffusion control mechanism. The TiO2-rich layers thickness and accordingly, the content of TiO2 reinforcement reached 104 nm and 18.47 wt.%, respectively in the optimum condition. The phase structure and surface morphology of the nanocomposite coatings were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The cross sectional morphology and line scans of the layers were studied by field emission scanning electron microscopy (FESEM). It was confirmed that the preferred orientations and the crystallite sizes of nickel matrix were influenced by the deposition technique parameters, and higher contents of codeposited TiO2 nanoparticles refined the microstructure. The corrosion behavior of the coatings in 1M NaCl and 0.5M H2SO4 electrolytes were compared by means of potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. Increase of corrosion resistance and the passivation tendency were favored by TiO2 incorporation, while the degree of passivation declined as embedded particles disturbed the continuity of passive layer. The role of TiO2 incorporation on the improvement of mechanical properties including hardness, elasticity, scratch resistance and friction coefficient was investigated by the means of atomic force microscopy (AFM). Hydrophilicity and wettability of the composite coatings were investigated under UV illumination, and the water contact angle of the multilayer was reduced to 7.23° after 1 hour of UV irradiation.

Keywords: electrodeposition, hydrophilicity, multilayer, pulse-plating

Procedia PDF Downloads 246
3624 Synthesis and Characterization of Graphene Composites with Application for Sustainable Energy

Authors: Daniel F. Sava, Anton Ficai, Bogdan S. Vasile, Georgeta Voicu, Ecaterina Andronescu

Abstract:

The energy crisis and environmental contamination are very serious problems, therefore searching for better and sustainable renewable energy is a must. It is predicted that the global energy demand will double until 2050. Solar water splitting and photocatalysis are considered as one of the solutions to these issues. The use of oxide semiconductors for solar water splitting and photocatalysis started in 1972 with the experiments of Fujishima and Honda on TiO2 electrodes. Since then, the evolution of nanoscience and characterization methods leads to a better control of size, shape and properties of materials. Although the past decade advancements are astonishing, for these applications the properties have to be controlled at a much finer level, allowing the control of charge-carrier lives, energy level positions, charge trapping centers, etc. Graphene has attracted a lot of attention, since its discovery in 2004, due to the excellent electrical, optical, mechanical and thermal properties that it possesses. These properties make it an ideal support for photocatalysts, thus graphene composites with oxide semiconductors are of great interest. We present in this work the synthesis and characterization of graphene-related materials and oxide semiconductors and their different composites. These materials can be used in constructing devices for different applications (batteries, water splitting devices, solar cells, etc), thus showing their application flexibility. The synthesized materials are different morphologies and sizes of TiO2, ZnO and Fe2O3 that are obtained through hydrothermal, sol-gel methods and graphene oxide which is synthesized through a modified Hummer method and reduced with different agents. Graphene oxide and the reduced form could also be used as a single material for transparent conductive films. The obtained single materials and composites were characterized through several methods: XRD, SEM, TEM, IR spectroscopy, RAMAN, XPS and BET adsorption/desorption isotherms. From the results, we see the variation of the properties with the variation of synthesis parameters, size and morphology of the particles.

Keywords: composites, graphene, hydrothermal, renewable energy

Procedia PDF Downloads 493
3623 Comparison and Effectiveness of Cranial Electrical Stimulation Treatment, Brain Training and Their Combination on Language and Verbal Fluency of Patients with Mild Cognitive Impairment: A Single Subject Design

Authors: Firoozeh Ghazanfari, Kourosh Amraei, Parisa Poorabadi

Abstract:

Mild cognitive impairment is one of the neurocognitive disorders that go beyond age-related decline in cognitive functions, but in fact, it is not so severe which affects daily activities. This study aimed to investigate and compare the effectiveness of treatment with cranial electrical stimulation, brain training and their double combination on the language and verbal fluency of the elderly with mild cognitive impairment. This is a single-subject method with comparative intervention designs. Four patients with a definitive diagnosis of mild cognitive impairment by a psychiatrist were selected via purposive and convenience sampling method. Addenbrooke's Cognitive Examination Scale (2017) was used to assess language and verbal fluency. Two groups were formed with different order of cranial electrical stimulation treatment, brain training by pencil and paper method and their double combination, and two patients were randomly replaced in each group. The arrangement of the first group included cranial electrical stimulation, brain training, double combination and the second group included double combination, cranial electrical stimulation and brain training, respectively. Treatment plan included: A1, B, A2, C, A3, D, A4, where electrical stimulation treatment was given in ten 30-minutes sessions (5 mA and frequency of 0.5-500 Hz) and brain training in ten 30-minutes sessions. Each baseline lasted four weeks. Patients in first group who first received cranial electrical stimulation treatment showed a higher percentage of improvement in the language and verbal fluency subscale of Addenbrooke's Cognitive Examination in comparison to patients of the second group. Based on the results, it seems that cranial electrical stimulation with its effect on neurotransmitters and brain blood flow, especially in the brain stem, may prepare the brain at the neurochemical and molecular level for a better effectiveness of brain training at the behavioral level, and the selective treatment of electrical stimulation solitude in the first place may be more effective than combining it with paper-pencil brain training.

Keywords: cranial electrical stimulation, treatment, brain training, verbal fluency, cognitive impairment

Procedia PDF Downloads 83
3622 4-Channel CWDM Optical Transceiver Applying Silicon Photonics Ge-Photodiode and MZ-Modulator

Authors: Do-Won Kim, Andy Eu Jin Lim, Raja Muthusamy Kumarasamy, Vishal Vinayak, Jacky Wang Yu-Shun, Jason Liow Tsung Yang, Patrick Lo Guo Qiang

Abstract:

In this study, we demonstrate 4-channel coarse wavelength division multiplexing (CWDM) optical transceiver based on silicon photonics integrated circuits (PIC) of waveguide Ge-photodiode (Ge-PD) and Mach Zehnder (MZ)-modulator. 4-channel arrayed PICs of Ge-PD and MZ-modulator are verified to operate at 25 Gbps/ch achieving 4x25 Gbps of total data rate. 4 bare dies of single-channel commercial electronics ICs (EICs) of trans-impedance amplifier (TIA) for Ge-PD and driver IC for MZ-modulator are packaged with PIC on printed circuit board (PCB) in a chip-on-board (COB) manner. Each single-channel EIC is electrically connected to the one channel of 4-channel PICs by wire bonds to trace. The PICs have 4-channel multiplexer for MZ-modulator and 4-channel demultiplexer for Ge-PD. The 4-channel multiplexer/demultiplexer have echelle gratings for4 CWDM optic signals of which center wavelengths are 1511, 1531, 1553, and 1573 nm. Its insertion loss is around 4dB with over 15dB of extinction ratio.The dimension of 4-channel Ge-PD is 3.6x1.4x0.3mm, and its responsivity is 1A/W with dark current of less than 20 nA.Its measured 3dB bandwidth is around 20GHz. The dimension of the 4-channel MZ-modulator is 3.6x4.8x0.3mm, and its 3dB bandwidth is around 11Ghz at -2V of reverse biasing voltage. It has 2.4V•cmbyVπVL of 6V for π shift to 4 mm length modulator.5x5um of Inversed tapered mode size converter with less than 2dB of coupling loss is used for the coupling of the lensed fiber which has 5um of mode field diameter.The PCB for COB packaging and signal transmission is designed to have 6 layers in the hybrid layer structure. 0.25 mm-thick Rogers Duroid RT5880 is used as the first core dielectric layer for high-speed performance over 25 Gbps. It has 0.017 mm-thick of copper layers and its dielectric constant is 2.2and dissipation factor is 0.0009 at 10 GHz. The dimension of both single ended and differential microstrip transmission lines are calculated using full-wave electromagnetic (EM) field simulator HFSS which RF industry is using most. It showed 3dB bandwidth at around 15GHz in S-parameter measurement using network analyzer. The wire bond length for transmission line and ground connection from EIC is done to have less than 300 µm to minimize the parasitic effect to the system.Single layered capacitors (SLC) of 100pF and 1000pF are connected as close as possible to the EICs for stabilizing the DC biasing voltage by decoupling. Its signal transmission performance is under measurement at 25Gbps achieving 100Gbps by 4chx25Gbps. This work can be applied for the active optical cable (AOC) and quad small form-factor pluggable (QSFP) for high-speed optical interconnections. Its demands are quite large in data centers targeting 100 Gbps, 400 Gbps, and 1 Tbps. As the demands of high-speed AOC and QSFP for the application to intra/inter data centers increase, this silicon photonics based high-speed 4 channel CWDM scheme can have advantages not only in data throughput but also cost effectiveness since it reduces fiber cost dramatically through WDM.

Keywords: active optical cable(AOC), 4-channel coarse wavelength division multiplexing (CWDM), communication system, data center, ge-photodiode, Mach Zehnder (MZ) modulator, optical interconnections, optical transceiver, photonics integrated circuits (PIC), quad small form-factor pluggable (QSFP), silicon photonics

Procedia PDF Downloads 413
3621 Single and Combined Effects of Diclofenac and Ibuprofen on Daphnia Magna and Some Phytoplankton Species

Authors: Ramatu I. Sha’aba, Mathias A. Chia, Abdullahi B. Alhassan, Yisa A. Gana, Ibrahim M. Gadzama

Abstract:

Globally, Diclofenac (DLC) and Ibuprofen (IBU) are the most prescribed drugs due to their antipyretic and analgesic properties. They are, however, highly toxic at elevated doses, with the involvement of an already described oxidative stress pathway. As a result, there is rising concern about the ecological fate of analgesics on non-target organisms such as Daphnia magna and Phytoplankton species. Phytoplankton is a crucial component of the aquatic ecosystem that serves as the primary producer at the base of the food chain. However, the increasing presence and levels of micropollutants such as these analgesics can disrupt their community structure, dynamics, and ecosystem functions. This study presents a comprehensive series of the physiology, antioxidant response, immobilization, and risk assessment of Diclofenac and Ibuprofen’s effects on Daphnia magna and the Phytoplankton community using a laboratory approach. The effect of DLC and IBU at 27.16 µg/L and 20.89 µg/L, respectively, for a single exposure and 22.39 µg/L for combined exposure of DLC and IBU for the experimental setup. The antioxidant response increased with increasing levels of stress. The highest stressor to the organism was 1000 µg/L of DLC and 10,000 µg/L of IBU. Peroxidase and glutathione -S-transferase activity was higher for Diclofenac + Ibuprofen. The study showed 60% and 70% immobilization of the organism at 1000 g L-1 of DLC and IBU. The two drugs and their combinations adversely impacted Phytoplankton biomass with increased exposure time. However, combining the drugs resulted in more significant adverse effects on physiological and pigment content parameters. The risk assessment calculation for the risk quotient and toxic unit of the analgesic reveals from this study was RQ Diclofenac = 8.41, TU Diclofenac = 3.68, and RQ Ibuprofen = 718.05 and TU Ibuprofen = 487.70. Hence, these findings demonstrate that the current exposure concentrations of Diclofenac and Ibuprofen can immobilize D. magna. This study shows the dangers of multiple drugs in the aquatic environment because their combinations could have additive effects on the structure and functions of Phytoplankton and are capable of immobilizing D. magna.

Keywords: algae, analgesic drug, daphnia magna, toxicity

Procedia PDF Downloads 69
3620 Modelling Causal Effects from Complex Longitudinal Data via Point Effects of Treatments

Authors: Xiaoqin Wang, Li Yin

Abstract:

Background and purpose: In many practices, one estimates causal effects arising from a complex stochastic process, where a sequence of treatments are assigned to influence a certain outcome of interest, and there exist time-dependent covariates between treatments. When covariates are plentiful and/or continuous, statistical modeling is needed to reduce the huge dimensionality of the problem and allow for the estimation of causal effects. Recently, Wang and Yin (Annals of statistics, 2020) derived a new general formula, which expresses these causal effects in terms of the point effects of treatments in single-point causal inference. As a result, it is possible to conduct the modeling via point effects. The purpose of the work is to study the modeling of these causal effects via point effects. Challenges and solutions: The time-dependent covariates often have influences from earlier treatments as well as on subsequent treatments. Consequently, the standard parameters – i.e., the mean of the outcome given all treatments and covariates-- are essentially all different (null paradox). Furthermore, the dimension of the parameters is huge (curse of dimensionality). Therefore, it can be difficult to conduct the modeling in terms of standard parameters. Instead of standard parameters, we have use point effects of treatments to develop likelihood-based parametric approach to the modeling of these causal effects and are able to model the causal effects of a sequence of treatments by modeling a small number of point effects of individual treatment Achievements: We are able to conduct the modeling of the causal effects from a sequence of treatments in the familiar framework of single-point causal inference. The simulation shows that our method achieves not only an unbiased estimate for the causal effect but also the nominal level of type I error and a low level of type II error for the hypothesis testing. We have applied this method to a longitudinal study of COVID-19 mortality among Scandinavian countries and found that the Swedish approach performed far worse than the other countries' approach for COVID-19 mortality and the poor performance was largely due to its early measure during the initial period of the pandemic.

Keywords: causal effect, point effect, statistical modelling, sequential causal inference

Procedia PDF Downloads 202
3619 Comparison and Validation of a dsDNA biomimetic Quality Control Reference for NGS based BRCA CNV analysis versus MLPA

Authors: A. Delimitsou, C. Gouedard, E. Konstanta, A. Koletis, S. Patera, E. Manou, K. Spaho, S. Murray

Abstract:

Background: There remains a lack of International Standard Control Reference materials for Next Generation Sequencing-based approaches or device calibration. We have designed and validated dsDNA biomimetic reference materials for targeted such approaches incorporating proprietary motifs (patent pending) for device/test calibration. They enable internal single-sample calibration, alleviating sample comparisons to pooled historical population-based data assembly or statistical modelling approaches. We have validated such an approach for BRCA Copy Number Variation analytics using iQRS™-CNVSUITE versus Mixed Ligation-dependent Probe Amplification. Methods: Standard BRCA Copy Number Variation analysis was compared between mixed ligation-dependent probe amplification and next generation sequencing using a cohort of 198 breast/ovarian cancer patients. Next generation sequencing based copy number variation analysis of samples spiked with iQRS™ dsDNA biomimetics were analysed using proprietary CNVSUITE software. Mixed ligation-dependent probe amplification analyses were performed on an ABI-3130 Sequencer and analysed with Coffalyser software. Results: Concordance of BRCA – copy number variation events for mixed ligation-dependent probe amplification and CNVSUITE indicated an overall sensitivity of 99.88% and specificity of 100% for iQRS™-CNVSUITE. The negative predictive value of iQRS-CNVSUITE™ for BRCA was 100%, allowing for accurate exclusion of any event. The positive predictive value was 99.88%, with no discrepancy between mixed ligation-dependent probe amplification and iQRS™-CNVSUITE. For device calibration purposes, precision was 100%, spiking of patient DNA demonstrated linearity to 1% (±2.5%) and range from 100 copies. Traditional training was supplemented by predefining the calibrator to sample cut-off (lock-down) for amplicon gain or loss based upon a relative ratio threshold, following training of iQRS™-CNVSUITE using spiked iQRS™ calibrator and control mocks. BRCA copy number variation analysis using iQRS™-CNVSUITE™ was successfully validated and ISO15189 accredited and now enters CE-IVD performance evaluation. Conclusions: The inclusion of a reference control competitor (iQRS™ dsDNA mimetic) to next generation sequencing-based sequencing offers a more robust sample-independent approach for the assessment of copy number variation events compared to mixed ligation-dependent probe amplification. The approach simplifies data analyses, improves independent sample data analyses, and allows for direct comparison to an internal reference control for sample-specific quantification. Our iQRS™ biomimetic reference materials allow for single sample copy number variation analytics and further decentralisation of diagnostics to single patient sample assessment.

Keywords: validation, diagnostics, oncology, copy number variation, reference material, calibration

Procedia PDF Downloads 63
3618 Census and Mapping of Oil Palms Over Satellite Dataset Using Deep Learning Model

Authors: Gholba Niranjan Dilip, Anil Kumar

Abstract:

Conduct of accurate reliable mapping of oil palm plantations and census of individual palm trees is a huge challenge. This study addresses this challenge and developed an optimized solution implemented deep learning techniques on remote sensing data. The oil palm is a very important tropical crop. To improve its productivity and land management, it is imperative to have accurate census over large areas. Since, manual census is costly and prone to approximations, a methodology for automated census using panchromatic images from Cartosat-2, SkySat and World View-3 satellites is demonstrated. It is selected two different study sites in Indonesia. The customized set of training data and ground-truth data are created for this study from Cartosat-2 images. The pre-trained model of Single Shot MultiBox Detector (SSD) Lite MobileNet V2 Convolutional Neural Network (CNN) from the TensorFlow Object Detection API is subjected to transfer learning on this customized dataset. The SSD model is able to generate the bounding boxes for each oil palm and also do the counting of palms with good accuracy on the panchromatic images. The detection yielded an F-Score of 83.16 % on seven different images. The detections are buffered and dissolved to generate polygons demarcating the boundaries of the oil palm plantations. This provided the area under the plantations and also gave maps of their location, thereby completing the automated census, with a fairly high accuracy (≈100%). The trained CNN was found competent enough to detect oil palm crowns from images obtained from multiple satellite sensors and of varying temporal vintage. It helped to estimate the increase in oil palm plantations from 2014 to 2021 in the study area. The study proved that high-resolution panchromatic satellite image can successfully be used to undertake census of oil palm plantations using CNNs.

Keywords: object detection, oil palm tree census, panchromatic images, single shot multibox detector

Procedia PDF Downloads 157
3617 Residential Satisfaction and Public Perception of Socialized Housing Projects in Davao City, Philippines

Authors: Micah Amor P. Yares

Abstract:

Aside from the provision of adequate housing, the Philippine government faces the challenge of ensuring that the housing units provided conform to the Filipino’s ambition to self as manifested by owning a small house on a big lot. The study aimed to explore the levels of satisfaction of end-users and the public perception towards socialized housing in Davao City, Philippines. The residential satisfaction survey includes three types of respondents, which are end-users of single-detached, duplex and rowhouse socialized housing units. Respondents were asked to rate their level of satisfaction and perception to the following housing components: Dwelling Unit; Public Facilities; Social Environment; Neighborhood Facilities; Management Systems; and Acquisition and Financing. The data were subjected to Exploratory Factor Analysis to determine if variables can be grouped together, and Confirmatory Factor Analysis to measure if the model fits the construct. In determining which component affects the level of perception and satisfaction, a Multiple Linear Regression Analysis was employed. Lastly, an Individual Samples T-Test was performed to compare the levels of satisfaction and perception among respondents. Results revealed that residents of socialized housing were highly satisfied with their living conditions despite concerns on management systems, public and neighborhood facilities. Residents' satisfaction is primarily influenced by the Social Environment, Acquisition and Financing, and the Dwelling Unit. However, a significant difference in residential satisfaction level was observed among different types of housing with rowhouse residents recording the lowest satisfaction level compared to single-detached and duplex units. Moreover, the general public perceived Socialized housing as moderately satisfactory having the same determinant as the end-users aside from the Public Facilities. This study recommends revisiting the current Socialized Housing policies by considering the feedback from the end-users based on their lived experience and the public according to their perception.

Keywords: public perception, residential satisfaction, rowhouse, socialized housing

Procedia PDF Downloads 224
3616 In vitro Modeling of Aniridia-Related Keratopathy by the Use of Crispr/Cas9 on Limbal Epithelial Cells and Rescue

Authors: Daniel Aberdam

Abstract:

Haploinsufficiency of PAX6 in humans is the main cause of congenital aniridia, a rare eye disease characterized by reduced visual acuity. Patients have also progressive disorders including cataract, glaucoma and corneal abnormalities making their condition very challenging to manage. Aniridia-related keratopathy (ARK), caused by a combination of factors including limbal stem-cell deficiency, impaired healing response, abnormal differentiation, and infiltration of conjunctival cells onto the corneal surface, affects up to 95% of patients. It usually begins in the first decade of life resulting in recurrent corneal erosions, sub-epithelial fibrosis with corneal decompensation and opacification. Unfortunately, current treatment options for aniridia patients are currently limited. Although animal models partially recapitulate this disease, there is no in vitro cellular model of AKT needed for drug/therapeutic tools screening and validation. We used genome editing (CRISPR/Cas9 technology) to introduce a nonsense mutation found in patients into one allele of the PAX6 gene into limbal stem cells. Resulting mutated clones, expressing half of the amount of PAX6 protein and thus representative of haploinsufficiency were further characterized. Sequencing analysis showed that no off-target mutations were induced. The mutated cells displayed reduced cell proliferation and cell migration but enhanced cell adhesion. Known PAX6 targets expression was also reduced. Remarkably, addition of soluble recombinant PAX6 protein into the culture medium was sufficient to activate endogenous PAX6 gene and, as a consequence, rescue the phenotype. It strongly suggests that our in vitro model recapitulates well the epithelial defect and becomes a powerful tool to identify drugs that could rescue the corneal defect in patients. Furthermore, we demonstrate that the homeotic transcription factor Pax6 is able to be uptake naturally by recipient cells to function into the nucleus.

Keywords: Pax6, crispr/cas9, limbal stem cells, aniridia, gene therapy

Procedia PDF Downloads 201
3615 Prevalence of Pretreatment Drug HIV-1 Mutations in Moscow, Russia

Authors: Daria Zabolotnaya, Svetlana Degtyareva, Veronika Kanestri, Danila Konnov

Abstract:

An adequate choice of the initial antiretroviral treatment determines the treatment efficacy. In the clinical guidelines in Russia non-nucleoside reverse transcriptase inhibitors (NNRTIs) are still considered to be an option for first-line treatment while pretreatment drug resistance (PDR) testing is not routinely performed. We conducted a cohort retrospective study in HIV-positive treatment naïve patients of the H-clinic (Moscow, Russia) who performed PDR testing from July 2017 to November 2021. All the information was obtained from the medical records anonymously. We analyzed the mutations in reverse transcriptase and protease genes. RT-sequences were obtained by AmpliSens HIV-Resist-Seq kit. Drug resistance was defined using the HIVdb Program v. 8.9-1. PDR was estimated using the Stanford algorithm. Descriptive statistics were performed in Excel (Microsoft Office, 2019). A total of 261 HIV-1 infected patients were enrolled in the study including 197 (75.5%) male and 64 (24.5%) female. The mean age was 34.6±8.3 years. The median CD4 count – 521 cells/µl (IQR 367-687 cells/µl). Data on risk factors of HIV-infection were scarce. The total quantity of strains containing mutations in the reverse transcriptase gene was 75 (28.7%). From these 5 (1.9%) mutations were associated with PDR to nucleoside reverse transcriptase inhibitors (NRTIs) and 30 (11.5%) – with PDR to NNRTIs. The number of strains with mutations in protease gene was 43 (16.5%), from these only 3 (1.1%) mutations were associated with resistance to protease inhibitors. For NNRTIs the most prevalent PDR mutations were E138A, V106I. Most of the HIV variants exhibited a single PDR mutation, 2 were found in 3 samples. Most of HIV variants with PDR mutation displayed a single drug class resistance mutation. 2/37 (5.4%) strains had both NRTIs and NNRTIs mutations. There were no strains identified with PDR mutations to all three drug classes. Though earlier data demonstrated a lower level of PDR in HIV treatment naïve population in Russia and our cohort can be not fully representative as it is taken from the private clinic, it reflects the trend of increasing PDR especially to NNRTIs. Therefore, we consider either pretreatment testing or giving the priority to other drugs as first-line treatment necessary.

Keywords: HIV, resistance, mutations, treatment

Procedia PDF Downloads 89
3614 Endoscopic Pituitary Surgery: Learning Curve and Nasal Quality of Life

Authors: Martin Dupuy, Solange Grunenwald, Pierre-Louis Colombo, Laurence Mahieu, Pomone Richard, Philippe Bartoli

Abstract:

Endonasal endoscopic trans-sphenoidal surgery for pituitary tumours has become a mainstay of treatment over the last two decades. Although it is generally accepted that there is no significant difference between endoscopic versus microscopic approach for surgical outcomes (endocrine and ophthalmologic status), nasal morbidity seems to the benefit of endoscopic procedures. Minimally invasive endoscopic surgery needs an operative learning curve to achieve surgeon’s efficiency. This learning curve is now well known for surgical outcomes and complications rate, however, few data are available for nasal morbidity. The aim of our series is to document operative experience and nasal quality of life after (NQOL) endoscopic trans-sphenoidal surgery. The prospective pituitary surgical cohort consisted of 525 consecutives patients referred to our Skull Base Diseases Department. Endoscopic procedures were performed by a single neurosurgeon using an uninostril approach. NQOL was evaluated using the Sino-Nasal Test (SNOT-22), the Anterior Base Nasal Inventory (ASBNI) and the Skull Base Inventory Score (SBIS). Data were collected before surgery during hospital stay and 3 months after the surgery. The seventy first patients were compared to the latest 70 patients. There was no significant difference between comparison score before versus after surgery for SNOT-22, ASBNI and SBIS during the single surgeon’s learning curve. Our series demonstrates that in our institution there is no statistically significant learning curve for NQOL after uninostril endoscopic pituitary surgery. A careful progression through sinonasal structures with very limited mucosal incision is associated with minimal morbidity and preserves nasal function. Conservative and minimal invasive approach could be achieved early during learning curve.

Keywords: pituitary surgery, quality of life, minimal invasive surgery, learning curve, pituitary tumours, skull base surgery, endoscopic surgery

Procedia PDF Downloads 117
3613 Effect of Out-Of-Plane Deformation on Relaxation Method of Stress Concentration in a Plate

Authors: Shingo Murakami, Shinichi Enoki

Abstract:

In structures, stress concentration is a factor of fatigue fracture. Basically, the stress concentration is a phenomenon that should be avoided. However, it is difficult to avoid the stress concentration. Therefore, relaxation of the stress concentration is important. The stress concentration arises from notches and circular holes. There is a relaxation method that a composite patch covers a notch and a circular hole. This relaxation method is used to repair aerial wings, but it is not systematized. Composites are more expensive than single materials. Accordingly, we propose the relaxation method that a single material patch covers a notch and a circular hole, and aim to systematize this relaxation method. We performed FEA (Finite Element Analysis) about an object by using a three-dimensional FEA model. The object was that a patch adheres to a plate with a circular hole. And, a uniaxial tensile load acts on the patched plate with a circular hole. In the three-dimensional FEA model, it is not easy to model the adhesion layer. Basically, the yield stress of the adhesive is smaller than that of adherents. Accordingly, the adhesion layer gets to plastic deformation earlier than the adherents under the yield stress of adherents. Therefore, we propose the three-dimensional FEA model which is applied a nonlinear elastic region to the adhesion layer. The nonlinear elastic region was calculated by a bilinear approximation. We compared the analysis results with the tensile test results to confirm whether the analysis model has usefulness. As a result, the analysis results agreed with the tensile test results. And, we confirmed that the analysis model has usefulness. As a result that the three-dimensional FEA model was used to the analysis, it was confirmed that an out-of-plane deformation occurred to the patched plate with a circular hole. The out-of-plane deformation causes stress increase of the patched plate with a circular hole. Therefore, we investigate that the out-of-plane deformation affects relaxation of the stress concentration in the plate with a circular hole on this relaxation method. As a result, it was confirmed that the out-of-plane deformation inhibits relaxation of the stress concentration on the plate with a circular hole.

Keywords: stress concentration, patch, out-of-plane deformation, Finite Element Analysis

Procedia PDF Downloads 264
3612 A Next Generation Multi-Scale Modeling Theatre for in silico Oncology

Authors: Safee Chaudhary, Mahnoor Naseer Gondal, Hira Anees Awan, Abdul Rehman, Ammar Arif, Risham Hussain, Huma Khawar, Zainab Arshad, Muhammad Faizyab Ali Chaudhary, Waleed Ahmed, Muhammad Umer Sultan, Bibi Amina, Salaar Khan, Muhammad Moaz Ahmad, Osama Shiraz Shah, Hadia Hameed, Muhammad Farooq Ahmad Butt, Muhammad Ahmad, Sameer Ahmed, Fayyaz Ahmed, Omer Ishaq, Waqar Nabi, Wim Vanderbauwhede, Bilal Wajid, Huma Shehwana, Muhammad Tariq, Amir Faisal

Abstract:

Cancer is a manifestation of multifactorial deregulations in biomolecular pathways. These deregulations arise from the complex multi-scale interplay between cellular and extracellular factors. Such multifactorial aberrations at gene, protein, and extracellular scales need to be investigated systematically towards decoding the underlying mechanisms and orchestrating therapeutic interventions for patient treatment. In this work, we propose ‘TISON’, a next-generation web-based multiscale modeling platform for clinical systems oncology. TISON’s unique modeling abstraction allows a seamless coupling of information from biomolecular networks, cell decision circuits, extra-cellular environments, and tissue geometries. The platform can undertake multiscale sensitivity analysis towards in silico biomarker identification and drug evaluation on cellular phenotypes in user-defined tissue geometries. Furthermore, integration of cancer expression databases such as The Cancer Genome Atlas (TCGA) and Human Proteome Atlas (HPA) facilitates in the development of personalized therapeutics. TISON is the next-evolution of multiscale cancer modeling and simulation platforms and provides a ‘zero-code’ model development, simulation, and analysis environment for application in clinical settings.

Keywords: systems oncology, cancer systems biology, cancer therapeutics, personalized therapeutics, cancer modelling

Procedia PDF Downloads 217