Search results for: time series models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 24586

Search results for: time series models

23236 Exploration of Hydrocarbon Unconventional Accumulations in the Argillaceous Formation of the Autochthonous Miocene Succession in the Carpathian Foredeep

Authors: Wojciech Górecki, Anna Sowiżdżał, Grzegorz Machowski, Tomasz Maćkowski, Bartosz Papiernik, Michał Stefaniuk

Abstract:

The article shows results of the project which aims at evaluating possibilities of effective development and exploitation of natural gas from argillaceous series of the Autochthonous Miocene in the Carpathian Foredeep. To achieve the objective, the research team develop a world-trend based but unique methodology of processing and interpretation, adjusted to data, local variations and petroleum characteristics of the area. In order to determine the zones in which maximum volumes of hydrocarbons might have been generated and preserved as shale gas reservoirs, as well as to identify the most preferable well sites where largest gas accumulations are anticipated a number of task were accomplished. Evaluation of petrophysical properties and hydrocarbon saturation of the Miocene complex is based on laboratory measurements as well as interpretation of well-logs and archival data. The studies apply mercury porosimetry (MICP), micro CT and nuclear magnetic resonance imaging (using the Rock Core Analyzer). For prospective location (e.g. central part of Carpathian Foredeep – Brzesko-Wojnicz area) reprocessing and reinterpretation of detailed seismic survey data with the use of integrated geophysical investigations has been made. Construction of quantitative, structural and parametric models for selected areas of the Carpathian Foredeep is performed on the basis of integrated, detailed 3D computer models. Modeling are carried on with the Schlumberger’s Petrel software. Finally, prospective zones are spatially contoured in a form of regional 3D grid, which will be framework for generation modelling and comprehensive parametric mapping, allowing for spatial identification of the most prospective zones of unconventional gas accumulation in the Carpathian Foredeep. Preliminary results of research works indicate a potentially prospective area for occurrence of unconventional gas accumulations in the Polish part of Carpathian Foredeep.

Keywords: autochthonous Miocene, Carpathian foredeep, Poland, shale gas

Procedia PDF Downloads 228
23235 Biomolecular Interaction of Ruthenium(II) Polypyridyl Complexes

Authors: S. N. Harun, H. Ahmad

Abstract:

A series of ruthenium(II) complexes, including two novel compounds [Ru(dppz)2(L)]2+ where dppz = dipyrido-[3,2-a:2’,3’-c]phenazine, and L = 2-phenylimidazo[4,5-f][1,10]phenanthroline (PIP) or 2-(4-hydroxyphenyl)imidazo[4,5-f][1,10]phenanthroline (p-HPIP) have been synthesized and characterized. The previously reported complexes [Ru(bpy)2L]2+ and [Ru(phen)2L]2+ were also prepared. All complexes were characterized by elemental analysis, 1H-NMR spectroscopy, ESI-Mass spectroscopy and FT-IR spectroscopy. The photophysical properties were analyzed by UV-Visible spectroscopy and fluorescence spectroscopy. [Ru(dppz)2(PIP)]2+ and [Ru(dppz)2(p-HPIP)]2+ displayed ‘molecular light-switch’ effect as they have high emission in acetonitrile but no emission in water. The cytotoxicity of all complexes against cancer cell lines Hela and MCF-7 were investigated through standard MTT assay. [Ru(dppz)2(PIP)]2+ showed moderate toxicity on both MCF-7 and Hela with IC50 of 37.64 µM and 28.02 µM, respectively. Interestingly, [Ru(dppz)2(p-HPIP)]2+ exhibited remarkable cytotoxicity results with IC50 of 13.52 µM on Hela and 11.63 µM on MCF-7 cell lines which are comparable to the infamous anti-cancer drug, cisplatin. The cytotoxicity of this complex series increased as the ligands size extended in order of [Ru(bpy)2(L)]2+ < [Ru(phen)2(L)]2+ < [Ru(dppz)2(L)]2+.

Keywords: ruthenium, cytotoxicity, molecular light-switch, anticancer

Procedia PDF Downloads 306
23234 Modelling of Reactive Methodologies in Auto-Scaling Time-Sensitive Services With a MAPE-K Architecture

Authors: Óscar Muñoz Garrigós, José Manuel Bernabeu Aubán

Abstract:

Time-sensitive services are the base of the cloud services industry. Keeping low service saturation is essential for controlling response time. All auto-scalable services make use of reactive auto-scaling. However, reactive auto-scaling has few in-depth studies. This presentation shows a model for reactive auto-scaling methodologies with a MAPE-k architecture. Queuing theory can compute different properties of static services but lacks some parameters related to the transition between models. Our model uses queuing theory parameters to relate the transition between models. It associates MAPE-k related times, the sampling frequency, the cooldown period, the number of requests that an instance can handle per unit of time, the number of incoming requests at a time instant, and a function that describes the acceleration in the service's ability to handle more requests. This model is later used as a solution to horizontally auto-scale time-sensitive services composed of microservices, reevaluating the model’s parameters periodically to allocate resources. The solution requires limiting the acceleration of the growth in the number of incoming requests to keep a constrained response time. Business benefits determine such limits. The solution can add a dynamic number of instances and remains valid under different system sizes. The study includes performance recommendations to improve results according to the incoming load shape and business benefits. The exposed methodology is tested in a simulation. The simulator contains a load generator and a service composed of two microservices, where the frontend microservice depends on a backend microservice with a 1:1 request relation ratio. A common request takes 2.3 seconds to be computed by the service and is discarded if it takes more than 7 seconds. Both microservices contain a load balancer that assigns requests to the less loaded instance and preemptively discards requests if they are not finished in time to prevent resource saturation. When load decreases, instances with lower load are kept in the backlog where no more requests are assigned. If the load grows and an instance in the backlog is required, it returns to the running state, but if it finishes the computation of all requests and is no longer required, it is permanently deallocated. A few load patterns are required to represent the worst-case scenario for reactive systems: the following scenarios test response times, resource consumption and business costs. The first scenario is a burst-load scenario. All methodologies will discard requests if the rapidness of the burst is high enough. This scenario focuses on the number of discarded requests and the variance of the response time. The second scenario contains sudden load drops followed by bursts to observe how the methodology behaves when releasing resources that are lately required. The third scenario contains diverse growth accelerations in the number of incoming requests to observe how approaches that add a different number of instances can handle the load with less business cost. The exposed methodology is compared against a multiple threshold CPU methodology allocating/deallocating 10 or 20 instances, outperforming the competitor in all studied metrics.

Keywords: reactive auto-scaling, auto-scaling, microservices, cloud computing

Procedia PDF Downloads 93
23233 Banana Peels as an Eco-Sorbent for Manganese Ions

Authors: M. S. Mahmoud

Abstract:

This study was conducted to evaluate the manganese removal from aqueous solution using Banana peels activated carbon (BPAC). Batch experiments have been carried out to determine the influence of parameters such as pH, biosorbent dose, initial metal ion concentrations and contact times on the biosorption process. From these investigations, a significant increase in percentage removal of manganese 97.4 % is observed at pH value 5.0, biosorbent dose 0.8 g, initial concentration 20 ppm, temperature 25 ± 2 °C, stirring rate 200 rpm and contact time 2 h. The equilibrium concentration and the adsorption capacity at equilibrium of the experimental results were fitted to the Langmuir and Freundlich isotherm models; the Langmuir isotherm was found to well represent the measured adsorption data implying BPAC had heterogeneous surface. A raw groundwater samples were collected from Baharmos groundwater treatment plant network at Embaba and Manshiet Elkanater City/District-Giza, Egypt, for treatment at the best conditions that reached at first phase by BPAC. The treatment with BPAC could reduce iron and manganese value of raw groundwater by 91.4 % and 97.1 %, respectively and the effect of the treatment process on the microbiological properties of groundwater sample showed decrease of total bacterial count either at 22°C or at 37°C to 85.7 % and 82.4 %, respectively. Also, BPAC was characterized using SEM and FTIR spectroscopy.

Keywords: biosorption, banana peels, isothermal models, manganese

Procedia PDF Downloads 369
23232 A Computational Analysis of Flow and Acoustics around a Car Wing Mirror

Authors: Aidan J. Bowes, Reaz Hasan

Abstract:

The automotive industry is continually aiming to develop the aerodynamics of car body design. This may be for a variety of beneficial reasons such as to increase speed or fuel efficiency by reducing drag. However recently there has been a greater amount of focus on wind noise produced while driving. Designers in this industry seek a combination of both simplicity of approach and overall effectiveness. This combined with the growing availability of commercial CFD (Computational Fluid Dynamics) packages is likely to lead to an increase in the use of RANS (Reynolds Averaged Navier-Stokes) based CFD methods. This is due to these methods often being simpler than other CFD methods, having a lower demand on time and computing power. In this investigation the effectiveness of turbulent flow and acoustic noise prediction using RANS based methods has been assessed for different wing mirror geometries. Three different RANS based models were used, standard k-ε, realizable k-ε and k-ω SST. The merits and limitations of these methods are then discussed, by comparing with both experimental and numerical results found in literature. In general, flow prediction is fairly comparable to more complex LES (Large Eddy Simulation) based methods; in particular for the k-ω SST model. However acoustic noise prediction still leaves opportunities for more improvement using RANS based methods.

Keywords: acoustics, aerodynamics, RANS models, turbulent flow

Procedia PDF Downloads 446
23231 Development of an Automatic Calibration Framework for Hydrologic Modelling Using Approximate Bayesian Computation

Authors: A. Chowdhury, P. Egodawatta, J. M. McGree, A. Goonetilleke

Abstract:

Hydrologic models are increasingly used as tools to predict stormwater quantity and quality from urban catchments. However, due to a range of practical issues, most models produce gross errors in simulating complex hydraulic and hydrologic systems. Difficulty in finding a robust approach for model calibration is one of the main issues. Though automatic calibration techniques are available, they are rarely used in common commercial hydraulic and hydrologic modelling software e.g. MIKE URBAN. This is partly due to the need for a large number of parameters and large datasets in the calibration process. To overcome this practical issue, a framework for automatic calibration of a hydrologic model was developed in R platform and presented in this paper. The model was developed based on the time-area conceptualization. Four calibration parameters, including initial loss, reduction factor, time of concentration and time-lag were considered as the primary set of parameters. Using these parameters, automatic calibration was performed using Approximate Bayesian Computation (ABC). ABC is a simulation-based technique for performing Bayesian inference when the likelihood is intractable or computationally expensive to compute. To test the performance and usefulness, the technique was used to simulate three small catchments in Gold Coast. For comparison, simulation outcomes from the same three catchments using commercial modelling software, MIKE URBAN were used. The graphical comparison shows strong agreement of MIKE URBAN result within the upper and lower 95% credible intervals of posterior predictions as obtained via ABC. Statistical validation for posterior predictions of runoff result using coefficient of determination (CD), root mean square error (RMSE) and maximum error (ME) was found reasonable for three study catchments. The main benefit of using ABC over MIKE URBAN is that ABC provides a posterior distribution for runoff flow prediction, and therefore associated uncertainty in predictions can be obtained. In contrast, MIKE URBAN just provides a point estimate. Based on the results of the analysis, it appears as though ABC the developed framework performs well for automatic calibration.

Keywords: automatic calibration framework, approximate bayesian computation, hydrologic and hydraulic modelling, MIKE URBAN software, R platform

Procedia PDF Downloads 309
23230 [Keynote Speech]: Determination of Naturally Occurring and Artificial Radionuclide Activity Concentrations in Marine Sediments in Western Marmara, Turkey

Authors: Erol Kam, Z. U. Yümün

Abstract:

Natural and artificial radionuclides cause radioactive contamination in environments, just as the other non-biodegradable pollutants (heavy metals, etc.) sink to the sea floor and accumulate in sediments. Especially the habitat of benthic foraminifera living on the surface of sediments or in sediments at the seafloor are affected by radioactive pollution in the marine environment. Thus, it is important for pollution analysis to determine the radionuclides. Radioactive pollution accumulates in the lowest level of the food chain and reaches humans at the highest level. The more the accumulation, the more the environment is endangered. This study used gamma spectrometry to investigate the natural and artificial radionuclide distribution of sediment samples taken from living benthic foraminifera habitats in the Western Marmara Sea. The radionuclides, K-40, Cs-137, Ra-226, Mn 54, Zr-95+ and Th-232, were identified in the sediment samples. For this purpose, 18 core samples were taken from depths of about 25-30 meters in the Marmara Sea in 2016. The locations of the core samples were specifically selected exclusively from discharge points for domestic and industrial areas, port locations, and so forth to represent pollution in the study area. Gamma spectrometric analysis was used to determine the radioactive properties of sediments. The radionuclide concentration activity values in the sediment samples obtained were Cs-137=0.9-9.4 Bq/kg, Th-232=18.9-86 Bq/kg, Ra-226=10-50 Bq/kg, K-40=24.4–670 Bq/kg, Mn 54=0.71–0.9 Bq/kg and Zr-95+=0.18–0.19 Bq/kg. These values were compared with the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) data, and an environmental analysis was carried out. The Ra-226 series, the Th-232 series, and the K-40 radionuclides accumulate naturally and are increasing every day due to anthropogenic pollution. Although the Ra-226 values obtained in the study areas remained within normal limits according to the UNSCEAR values, the K-40, and Th-232 series values were found to be high in almost all the locations.

Keywords: Ra-226, Th-232, K-40, Cs-137, Mn 54, Zr-95+, radionuclides, Western Marmara Sea

Procedia PDF Downloads 421
23229 Ground Short Circuit Contributions of a MV Distribution Line Equipped with PWMSC

Authors: Mohamed Zellagui, Heba Ahmed Hassan

Abstract:

This paper proposes a new approach for the calculation of short-circuit parameters in the presence of Pulse Width Modulated based Series Compensator (PWMSC). PWMSC is a newly Flexible Alternating Current Transmission System (FACTS) device that can modulate the impedance of a transmission line through applying a variation to the duty cycle (D) of a train of pulses with fixed frequency. This results in an improvement of the system performance as it provides virtual compensation of distribution line impedance by injecting controllable apparent reactance in series with the distribution line. This controllable reactance can operate in both capacitive and inductive modes and this makes PWMSC highly effective in controlling the power flow and increasing system stability in the system. The purpose of this work is to study the impact of fault resistance (RF) which varies between 0 to 30 Ω on the fault current calculations in case of a ground fault and a fixed fault location. The case study is for a medium voltage (MV) Algerian distribution line which is compensated by PWMSC in the 30 kV Algerian distribution power network. The analysis is based on symmetrical components method which involves the calculations of symmetrical components of currents and voltages, without and with PWMSC in both cases of maximum and minimum duty cycle value for capacitive and inductive modes. The paper presents simulation results which are verified by the theoretical analysis.

Keywords: pulse width modulated series compensator (pwmsc), duty cycle, distribution line, short-circuit calculations, ground fault, symmetrical components method

Procedia PDF Downloads 500
23228 Application of the Micropolar Beam Theory for the Construction of the Discrete-Continual Model of Carbon Nanotubes

Authors: Samvel H. Sargsyan

Abstract:

Together with the study of electron-optical properties of nanostructures and proceeding from experiment-based data, the study of the mechanical properties of nanostructures has become quite actual. For the study of the mechanical properties of fullerene, carbon nanotubes, graphene and other nanostructures one of the crucial issues is the construction of their adequate mathematical models. Among all mathematical models of graphene or carbon nano-tubes, this so-called discrete-continuous model is specifically important. It substitutes the interactions between atoms by elastic beams or springs. The present paper demonstrates the construction of the discrete-continual beam model for carbon nanotubes or graphene, where the micropolar beam model based on the theory of moment elasticity is accepted. With the account of the energy balance principle, the elastic moment constants for the beam model, expressed by the physical and geometrical parameters of carbon nanotube or graphene, are determined. By switching from discrete-continual beam model to the continual, the models of micropolar elastic cylindrical shell and micropolar elastic plate are confirmed as continual models for carbon nanotube and graphene respectively.

Keywords: carbon nanotube, discrete-continual, elastic, graphene, micropolar, plate, shell

Procedia PDF Downloads 159
23227 Improved Elastoplastic Bounding Surface Model for the Mathematical Modeling of Geomaterials

Authors: Andres Nieto-Leal, Victor N. Kaliakin, Tania P. Molina

Abstract:

The nature of most engineering materials is quite complex. It is, therefore, difficult to devise a general mathematical model that will cover all possible ranges and types of excitation and behavior of a given material. As a result, the development of mathematical models is based upon simplifying assumptions regarding material behavior. Such simplifications result in some material idealization; for example, one of the simplest material idealization is to assume that the material behavior obeys the elasticity. However, soils are nonhomogeneous, anisotropic, path-dependent materials that exhibit nonlinear stress-strain relationships, changes in volume under shear, dilatancy, as well as time-, rate- and temperature-dependent behavior. Over the years, many constitutive models, possessing different levels of sophistication, have been developed to simulate the behavior geomaterials, particularly cohesive soils. Early in the development of constitutive models, it became evident that elastic or standard elastoplastic formulations, employing purely isotropic hardening and predicated in the existence of a yield surface surrounding a purely elastic domain, were incapable of realistically simulating the behavior of geomaterials. Accordingly, more sophisticated constitutive models have been developed; for example, the bounding surface elastoplasticity. The essence of the bounding surface concept is the hypothesis that plastic deformations can occur for stress states either within or on the bounding surface. Thus, unlike classical yield surface elastoplasticity, the plastic states are not restricted only to those lying on a surface. Elastoplastic bounding surface models have been improved; however, there is still need to improve their capabilities in simulating the response of anisotropically consolidated cohesive soils, especially the response in extension tests. Thus, in this work an improved constitutive model that can more accurately predict diverse stress-strain phenomena exhibited by cohesive soils was developed. Particularly, an improved rotational hardening rule that better simulate the response of cohesive soils in extension. The generalized definition of the bounding surface model provides a convenient and elegant framework for unifying various previous versions of the model for anisotropically consolidated cohesive soils. The Generalized Bounding Surface Model for cohesive soils is a fully three-dimensional, time-dependent model that accounts for both inherent and stress induced anisotropy employing a non-associative flow rule. The model numerical implementation in a computer code followed an adaptive multistep integration scheme in conjunction with local iteration and radial return. The one-step trapezoidal rule was used to get the stiffness matrix that defines the relationship between the stress increment and the strain increment. After testing the model in simulating the response of cohesive soils through extensive comparisons of model simulations to experimental data, it has been shown to give quite good simulations. The new model successfully simulates the response of different cohesive soils; for example, Cardiff Kaolin, Spestone Kaolin, and Lower Cromer Till. The simulated undrained stress paths, stress-strain response, and excess pore pressures are in very good agreement with the experimental values, especially in extension.

Keywords: bounding surface elastoplasticity, cohesive soils, constitutive model, modeling of geomaterials

Procedia PDF Downloads 315
23226 Computing Transition Intensity Using Time-Homogeneous Markov Jump Process: Case of South African HIV/AIDS Disposition

Authors: A. Bayaga

Abstract:

This research provides a technical account of estimating Transition Probability using Time-homogeneous Markov Jump Process applying by South African HIV/AIDS data from the Statistics South Africa. It employs Maximum Likelihood Estimator (MLE) model to explore the possible influence of Transition Probability of mortality cases in which case the data was based on actual Statistics South Africa. This was conducted via an integrated demographic and epidemiological model of South African HIV/AIDS epidemic. The model was fitted to age-specific HIV prevalence data and recorded death data using MLE model. Though the previous model results suggest HIV in South Africa has declined and AIDS mortality rates have declined since 2002 – 2013, in contrast, our results differ evidently with the generally accepted HIV models (Spectrum/EPP and ASSA2008) in South Africa. However, there is the need for supplementary research to be conducted to enhance the demographic parameters in the model and as well apply it to each of the nine (9) provinces of South Africa.

Keywords: AIDS mortality rates, epidemiological model, time-homogeneous markov jump process, transition probability, statistics South Africa

Procedia PDF Downloads 496
23225 Robotic Logging Technology: The Future of Oil Well Logging

Authors: Nitin Lahkar, Rishiraj Goswami

Abstract:

“Oil Well Logging” or the practice of making a detailed record (a well log) of the geologic formations penetrated by a borehole is an important practice in the Oil and Gas industry. Although a lot of research has been undertaken in this field, some basic limitations still exist. One of the main arenas or venues where plethora of problems arises is in logistically challenged areas. Accessibility and availability of efficient manpower, resources and technology is very time consuming, restricted and often costly in these areas. So, in this regard, the main challenge is to decrease the Non Productive Time (NPT) involved in the conventional logging process. The thought for the solution to this problem has given rise to a revolutionary concept called the “Robotic Logging Technology”. Robotic logging technology promises the advent of successful logging in all kinds of wells and trajectories. It consists of a wireless logging tool controlled from the surface. This eliminates the need for the logging truck to be summoned which in turn saves precious rig time. The robotic logging tool here, is designed such that it can move inside the well by different proposed mechanisms and models listed in the full paper as TYPE A, TYPE B and TYPE C. These types are classified on the basis of their operational technology, movement and conditions/wells in which the tool is to be used. Thus, depending on subsurface conditions, energy sources available and convenience the TYPE of Robotic model will be selected. Advantages over Conventional Logging Techniques: Reduction in Non-Productive time, lesser energy requirements, very fast action as compared to all other forms of logging, can perform well in all kinds of well trajectories (vertical/horizontal/inclined).

Keywords: robotic logging technology, innovation, geology, geophysics

Procedia PDF Downloads 306
23224 Comparisons of Co-Seismic Gravity Changes between GRACE Observations and the Predictions from the Finite-Fault Models for the 2012 Mw = 8.6 Indian Ocean Earthquake Off-Sumatra

Authors: Armin Rahimi

Abstract:

The Gravity Recovery and Climate Experiment (GRACE) has been a very successful project in determining math redistribution within the Earth system. Large deformations caused by earthquakes are in the high frequency band. Unfortunately, GRACE is only capable to provide reliable estimate at the low-to-medium frequency band for the gravitational changes. In this study, we computed the gravity changes after the 2012 Mw8.6 Indian Ocean earthquake off-Sumatra using the GRACE Level-2 monthly spherical harmonic (SH) solutions released by the University of Texas Center for Space Research (UTCSR). Moreover, we calculated gravity changes using different fault models derived from teleseismic data. The model predictions showed non-negligible discrepancies in gravity changes. However, after removing high-frequency signals, using Gaussian filtering 350 km commensurable GRACE spatial resolution, the discrepancies vanished, and the spatial patterns of total gravity changes predicted from all slip models became similar at the spatial resolution attainable by GRACE observations, and predicted-gravity changes were consistent with the GRACE-detected gravity changes. Nevertheless, the fault models, in which give different slip amplitudes, proportionally lead to different amplitude in the predicted gravity changes.

Keywords: undersea earthquake, GRACE observation, gravity change, dislocation model, slip distribution

Procedia PDF Downloads 355
23223 Modeling Engagement with Multimodal Multisensor Data: The Continuous Performance Test as an Objective Tool to Track Flow

Authors: Mohammad H. Taheri, David J. Brown, Nasser Sherkat

Abstract:

Engagement is one of the most important factors in determining successful outcomes and deep learning in students. Existing approaches to detect student engagement involve periodic human observations that are subject to inter-rater reliability. Our solution uses real-time multimodal multisensor data labeled by objective performance outcomes to infer the engagement of students. The study involves four students with a combined diagnosis of cerebral palsy and a learning disability who took part in a 3-month trial over 59 sessions. Multimodal multisensor data were collected while they participated in a continuous performance test. Eye gaze, electroencephalogram, body pose, and interaction data were used to create a model of student engagement through objective labeling from the continuous performance test outcomes. In order to achieve this, a type of continuous performance test is introduced, the Seek-X type. Nine features were extracted including high-level handpicked compound features. Using leave-one-out cross-validation, a series of different machine learning approaches were evaluated. Overall, the random forest classification approach achieved the best classification results. Using random forest, 93.3% classification for engagement and 42.9% accuracy for disengagement were achieved. We compared these results to outcomes from different models: AdaBoost, decision tree, k-Nearest Neighbor, naïve Bayes, neural network, and support vector machine. We showed that using a multisensor approach achieved higher accuracy than using features from any reduced set of sensors. We found that using high-level handpicked features can improve the classification accuracy in every sensor mode. Our approach is robust to both sensor fallout and occlusions. The single most important sensor feature to the classification of engagement and distraction was shown to be eye gaze. It has been shown that we can accurately predict the level of engagement of students with learning disabilities in a real-time approach that is not subject to inter-rater reliability, human observation or reliant on a single mode of sensor input. This will help teachers design interventions for a heterogeneous group of students, where teachers cannot possibly attend to each of their individual needs. Our approach can be used to identify those with the greatest learning challenges so that all students are supported to reach their full potential.

Keywords: affective computing in education, affect detection, continuous performance test, engagement, flow, HCI, interaction, learning disabilities, machine learning, multimodal, multisensor, physiological sensors, student engagement

Procedia PDF Downloads 94
23222 A Demonstration of How to Employ and Interpret Binary IRT Models Using the New IRT Procedure in SAS 9.4

Authors: Ryan A. Black, Stacey A. McCaffrey

Abstract:

Over the past few decades, great strides have been made towards improving the science in the measurement of psychological constructs. Item Response Theory (IRT) has been the foundation upon which statistical models have been derived to increase both precision and accuracy in psychological measurement. These models are now being used widely to develop and refine tests intended to measure an individual's level of academic achievement, aptitude, and intelligence. Recently, the field of clinical psychology has adopted IRT models to measure psychopathological phenomena such as depression, anxiety, and addiction. Because advances in IRT measurement models are being made so rapidly across various fields, it has become quite challenging for psychologists and other behavioral scientists to keep abreast of the most recent developments, much less learn how to employ and decide which models are the most appropriate to use in their line of work. In the same vein, IRT measurement models vary greatly in complexity in several interrelated ways including but not limited to the number of item-specific parameters estimated in a given model, the function which links the expected response and the predictor, response option formats, as well as dimensionality. As a result, inferior methods (a.k.a. Classical Test Theory methods) continue to be employed in efforts to measure psychological constructs, despite evidence showing that IRT methods yield more precise and accurate measurement. To increase the use of IRT methods, this study endeavors to provide a comprehensive overview of binary IRT models; that is, measurement models employed on test data consisting of binary response options (e.g., correct/incorrect, true/false, agree/disagree). Specifically, this study will cover the most basic binary IRT model, known as the 1-parameter logistic (1-PL) model dating back to over 50 years ago, up until the most recent complex, 4-parameter logistic (4-PL) model. Binary IRT models will be defined mathematically and the interpretation of each parameter will be provided. Next, all four binary IRT models will be employed on two sets of data: 1. Simulated data of N=500,000 subjects who responded to four dichotomous items and 2. A pilot analysis of real-world data collected from a sample of approximately 770 subjects who responded to four self-report dichotomous items pertaining to emotional consequences to alcohol use. Real-world data were based on responses collected on items administered to subjects as part of a scale-development study (NIDA Grant No. R44 DA023322). IRT analyses conducted on both the simulated data and analyses of real-world pilot will provide a clear demonstration of how to construct, evaluate, and compare binary IRT measurement models. All analyses will be performed using the new IRT procedure in SAS 9.4. SAS code to generate simulated data and analyses will be available upon request to allow for replication of results.

Keywords: instrument development, item response theory, latent trait theory, psychometrics

Procedia PDF Downloads 356
23221 Pattern Recognition Search: An Advancement Over Interpolation Search

Authors: Shahpar Yilmaz, Yasir Nadeem, Syed A. Mehdi

Abstract:

Searching for a record in a dataset is always a frequent task for any data structure-related application. Hence, a fast and efficient algorithm for the approach has its importance in yielding the quickest results and enhancing the overall productivity of the company. Interpolation search is one such technique used to search through a sorted set of elements. This paper proposes a new algorithm, an advancement over interpolation search for the application of search over a sorted array. Pattern Recognition Search or PR Search (PRS), like interpolation search, is a pattern-based divide and conquer algorithm whose objective is to reduce the sample size in order to quicken the process and it does so by treating the array as a perfect arithmetic progression series and thereby deducing the key element’s position. We look to highlight some of the key drawbacks of interpolation search, which are accounted for in the Pattern Recognition Search.

Keywords: array, complexity, index, sorting, space, time

Procedia PDF Downloads 243
23220 The Influence of Bentonite on the Rheology of Geothermal Grouts

Authors: A. N. Ghafar, O. A. Chaudhari, W. Oettel, P. Fontana

Abstract:

This study is a part of the EU project GEOCOND-Advanced materials and processes to improve performance and cost-efficiency of shallow geothermal systems and underground thermal storage. In heat exchange boreholes, to improve the heat transfer between the pipes and the surrounding ground, the space between the pipes and the borehole wall is normally filled with geothermal grout. Traditionally, bentonite has been a crucial component in most commercially available geothermal grouts to assure the required stability and impermeability. The investigations conducted in the early stage of this project during the benchmarking tests on some commercial grouts showed considerable sensitivity of the rheological properties of the tested grouts to the mixing parameters, i.e., mixing time and velocity. Further studies on this matter showed that bentonite, which has been one of the important constituents in most grout mixes, was probably responsible for such behavior. Apparently, proper amount of shear should be applied during the mixing process to sufficiently activate the bentonite. The higher the amount of applied shear the more the activation of bentonite, resulting in change in the grout rheology. This explains why, occasionally in the field applications, the flow properties of the commercially available geothermal grouts using different mixing conditions (mixer type, mixing time, mixing velocity) are completely different than expected. A series of tests were conducted on the grout mixes, with and without bentonite, using different mixing protocols. The aim was to eliminate/reduce the sensitivity of the rheological properties of the geothermal grouts to the mixing parameters by replacing bentonite with polymeric (non-clay) stabilizers. The results showed that by replacing bentonite with a proper polymeric stabilizer, the sensitivity of the grout mix on mixing time and velocity was to a great extent diminished. This can be considered as an alternative for the developers/producers of geothermal grouts to provide enhanced materials with less uncertainty in obtained results in the field applications.

Keywords: flow properties, geothermal grout, mixing time, mixing velocity, rheological properties

Procedia PDF Downloads 125
23219 Ovarian Stimulation and Oocyte Cryopreservation for Fertility Preservation in Adolescent Females at the Royal Children’s Hospital: A Case Series

Authors: Kira Merigan

Abstract:

BACKGROUND- Fertility preservation (FP) measures are increasingly recognised as an important consideration for children and adolescents planned to undergo potentially damaging gonadotoxic therapy. Worldwide, there are very few documented cases of FP in young females by way of ovarian stimulation and oocyte cryopreservation.AIM – To report a case series of mature oocyte cryopreservation in 5post-pubertal adolescents aged 14-17 years old, with varied medical conditions requiring gonadotoxic treatment. SETTING-These cases took place via a multidisciplinary team approach at The Royal Children’s Hospital, a large tertiary centre in Melbourne, Australia. INTERVENTION– Ovarian stimulation and oocyte collection was performed as detailed in each case. RESULTS –Across the 5 patients, 3-28 oocytes were retrieved. We report pre-treatment workup, complications, and delays to treatment. CONCLUSION- Oocyte cryopreservation may be a safe alternative to ovarian tissue cryopreservation (OTC) in the adolescent population

Keywords: fertility preservation, adolescent, ovarian stimulation, oocyte cryopreservation

Procedia PDF Downloads 167
23218 On Enabling Miner Self-Rescue with In-Mine Robots using Real-Time Object Detection with Thermal Images

Authors: Cyrus Addy, Venkata Sriram Siddhardh Nadendla, Kwame Awuah-Offei

Abstract:

Surface robots in modern underground mine rescue operations suffer from several limitations in enabling a prompt self-rescue. Therefore, the possibility of designing and deploying in-mine robots to expedite miner self-rescue can have a transformative impact on miner safety. These in-mine robots for miner self-rescue can be envisioned to carry out diverse tasks such as object detection, autonomous navigation, and payload delivery. Specifically, this paper investigates the challenges in the design of object detection algorithms for in-mine robots using thermal images, especially to detect people in real-time. A total of 125 thermal images were collected in the Missouri S&T Experimental Mine with the help of student volunteers using the FLIR TG 297 infrared camera, which were pre-processed into training and validation datasets with 100 and 25 images, respectively. Three state-of-the-art, pre-trained real-time object detection models, namely YOLOv5, YOLO-FIRI, and YOLOv8, were considered and re-trained using transfer learning techniques on the training dataset. On the validation dataset, the re-trained YOLOv8 outperforms the re-trained versions of both YOLOv5, and YOLO-FIRI.

Keywords: miner self-rescue, object detection, underground mine, YOLO

Procedia PDF Downloads 83
23217 Machine Learning Techniques in Seismic Risk Assessment of Structures

Authors: Farid Khosravikia, Patricia Clayton

Abstract:

The main objective of this work is to evaluate the advantages and disadvantages of various machine learning techniques in two key steps of seismic hazard and risk assessment of different types of structures. The first step is the development of ground-motion models, which are used for forecasting ground-motion intensity measures (IM) given source characteristics, source-to-site distance, and local site condition for future events. IMs such as peak ground acceleration and velocity (PGA and PGV, respectively) as well as 5% damped elastic pseudospectral accelerations at different periods (PSA), are indicators of the strength of shaking at the ground surface. Typically, linear regression-based models, with pre-defined equations and coefficients, are used in ground motion prediction. However, due to the restrictions of the linear regression methods, such models may not capture more complex nonlinear behaviors that exist in the data. Thus, this study comparatively investigates potential benefits from employing other machine learning techniques as statistical method in ground motion prediction such as Artificial Neural Network, Random Forest, and Support Vector Machine. The results indicate the algorithms satisfy some physically sound characteristics such as magnitude scaling distance dependency without requiring pre-defined equations or coefficients. Moreover, it is shown that, when sufficient data is available, all the alternative algorithms tend to provide more accurate estimates compared to the conventional linear regression-based method, and particularly, Random Forest outperforms the other algorithms. However, the conventional method is a better tool when limited data is available. Second, it is investigated how machine learning techniques could be beneficial for developing probabilistic seismic demand models (PSDMs), which provide the relationship between the structural demand responses (e.g., component deformations, accelerations, internal forces, etc.) and the ground motion IMs. In the risk framework, such models are used to develop fragility curves estimating exceeding probability of damage for pre-defined limit states, and therefore, control the reliability of the predictions in the risk assessment. In this study, machine learning algorithms like artificial neural network, random forest, and support vector machine are adopted and trained on the demand parameters to derive PSDMs for them. It is observed that such models can provide more accurate estimates of prediction in relatively shorter about of time compared to conventional methods. Moreover, they can be used for sensitivity analysis of fragility curves with respect to many modeling parameters without necessarily requiring more intense numerical response-history analysis.

Keywords: artificial neural network, machine learning, random forest, seismic risk analysis, seismic hazard analysis, support vector machine

Procedia PDF Downloads 106
23216 Technical Determinants of the Success of the Quality Management Systems Implementation in Automotive Industry

Authors: Agnieszka Misztal

Abstract:

The popularity of the quality management system models continues to grow despite the transitional crisis in 2008. Their development is associated with the demands of the new requirements for entrepreneurs, such as risk analysis projects and more emphasis on supervision of outsourced processes. In parallel appropriate to focus attention on the selection of companies aspiring to quality management system. This is particularly important in the automotive supplier industry, where requirements transferred to the levels in the supply chain should be clear, transparent and fairly satisfied. The author has carried out series of researches aimed at finding the factors that allow for the effective implementation of the quality management system in automotive companies. The research was focused on four groups of companies: 1) manufacturing (parts and assemblies for the purpose of sale or for vehicle manufacturers), 2) service (repair and maintenance of the car), 3) services for the transport of goods or people, 4) commercial (auto parts and vehicles). Identified determinants were divided in two types of criteria into: internal and external, as well as: hard and soft. The article presents hard - technical factors that automotive company must meet in order to achieve the goal of the quality management system implementation.

Keywords: automotive industry, quality management system, automotive technology, automotive company

Procedia PDF Downloads 401
23215 Probability Modeling and Genetic Algorithms in Small Wind Turbine Design Optimization: Mentored Interdisciplinary Undergraduate Research at LaGuardia Community College

Authors: Marina Nechayeva, Malgorzata Marciniak, Vladimir Przhebelskiy, A. Dragutan, S. Lamichhane, S. Oikawa

Abstract:

This presentation is a progress report on a faculty-student research collaboration at CUNY LaGuardia Community College (LaGCC) aimed at designing a small horizontal axis wind turbine optimized for the wind patterns on the roof of our campus. Our project combines statistical and engineering research. Our wind modeling protocol is based upon a recent wind study by a faculty-student research group at MIT, and some of our blade design methods are adopted from a senior engineering project at CUNY City College. Our use of genetic algorithms has been inspired by the work on small wind turbines’ design by David Wood. We combine these diverse approaches in our interdisciplinary project in a way that has not been done before and improve upon certain techniques used by our predecessors. We employ several estimation methods to determine the best fitting parametric probability distribution model for the local wind speed data obtained through correlating short-term on-site measurements with a long-term time series at the nearby airport. The model serves as a foundation for engineering research that focuses on adapting and implementing genetic algorithms (GAs) to engineering optimization of the wind turbine design using Blade Element Momentum Theory. GAs are used to create new airfoils with desirable aerodynamic specifications. Small scale models of best performing designs are 3D printed and tested in the wind tunnel to verify the accuracy of relevant calculations. Genetic algorithms are applied to selected airfoils to determine the blade design (radial cord and pitch distribution) that would optimize the coefficient of power profile of the turbine. Our approach improves upon the traditional blade design methods in that it lets us dispense with assumptions necessary to simplify the system of Blade Element Momentum Theory equations, thus resulting in more accurate aerodynamic performance calculations. Furthermore, it enables us to design blades optimized for a whole range of wind speeds rather than a single value. Lastly, we improve upon known GA-based methods in that our algorithms are constructed to work with XFoil generated airfoils data which enables us to optimize blades using our own high glide ratio airfoil designs, without having to rely upon available empirical data from existing airfoils, such as NACA series. Beyond its immediate goal, this ongoing project serves as a training and selection platform for CUNY Research Scholars Program (CRSP) through its annual Aerodynamics and Wind Energy Research Seminar (AWERS), an undergraduate summer research boot camp, designed to introduce prospective researchers to the relevant theoretical background and methodology, get them up to speed with the current state of our research, and test their abilities and commitment to the program. Furthermore, several aspects of the research (e.g., writing code for 3D printing of airfoils) are adapted in the form of classroom research activities to enhance Calculus sequence instruction at LaGCC.

Keywords: engineering design optimization, genetic algorithms, horizontal axis wind turbine, wind modeling

Procedia PDF Downloads 231
23214 Palliation of Pain in Pyomyositis: A Case Series and Literature Review

Authors: Katie Jerram, Jacqui Nevols, Rebecca Howes, Hayley Richardson, Debbie Suso, Thomas Batten, Reny Mathai

Abstract:

Pyomyositis is an uncommon acute purulent skeletal muscle infection, usually caused by Staphylococcus aureus, occurring either spontaneously or following local trauma. Immunocompromise is a risk factor. It presents with pyrexia, pain, and tenderness of the affected muscle, which may have a firm ‘woody’ feel. Management usually involves surgery and prolonged courses of antibiotics, but alongside these active treatments, palliation of symptoms such as pain is also a priority. A short case series of diabetic inpatients under the care of the Renal Medicine team with pyomyositis is presented, demonstrating that Hospital Palliative Care Teams may be well placed to provide symptom management advice by working jointly with the patient’s medical or surgical team. A review of the literature on the management of pain in pyomyositis is also presented, and there was no clear consensus on the best strategy. It may be that a combination of analgesics and adjuncts is the most effective strategy, perhaps combined with the holistic approach used within palliative care.

Keywords: pyomyositis, pain, palliation, analgesia

Procedia PDF Downloads 140
23213 Sustainable Traditional Architecture and Urban Planning in Hot–Humid Climate of Iran

Authors: Farnaz Nazem

Abstract:

This paper concentrates on the sustainable traditional architecture and urban planning in hot-humid regions of Iran. In a vast country such as Iran with different climatic zones traditional builders have presented series of logical solutions for human comfort. The aim of this paper is to demonstrate traditional architecture in hot-humid climate of Iran as a sample of sustainable architecture. Iranian traditional architecture has been able to response to environmental problems for a long period of time. Its features are based on climatic factors, local construction materials of hot-humid regions and culture. This paper concludes that Iranian traditional architecture can be addressed as a sustainable architecture.

Keywords: hot-humid climate, Iran, sustainable traditional architecture, urban planning

Procedia PDF Downloads 607
23212 Gas Flow, Time, Distance Dynamic Modelling

Authors: A. Abdul-Ameer

Abstract:

The equations governing the distance, pressure- volume flow relationships for the pipeline transportation of gaseous mixtures, are considered. A derivation based on differential calculus, for an element of this system model, is addressed. Solutions, yielding the input- output response following pressure changes, are reviewed. The technical problems associated with these analytical results are identified. Procedures resolving these difficulties providing thereby an attractive, simple, analysis route are outlined. Computed responses, validating thereby calculated predictions, are presented.

Keywords: pressure, distance, flow, dissipation, models

Procedia PDF Downloads 473
23211 Scalar Modulation Technique for Six-Phase Matrix Converter Fed Series-Connected Two-Motor Drives

Authors: A. Djahbar, M. Aillerie, E. Bounadja

Abstract:

In this paper we treat a new structure of a high-power actuator which is used to either industry or electric traction. Indeed, the actuator is constituted by two induction motors, the first is a six-phase motor connected in series with another three-phase motor via the stators. The whole is supplied by a single static converter. Our contribution in this paper is the optimization of the system supply source. This is feeding the multimotor group by a direct converter frequency without using the DC-link capacitor. The modelling of the components of multimotor system is presented first. Only the first component of stator currents is used to produce the torque/flux of the first machine in the group. The second component of stator currents is considered as additional degrees of freedom and which can be used for power conversion for the other connected motors. The decoupling of each motor from the group is obtained using the direct vector control scheme. Simulation results demonstrate the effectiveness of the proposed structure.

Keywords: induction machine, motor drives, scalar modulation technique, three-to-six phase matrix converter

Procedia PDF Downloads 548
23210 Mapping the Pain Trajectory of Breast Cancer Survivors: Results from a Retrospective Chart Review

Authors: Wilfred Elliam

Abstract:

Background: Pain is a prevalent and debilitating symptom among breast cancer patients, impacting their quality of life and overall well-being. The experience of pain in this population is multifaceted, influenced by a combination of disease-related factors, treatment side effects, and individual characteristics. Despite advancements in cancer treatment and pain management, many breast cancer patients continue to suffer from chronic pain, which can persist long after the completion of treatment. Understanding the progression of pain in breast cancer patients over time and identifying its correlates is crucial for effective pain management and supportive care strategies. The purpose of this research is to understand the patterns and progression of pain experienced by breast cancer survivors over time. Methods: Data were collected from breast cancer patients at Hartford Hospital at four time points: baseline, 3, 6 and 12 weeks. Key variables measured include pain, body mass index (BMI), fatigue, musculoskeletal pain, sleep disturbance, and demographic variables (age, employment status, cancer stage, and ethnicity). Binomial generalized linear mixed models were used to examine changes in pain and symptoms over time. Results: A total of 100 breast cancer patients aged  18 years old were included in the analysis. We found that the effect of time on pain (p = 0.024), musculoskeletal pain (p= <0.001), fatigue (p= <0.001), and sleep disturbance (p-value = 0.013) were statistically significant with pain progression in breast cancer patients. Patients using aromatase inhibitors have worse fatigue (<0.05) and musculoskeletal pain (<0.001) compared to patients with Tamoxifen. Patients who are obese (<0.001) and overweight (<0.001) are more likely to report pain compared to patients with normal weight. Conclusion: This study revealed the complex interplay between various factors such as time, pain, sleep disturbance in breast cancer patient. Specifically, pain, musculoskeletal pain, sleep disturbance, fatigue exhibited significant changes across the measured time points, indicating a dynamic pain progression in these patients. The findings provide a foundation for future research and targeted interventions aimed at improving pain in breast cancer patient outcomes.

Keywords: breast cancer, chronic pain, pain management, quality of life

Procedia PDF Downloads 31
23209 A Novel Meta-Heuristic Algorithm Based on Cloud Theory for Redundancy Allocation Problem under Realistic Condition

Authors: H. Mousavi, M. Sharifi, H. Pourvaziri

Abstract:

Redundancy Allocation Problem (RAP) is a well-known mathematical problem for modeling series-parallel systems. It is a combinatorial optimization problem which focuses on determining an optimal assignment of components in a system design. In this paper, to be more practical, we have considered the problem of redundancy allocation of series system with interval valued reliability of components. Therefore, during the search process, the reliabilities of the components are considered as a stochastic variable with a lower and upper bounds. In order to optimize the problem, we proposed a simulated annealing based on cloud theory (CBSAA). Also, the Monte Carlo simulation (MCS) is embedded to the CBSAA to handle the random variable components’ reliability. This novel approach has been investigated by numerical examples and the experimental results have shown that the CBSAA combining MCS is an efficient tool to solve the RAP of systems with interval-valued component reliabilities.

Keywords: redundancy allocation problem, simulated annealing, cloud theory, monte carlo simulation

Procedia PDF Downloads 412
23208 Using Photogrammetry to Survey the Côa Valley Iron Age Rock Art Motifs: Vermelhosa Panel 3 Case Study

Authors: Natália Botica, Luís Luís, Paulo Bernardes

Abstract:

The Côa Valley, listed World Heritage since 1998, presents more than 1300 open-air engraved rock panels. The Archaeological Park of the Côa Valley recorded the rock art motifs, testing various techniques based on direct tracing processes on the rock, using natural and artificial lighting. In this work, integrated in the "Open Access Rock Art Repository" (RARAA) project, we present the methodology adopted for the vectorial drawing of the rock art motifs based on orthophotos taken from the photogrammetric survey and 3D models of the rocks. We also present the information system designed to integrate the vector drawing and the characterization data of the motifs, as well as the open access sharing, in order to promote their reuse in multiple areas. The 3D models themselves constitute a very detailed record, ensuring the digital preservation of the rock and iconography. Thus, even if a rock or motif disappears, it can continue to be studied and even recreated.

Keywords: rock art, archaeology, iron age, 3D models

Procedia PDF Downloads 83
23207 Theoretical Comparisons and Empirical Illustration of Malmquist, Hicks–Moorsteen, and Luenberger Productivity Indices

Authors: Fatemeh Abbasi, Sahand Daneshvar

Abstract:

Productivity is one of the essential goals of companies to improve performance, which as a strategy-oriented method, determines the basis of the company's economic growth. The history of productivity goes back centuries, but most researchers defined productivity as the relationship between a product and the factors used in production in the early twentieth century. Productivity as the optimal use of available resources means that "more output using less input" can increase companies' economic growth and prosperity capacity. Also, having a quality life based on economic progress depends on productivity growth in that society. Therefore, productivity is a national priority for any developed country. There are several methods for calculating productivity growth measurements that can be divided into parametric and non-parametric methods. Parametric methods rely on the existence of a function in their hypotheses, while non-parametric methods do not require a function based on empirical evidence. One of the most popular non-parametric methods is Data Envelopment Analysis (DEA), which measures changes in productivity over time. The DEA evaluates the productivity of decision-making units (DMUs) based on mathematical models. This method uses multiple inputs and outputs to compare the productivity of similar DMUs such as banks, government agencies, companies, airports, Etc. Non-parametric methods are themselves divided into the frontier and non frontier approaches. The Malmquist productivity index (MPI) proposed by Caves, Christensen, and Diewert (1982), the Hicks–Moorsteen productivity index (HMPI) proposed by Bjurek (1996), or the Luenberger productivity indicator (LPI) proposed by Chambers (2002) are powerful tools for measuring productivity changes over time. This study will compare the Malmquist, Hicks–Moorsteen, and Luenberger indices theoretically and empirically based on DEA models and review their strengths and weaknesses.

Keywords: data envelopment analysis, Hicks–Moorsteen productivity index, Leuenberger productivity indicator, malmquist productivity index

Procedia PDF Downloads 194