Search results for: surface plasmon resonance
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7167

Search results for: surface plasmon resonance

5817 Isolation of Clitorin and Manghaslin from Carica papaya L. Leaves by CPC and Its Quantitative Analysis by QNMR

Authors: Norazlan Mohmad Misnan, Maizatul Hasyima Omar, Mohd Isa Wasiman

Abstract:

Papaya (Carica papaya L., Caricaceae) is a tree which mainly cultivated for its fruits in many tropical regions including Australia, Brazil, China, Hawaii, and Malaysia. Beside of fruits, its leaves, seeds, and latex have also been traditionally used for treating diseases, which also reported to possess anti-cancer and anti- malaria properties. Its leaves have been reported to consist of various chemical compounds such as alkaloids, flavonoids and phenolics. Clitorin and manghaslin are among major flavonoids presence. Thus, the aim of this study is to quantify the purity of these isolated compounds (clitorin and manghsalin) by using quantitative Nuclear Magnetic Resonance (qNMR) analysis. Only fresh C. papaya leaves were used for juice extraction procedure and subsequently was freeze-dried to obtain a dark green powdered form of the extract prior to Centrifugal Partition Chromatography (CPC) separation. The CPC experiments were performed using a two-phase solvent system comprising ethyl acetate/butanol/water (1:4:5, v/v/v/v) solvent. The upper organic phase was used as the stationary phase, and the lower aqueous phase was employed as the mobile phase. Ten fractions were obtained after an hour runtime analysis. Fraction 6 and fraction 8 has been identified as clitorin (m/z 739.21 [M-H]-) and manghaslin (m/z 755.21 [M-H]-), respectively, based on LCMS data and full analysis of NMR (1H NMR, 13C NMR, HMBC, and HSQC). The 1H-qNMR measurements were carried out using a 400 MHz NMR spectrometer (JEOL ECS 400MHz, Japan) and deuterated methanol was used as a solvent. Quantification was performed using the AQARI method (Accurate Quantitative NMR) with deuterated 1,4-Bis(trimethylsilyl)benzene (BTMSB) as an internal reference substances. This AQARI protocol includes not only NMR measurement but also sample preparation that provide highest precision and accuracy than other qNMR methods. The 90° pulse length and the T1 relaxation times for compounds and BTMSB were determined prior to the quantification to give the best signal-to-noise ratio. Regions containing the two downfield signals from aromatic part (6.00–6.89 ppm), and the singlet signal, (18H) arising from BTMSB (0.63-1.05ppm) were selected for integration. The purity of clitorin and manghaslin were calculated to be 52.22% and 43.36%, respectively. Further purification is needed in order to increase its purity. This finding has demonstrated the use of qNMR for quality control and standardization of various plant extracts and which can be applied for NMR fingerprinting of other plant-based products with good reproducibility and in the case where commercial standards is not readily available.

Keywords: Carica papaya, clitorin, manghaslin, quantitative Nuclear Magnetic Resonance, Centrifugal Partition Chromatography

Procedia PDF Downloads 496
5816 The Effect of the Rain Intensity on the Hydrodynamic Behavior of the Low-Floor ChéLiffe

Authors: Ahmed Abbas

Abstract:

Land degradation in the Lower Cheliff region leads to loss of their fertility, physical and chemical properties by secondary salinization and film forming surface or surface crust. The main factor related to runoff and soil erosion is their susceptibility to crusting caused by the impact of raindrops, which causes the reduction of the filterability of the soil. The present study aims to investigate the hydrodynamic behavior of five types of soil taken from the plain of low Cheliff under simulated rainfall by using two intensities, one moderate, and others correspond to heavy rains at low kinetic energies. Experimental results demonstrate the influence of chemical and mechanical physical properties of soils on their hydrodynamic behavior and the influence of heavy rain on the modality of the reduction in the filterability and the amount of transported sediment.

Keywords: erosion, hydrodynamic behavior, rain simulation, soil

Procedia PDF Downloads 287
5815 Prediction of the Performance of a Bar-Type Piezoelectric Vibration Actuator Depending on the Frequency Using an Equivalent Circuit Analysis

Authors: J. H. Kim, J. H. Kwon, J. S. Park, K. J. Lim

Abstract:

This paper has investigated a technique that predicts the performance of a bar-type unimorph piezoelectric vibration actuator depending on the frequency. This paper has been proposed an equivalent circuit that can be easily analyzed for the bar-type unimorph piezoelectric vibration actuator. In the dynamic analysis, rigidity and resonance frequency, which are important mechanical elements, were derived using the basic beam theory. In the equivalent circuit analysis, the displacement and bandwidth of the piezoelectric vibration actuator depending on the frequency were predicted. Also, for the reliability of the derived equations, the predicted performance depending on the shape change was compared with the result of a finite element analysis program.

Keywords: actuator, piezoelectric, performance, unimorph

Procedia PDF Downloads 464
5814 Spatial Distribution and Source Identification of Trace Elements in Surface Soil from Izmir Metropolitan Area

Authors: Melik Kara, Gulsah Tulger Kara

Abstract:

The soil is a crucial component of the ecosystem, and in industrial and urban areas it receives large amounts of trace elements from several sources. Therefore, accumulated pollutants in surface soils can be transported to different environmental components, such as deep soil, water, plants, and dust particles. While elemental contamination of soils is caused mainly by atmospheric deposition, soil also affects the air quality since enriched trace elemental contents in atmospheric particulate matter originate from resuspension of polluted soils. The objectives of this study were to determine the total and leachate concentrations of trace elements in soils of city area in Izmir and characterize their spatial distribution and to identify the possible sources of trace elements in surface soils. The surface soil samples were collected from 20 sites. They were analyzed for total element concentrations and leachate concentrations. Analyses of trace elements (Ag, Al, As, B, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, Fe, Ga, Gd, Hf, Ho, K, La, Li, Lu, Mg, Mn, Mo, Na, Nd, Ni, P, Pb, Pr, Rb, Sb, Sc, Se, Si, Sm, Sn, Sr, Tb, Th, Ti, Tl, Tm, U, V, W, Y, Yb, Zn and Zr) were carried out using ICP-MS (Inductively Coupled Plasma-Mass Spectrometer). The elemental concentrations were calculated along with overall median, kurtosis, and skewness statistics. Elemental composition indicated that the soil samples were dominated by crustal elements such as Si, Al, Fe, Ca, K, Mg and the sea salt element, Na which is typical for Aegean region. These elements were followed by Ti, P, Mn, Ba and Sr. On the other hand, Zn, Cr, V, Pb, Cu, and Ni (which are anthropogenic based elements) were measured as 61.6, 39.4, 37.9, 26.9, 22.4, and 19.4 mg/kg dw, respectively. The leachate element concentrations were showed similar sorting although their concentrations were much lower than total concentrations. In the study area, the spatial distribution patterns of elemental concentrations varied among sampling sites. The highest concentrations were measured in the vicinity of industrial areas and main roads. To determine the relationships among elements and to identify the possible sources, PCA (Principal Component Analysis) was applied to the data. The analysis resulted in six factors. The first factor exhibited high loadings of Co, K, Mn, Rb, V, Al, Fe, Ni, Ga, Se, and Cr. This factor could be interpreted as residential heating because of Co, K, Rb, and Se. The second factor associated positively with V, Al, Fe, Na, Ba, Ga, Sr, Ti, Se, and Si. Therefore, this factor presents mixed city dust. The third factor showed high loadings with Fe, Ni, Sb, As, Cr. This factor could be associated with industrial facilities. The fourth factor associated with Cu, Mo, Zn, Sn which are the marker elements of traffic. The fifth factor presents crustal dust, due to its high correlation with Si, Ca, and Mg. The last factor is loaded with Pb and Cd emitted from industrial activities.

Keywords: trace elements, surface soil, source apportionment, Izmir

Procedia PDF Downloads 139
5813 The Utilization of Rain Water to Ground Water with Tube in the Area of Tourism in Yogyakarta

Authors: Kurniawan Agung Pambudi, Alfian Deo Pradipta

Abstract:

Yogyakarta is the famous tourism city in Indonesia. The Tugu Jogja is a tourism center located in Jetis. To support the tourism activities required facilities such as tourist hotel and guest house. The existence of tourism also has an impact on the environment. The surface of the land is covered by cement and a local company dealing in ceramics, then an infiltration process is not running. The existence of the building in layers resulting in the amount of water resource in Jetis decreases. The purpose of this research is to know the impact of the construction of the building in layers in Jetis. To obtain the data done by observation, measurements and taking the land profile, along with the interview to people in Jetis. The results of the study showed that the number of water sources in Jetis, Yogyakarta start decreases as a result of the construction of the building on stilts as a result, the height of the surface of the groundwater decreases and digging a pit must be in to get the source of the waters. Based on the results of research it can be concluded that the height of the surface of the groundwater decreases. To resolve the issue required a method to rainwater can seep into the ground for maximum. The rain that fell upon the precarious houses or other buildings is channeled toward the ground through the tubes with the depth of 1-2 meters. Rainwater will be absorbed into the land and increase the amount of ground water.

Keywords: rain water, tube, water resource, groundwater

Procedia PDF Downloads 222
5812 Estimation of Consolidating Settlement Based on a Time-Dependent Skin Friction Model Considering Column Surface Roughness

Authors: Jiang Zhenbo, Ishikura Ryohei, Yasufuku Noriyuki

Abstract:

Improvement of soft clay deposits by the combination of surface stabilization and floating type cement-treated columns is one of the most popular techniques worldwide. On the basis of one dimensional consolidation model, a time-dependent skin friction model for the column-soil interaction is proposed. The nonlinear relationship between column shaft shear stresses and effective vertical pressure of the surrounding soil can be described in this model. The influence of column-soil surface roughness can be represented using a roughness coefficient R, which plays an important role in the design of column length. Based on the homogenization method, a part of floating type improved ground will be treated as an unimproved portion, which with a length of αH1 is defined as a time-dependent equivalent skin friction length. The compression settlement of this unimproved portion can be predicted only using the soft clay parameters. Apart from calculating the settlement of this composited ground, the load transfer mechanism is discussed utilizing model tests. The proposed model is validated by comparing with calculations and laboratory results of model and ring shear tests, which indicate the suitability and accuracy of the solutions in this paper.

Keywords: floating type improved foundation, time-dependent skin friction, roughness, consolidation

Procedia PDF Downloads 468
5811 Application of Japanese Origami Ball for Floating Multirotor Aerial Robot

Authors: P. H. Le, J. Molina, S. Hirai

Abstract:

In this work, we propose the application of Japanese “Origami” art for a floating function of a small aerial vehicle such as a hexarotor. A preliminary experiment was conducted using Origami magic balls mounted under a hexarotor. This magic ball can expand and shrink using an air pump during free flying. Using this interesting and functional concept, it promises to reduce the resistance of wind as well as reduce the energy consumption when the Origami balls are deflated. This approach can be particularly useful in rescue emergency situations. Furthermore, there are many unexpected reasons that may cause the multi-rotor has to land on the surface of water due to problems with the communication between the aircraft and the ground station. In addition, a complementary experiment was designed to prove that the hexarotor can fly maintaining the stability and also, takes off and lands on the surface of water using air balloons.

Keywords: helicopter, Japanese origami ball, floating, aerial robots, rescue

Procedia PDF Downloads 387
5810 Designing a Refractive Index Gas Biosensor Exploiting Defects in Photonic Crystal Core-Shell Rods

Authors: Bilal Tebboub, AmelLabbani

Abstract:

This article introduces a compact sensor based on high-transmission, high-sensitivity two-dimensional photonic crystals. The photonic crystal consists of a square network of silicon rods in the air. The sensor is composed of two waveguide couplers and a microcavity designed for monitoring the percentage of hydrogen in the air and identifying gas types. Through the Finite-Difference Time-Domain (FDTD) method, we demonstrate that the sensor's resonance wavelength is contingent upon changes in the gas refractive index. We analyze transmission spectra, quality factors, and sensor sensitivity. The sensor exhibits a notable quality factor and a sensitivity value of 1374 nm/RIU. Notably, the sensor's compact structure occupies an area of 74.5 μm2, rendering it suitable for integrated optical circuits.

Keywords: 2-D photonic crystal, sensitivity, F.D.T.D method, label-free biosensing

Procedia PDF Downloads 92
5809 Effect of Tensile Strain on Microstructure of Irradiated Core Internal Material

Authors: Hygreeva Kiran Namburi, Anna Hojna, Edita Lecianova, Fencl Zdenek

Abstract:

Irradiation Assisted Stress Corrosion Cracking [IASCC] is one of the most significant environmental degradation in the internal components made from Austenitic stainless steel. This mechanism is still not fully understood and there are no suitable criteria for prediction of the damage during operation. In this work, core basket material 08Ch18N10T austenitic stainless steel acquired from decommissioned NPP Nord / Greifswald Unit 1, VVER 440-230 type, operated for 15 years and irradiated at 5.2 dpa is studied. This material was tensile tested at two different test temperatures and strain rates in air and at the elevated temperature under the water environment. SEM observations of the fracture surface documented ductile fracture of the samples tested in air, but areas of IASCC tested in water. This paper emphasizes on the microscopic examination results from the mechanically tested samples to determine the underlying IASCC physical damage process. TEM observations of thin foils made from the gauge sections that are closer to the fractured surface of the specimen aimed to find variances in interaction of dislocations and grain boundaries owing to different test conditions.

Keywords: irradiation assisted stress corrosion cracking, core basket material, SEM observations of the fracture surface, microscopic examination results

Procedia PDF Downloads 349
5808 Adsorption of Congo Red on MgO Nanoparticles Prepared by Molten Salt Method

Authors: Shahbaa F. Bdewi, Bakhtyar K. Aziz, Ayad A. R. Mutar

Abstract:

Nano-materials show different surface properties due to their high surface area and active sites. This study investigates the feasibility of using nano-MgO (NMO) for removing Congo red (CR) dye from wastewater. NMO was prepared by molten salt method. Equilibrium experiments show the equilibrium was reached after 120 minutes and maximum adsorption efficiency was obtained in acidic media up to pH 6. Isotherm studies revealed the favorability of the adsorption process. The overall adsorption process was spontaneous and endothermic in nature with a maximum adsorption capacity of 1100 mg g-1 at 40°C as estimated from Langmuir isotherm. The adsorption kinetics was found to follow pseudo second-order rate equation. Relatively high activation energy (180.7 kJ mol-1) was obtained which is consistent with chemisorption mechanism for the adsorption process.

Keywords: adsorption, congo red, magnesium oxide, nanoparticles

Procedia PDF Downloads 209
5807 Preparation of Activated Carbon Fibers (ACF) Impregnated with Ionic Silver Particles from Cotton Woven Waste and Its Performance as Antibacterial Agent

Authors: Jonathan Andres Pullas Navarrete, Ernesto Hale de la Torre Chauvin

Abstract:

In this work, the antibacterial effect of activated carbon fibers (ACF) impregnated with ionic silver particles was studied. ACF were prepared from samples of cotton woven wastes (cotton based fabrics 5x10 cm) by applying a chemical activation procedure with H3PO4. This treatment was performed using several H3PO4: Cotton based fabrics weight ratios (1:2–2:1), temperatures (600–900 ºC) and activation times (0.5–2 h). The ACF obtained under the best activation conditions showed BET surface area of 1103 m2/g; this result along with iodine index demonstrated the microporous nature of the fibers herein obtained. Then, the obtained fibers were impregnated with ionic silver particles by immersion in 0.1 and 0.5 M AgNO3 solutions followed by drying and thermal decomposition in order to fix the silver particles in the structure of ACF. It was determined that the presence of Ag ions lowered the BET surface area of the ACF in approximately 17 % due to the obstruction of the porosities along the carbonized structure. Finally, the antibacterial effect of the ACF impregnated with silver was studied through direct counting method for coliforms. The antibacterial activity of the impregnated fibers was demonstrated, and it was attributed to the strongly inhibition of bacteria growth because of chemical properties of the particles of silver inside the ACF. This behavior was demonstrated at concentrations of silver as low as 0.035 % w/w.

Keywords: activated carbon, adsorption, antibacterial activity, coliforms, surface area

Procedia PDF Downloads 282
5806 Optimal Dynamic Regime for CO Oxidation Reaction Discovered by Policy-Gradient Reinforcement Learning Algorithm

Authors: Lifar M. S., Tereshchenko A. A., Bulgakov A. N., Guda S. A., Guda A. A., Soldatov A. V.

Abstract:

Metal nanoparticles are widely used as heterogeneous catalysts to activate adsorbed molecules and reduce the energy barrier of the reaction. Reaction product yield depends on the interplay between elementary processes - adsorption, activation, reaction, and desorption. These processes, in turn, depend on the inlet feed concentrations, temperature, and pressure. At stationary conditions, the active surface sites may be poisoned by reaction byproducts or blocked by thermodynamically adsorbed gaseous reagents. Thus, the yield of reaction products can significantly drop. On the contrary, the dynamic control accounts for the changes in the surface properties and adjusts reaction parameters accordingly. Therefore dynamic control may be more efficient than stationary control. In this work, a reinforcement learning algorithm has been applied to control the simulation of CO oxidation on a catalyst. The policy gradient algorithm is learned to maximize the CO₂ production rate based on the CO and O₂ flows at a given time step. Nonstationary solutions were found for the regime with surface deactivation. The maximal product yield was achieved for periodic variations of the gas flows, ensuring a balance between available adsorption sites and the concentration of activated intermediates. This methodology opens a perspective for the optimization of catalytic reactions under nonstationary conditions.

Keywords: artificial intelligence, catalyst, co oxidation, reinforcement learning, dynamic control

Procedia PDF Downloads 130
5805 Design of a Universal Wireless Battery Charger

Authors: Ahmad B. Musamih, Ahmad A. Albloushi, Ahmed H. Alshemeili, Abdulaziz Y. Alfili, Ala A. Hussien

Abstract:

This paper proposes a universal wireless battery charger design for portable electronic devices. As the number of portable electronics devices increases, the demand for more flexible and reliable charging techniques is becoming more urgent. A wireless battery charger differs from a traditional charger in the way the power transferred to the battery. In the latter, the power is transferred through electrical wires that connect the charger terminals to the battery terminals, while in the former; the power is transferred by induction without electrical connections. With a detection algorithm that detects the battery size and chemistry, the proposed charger will be able to accommodate a wide range of applications, and will allow a more flexible and reliable option to most of today’s portable electronics.

Keywords: efficiency, magnetically-coupled resonators, resonance frequency, wireless power transfer

Procedia PDF Downloads 454
5804 Graphitic Carbon Nitride-CeO₂ Nanocomposite for Photocatalytic Degradation of Methyl Red

Authors: Khansaa Al-Essa

Abstract:

Nanosized ceria (CeO₂) and graphitic carbon nitride-loaded ceria (CeO₂/GCN) nanocomposite have been synthesized by the coprecipitation method and studied its photocatalytic activity for methyl red degradation under Visible type radiation. A phase formation study was carried out by using an x-ray diffraction technique, and it revealed that ceria (CeO₂) is properly supported on the surface of GCN. Ceria nanoparticles and CeO₂/GCN nanocomposite were confirmed by transmission electron microscopy technique. The particle size of the CeO₂, CeO₂/GCN nanocomposite is in the range of 10-15 nm. Photocatalytic activity of the CeO₂/g-C3N4 composite was improved as compared to CeO₂. The enhanced photocatalytic activity is attributed to the increased visible light absorption and improved adsorption of the dye on the surface of the composite catalyst.

Keywords: photodegradation, dye, nanocomposite, graphitic carbon nitride-CeO₂

Procedia PDF Downloads 20
5803 Effect of Impact Angle on Erosive Abrasive Wear of Ductile and Brittle Materials

Authors: Ergin Kosa, Ali Göksenli

Abstract:

Erosion and abrasion are wear mechanisms reducing the lifetime of machine elements like valves, pump and pipe systems. Both wear mechanisms are acting at the same time, causing a “Synergy” effect, which leads to a rapid damage of the surface. Different parameters are effective on erosive abrasive wear rate. In this study effect of particle impact angle on wear rate and wear mechanism of ductile and brittle materials was investigated. A new slurry pot was designed for experimental investigation. As abrasive particle, silica sand was used. Particle size was ranking between 200-500 µm. All tests were carried out in a sand-water mixture of 20% concentration for four hours. Impact velocities of the particles were 4,76 m/s. As ductile material steel St 37 with Brinell Hardness Number (BHN) of 245 and quenched St 37 with 510 BHN was used as brittle material. After wear tests, morphology of the eroded surfaces were investigated for better understanding of the wear mechanisms acting at different impact angles by using optical microscopy and Scanning Electron Microscope. The results indicated that wear rate of ductile material was higher than brittle material. Maximum wear was observed by ductile material at a particle impact angle of 300. On the contrary wear rate increased by brittle materials by an increase in impact angle and reached maximum value at 450. High amount of craters were detected after observation on ductile material surface Also plastic deformation zones were detected, which are typical failure modes for ductile materials. Craters formed by particles were deeper according to brittle material worn surface. Amount of craters decreased on brittle material surface. Microcracks around craters were detected which are typical failure modes of brittle materials. Deformation wear was the dominant wear mechanism on brittle material. At the end it is concluded that wear rate could not be directly related to impact angle of the hard particle due to the different responses of ductile and brittle materials.

Keywords: erosive wear, particle impact angle, silica sand, wear rate, ductile-brittle material

Procedia PDF Downloads 401
5802 Investigating the Sloshing Characteristics of a Liquid by Using an Image Processing Method

Authors: Ufuk Tosun, Reza Aghazadeh, Mehmet Bülent Özer

Abstract:

This study puts forward a method to analyze the sloshing characteristics of liquid in a tuned sloshing absorber system by using image processing tools. Tuned sloshing vibration absorbers have recently attracted researchers’ attention as a seismic load damper in constructions due to its practical and logistical convenience. The absorber is liquid which sloshes and applies a force in opposite phase to the motion of structure. Experimentally characterization of the sloshing behavior can be utilized as means of verifying the results of numerical analysis. It can also be used to identify the accuracy of assumptions related to the motion of the liquid. There are extensive theoretical and experimental studies in the literature related to the dynamical and structural behavior of tuned sloshing dampers. In most of these works there are efforts to estimate the sloshing behavior of the liquid such as free surface motion and total force applied by liquid to the wall of container. For these purposes the use of sensors such as load cells and ultrasonic sensors are prevalent in experimental works. Load cells are only capable of measuring the force and requires conducting tests both with and without liquid to obtain pure sloshing force. Ultrasonic level sensors give point-wise measurements and hence they are not applicable to measure the whole free surface motion. Furthermore, in the case of liquid splashing it may give incorrect data. In this work a method for evaluating the sloshing wave height by using camera records and image processing techniques is presented. In this method the motion of the liquid and its container, made of a transparent material, is recorded by a high speed camera which is aligned to the free surface of the liquid. The video captured by the camera is processed frame by frame by using MATLAB Image Processing toolbox. The process starts with cropping the desired region. By recognizing the regions containing liquid and eliminating noise and liquid splashing, the final picture depicting the free surface of liquid is achieved. This picture then is used to obtain the height of the liquid through the length of container. This process is verified by ultrasonic sensors that measured fluid height on the surface of liquid.

Keywords: fluid structure interaction, image processing, sloshing, tuned liquid damper

Procedia PDF Downloads 344
5801 Adsorptive Performance of Surface Modified Montmorillonite in Vanadium Removal from Real Mine Water

Authors: Opeyemi Atiba-Oyewo, Taile Y. Leswfi, Maurice S. Onyango, Christian Wolkersdorfer

Abstract:

This paper describes the preparation of surface modified montmorillonite using hexadecyltrimethylammonium bromide (HDTMA-Br) for the removal of vanadium from mine water. The adsorbent before and after adsorption was characterised by Fourier transform infra-red (FT-IR), X-ray diffraction (XRD) and scanning electron microscopy (SEM), while the amount of vanadium adsorbed was determined by ICP-OES. The batch adsorption method was employed using vanadium concentrations in solution ranging from 50 to 320 mg/L and vanadium tailings seepage water from a South African mine. Also, solution pH, temperature and sorbent mass were varied. Results show that the adsorption capacity was affected by solution pH, temperature, sorbent mass and the initial concentration. Electrical conductivity of the mine water before and after adsorption was measured to estimate the total dissolved solids in the mine water. Equilibrium isotherm results revealed that vanadium sorption follows the Freundlich isotherm, indicating that the surface of the sorbent was heterogeneous. The pseudo-second order kinetic model gave the best fit to the kinetic experimental data compared to the first order and Elovich models. The results of this study may be used to predict the uptake efficiency of South Africa montmorillonite in view of its application for the removal of vanadium from mine water. However, the choice of this adsorbent for the uptake of vanadium or other contaminants will depend on the composition of the effluent to be treated.

Keywords: adsorption, vanadium, modified montmorillonite, equilibrium, kinetics, mine water

Procedia PDF Downloads 433
5800 Capacitive Coupling Wireless Power Transfer System with 6.78 MHz Class D Inverter

Authors: Kang Hyun Yi

Abstract:

Wireless power transfer technologies are inductive coupling, magnetic resonance, and capacitive coupling methods, typically. Among them, the capacitive coupling wireless power transfer, also named Capacitive Coupling Wireless Power Transfer (CCWPT), has been researched to overcome the drawbacks of other approaches. The CCWPT has many advantages such as a simple structure, low standing power loss, reduced Electromagnetic Interference (EMI) and the ability to transfer power through metal barriers. In this paper, the CCWPT system with 6.78MHz class D inverter is proposed and analyzed. The proposed system is consisted of the 6.78MHz class D inverter with the LC low pass filter, the capacitor between a transmitter and a receiver and impedance transformers. The system is verified with a prototype for charging mobile devices.

Keywords: wireless power transfer, capacitive coupling power transfer, class D inverter, 6.78MHz

Procedia PDF Downloads 650
5799 Pilot Scale Deproteinization Study on Fish Scale Using Response Surface Methodology

Authors: Fatima Bellali, Mariem Kharroubi

Abstract:

Fish scale wastes are one of the main sources of production of value-added products such as collagen. The main aim of this study is to investigate the optimization conditions of the sardine scale deproteinization using response surface methodology (RSM) on a pilot scale. In order to look for the optimal conditions, a Box–Behnken-based design of experiment (DOE) method was carried out. The model predicted values of product coal ash content were in good agreement with the experiment values (R2 = 0.9813). Finally, model-based optimization was carried out to identify the operating parameters (reaction time=4h and the solid-liquid ratio= 1/10) and to obtain the lowest collagen content.

Keywords: pilot scale, Plackett and Burman design, fish waste, deproteinization

Procedia PDF Downloads 160
5798 Control of Spherical Robot with Sliding Mode

Authors: Roya Khajepour, Alireza B. Novinzadeh

Abstract:

A major issue with spherical robot is it surface shape, which is not always predictable. This means that given only the dynamic model of the robot, it is not possible to control the robot. Due to the fact that in certain conditions it is not possible to measure surface friction, control methods must be prepared for these conditions. Moreover, although spherical robot never becomes unstable or topples thanks to its special shape, since it moves by rolling it has a non-holonomic constraint at point of contact and therefore it is considered a non-holonomic system. Existence of such a point leads to complexity and non-linearity of robot's kinematic equations and makes the control problem difficult. Due to the non-linear dynamics and presence of uncertainty, the sliding-mode control is employed. The proposed method is based on Lyapunov Theory and guarantees system stability. This controller is insusceptible to external disturbances and un-modeled dynamics.

Keywords: sliding mode, spherical robot, non-holomonic constraint, system stability

Procedia PDF Downloads 389
5797 Influence of Decolourisation Condition on the Physicochemical Properties of Shea (Vitellaria paradoxa Gaertner F) Butter

Authors: Ahmed Mohammed Mohagir, Ahmat-Charfadine Mahamat, Nde Divine Bup, Richard Kamga, César Kapseu

Abstract:

In this investigation, kinetics studies of adsorption of colour material of shea butter showed a peak at the wavelength 440 nm and the equilibrium time was found to be 30 min. Response surface methodology applying Doehlert experimental design was used to investigate decolourisation parameters of crude shea butter. The decolourisation process was significantly influenced by three independent parameters: contact time, decolourisation temperature and adsorbent dose. The responses of the process were oil loss, acid value, peroxide value and colour index. Response surface plots were successfully made to visualise the effect of the independent parameters on the responses of the process.

Keywords: decolourisation, doehlert experimental design, physicochemical characterisation, RSM, shea butter

Procedia PDF Downloads 416
5796 Effects of Interfacial Modification Techniques on the Mechanical Properties of Natural Particle Based Polymer Composites

Authors: Bahar Basturk, Secil Celik Erbas, Sevket Can Sarikaya

Abstract:

Composites combining the particulates and polymer components have attracted great interest in various application areas such as packaging, furniture, electronics and automotive industries. For strengthening the plastic matrices, the utilization of natural fillers instead of traditional reinforcement materials has received increased attention. The properties of natural filler based polymer composites (NFPC) may be improved by applying proper surface modification techniques to the powder phase of the structures. In this study, acorn powder-epoxy and pine corn powder-epoxy composites containing up to 45% weight percent particulates were prepared by casting method. Alkali treatment and acetylation techniques were carried out to the natural particulates for investigating their influences under mechanical forces. The effects of filler type and content on the tensile properties of the composites were compared with neat epoxy. According to the quasi-static tensile tests, the pine cone based composites showed slightly higher rigidity and strength properties compared to the acorn reinforced samples. Furthermore, the structures independent of powder type and surface modification technique, showed higher tensile properties with increasing the particle content.

Keywords: natural fillers, polymer composites, surface modifications, tensile properties

Procedia PDF Downloads 468
5795 Pesticides Monitoring in Surface Waters of the São Paulo State, Brazil

Authors: Fabio N. Moreno, Letícia B. Marinho, Beatriz D. Ruiz, Maria Helena R. B. Martins

Abstract:

Brazil is a top consumer of pesticides worldwide, and the São Paulo State is one of the highest consumers among the Brazilian federative states. However, representative data about the occurrence of pesticides in surface waters of the São Paulo State is scarce. This paper aims to present the results of pesticides monitoring executed within the Water Quality Monitoring Network of CETESB (The Environmental Agency of the São Paulo State) between the 2018-2022 period. Surface water sampling points (21 to 25) were selected within basins of predominantly agricultural land-use (5 to 85% of cultivated areas). The samples were collected throughout the year, including high-flow and low-flow conditions. The frequency of sampling varied between 6 to 4 times per year. Selection of pesticide molecules for monitoring followed a prioritizing process from EMBRAPA (Brazilian Agricultural Research Corporation) databases of pesticide use. Pesticides extractions in aqueous samples were performed according to USEPA 3510C and 3546 methods following quality assurance and quality control procedures. Determination of pesticides in water (ng L-1) extracts were performed by high-performance liquid chromatography coupled with mass spectrometry (HPLC-MS) and by gas chromatography with nitrogen phosphorus (GC-NPD) and electron capture detectors (GC-ECD). The results showed higher frequencies (20- 65%) in surface water samples for Carbendazim (fungicide), Diuron/Tebuthiuron (herbicides) and Fipronil/Imidaclopride (insecticides). The frequency of observations for these pesticides were generally higher in monitoring points located in sugarcane cultivated areas. The following pesticides were most frequently quantified above the Aquatic life benchmarks for freshwater (USEPA Office of Pesticide Programs, 2023) or Brazilian Federal Regulatory Standards (CONAMA Resolution no. 357/2005): Atrazine, Imidaclopride, Carbendazim, 2,4D, Fipronil, and Chlorpiryfos. Higher median concentrations for Diuron and Tebuthiuron in the rainy months (october to march) indicated pesticide transport through surface runoff. However, measurable concentrations in the dry season (april to september) for Fipronil and Imidaclopride also indicates pathways related to subsurface or base flow discharge after pesticide soil infiltration and leaching or dry deposition following pesticide air spraying. With exception to Diuron, no temporal trends related to median concentrations of the most frequently quantified pesticides were observed. These results are important to assist policymakers in the development of strategies aiming at reducing pesticides migration to surface waters from agricultural areas. Further studies will be carried out in selected points to investigate potential risks as a result of pesticides exposure on aquatic biota.

Keywords: pesticides monitoring, são paulo state, water quality, surface waters

Procedia PDF Downloads 59
5794 Simulation-Based Unmanned Surface Vehicle Design Using PX4 and Robot Operating System With Kubernetes and Cloud-Native Tooling

Authors: Norbert Szulc, Jakub Wilk, Franciszek Górski

Abstract:

This paper presents an approach for simulating and testing robotic systems based on PX4, using a local Kubernetes cluster. The approach leverages modern cloud-native tools and runs on single-board computers. Additionally, this solution enables the creation of datasets for computer vision and the evaluation of control system algorithms in an end-to-end manner. This paper compares this approach to method commonly used Docker based approach. This approach was used to develop simulation environment for an unmanned surface vehicle (USV) for RoboBoat 2023 by running a containerized configuration of the PX4 Open-source Autopilot connected to ROS and the Gazebo simulation environment.

Keywords: cloud computing, Kubernetes, single board computers, simulation, ROS

Procedia PDF Downloads 76
5793 Numerical Modelling of 3-D Fracture Propagation and Damage Evolution of an Isotropic Heterogeneous Rock with a Pre-Existing Surface Flaw under Uniaxial Compression

Authors: S. Mondal, L. M. Olsen-Kettle, L. Gross

Abstract:

Fracture propagation and damage evolution are extremely important for many industrial applications including mining industry, composite materials, earthquake simulations, hydraulic fracturing. The influence of pre-existing flaws and rock heterogeneity on the processes and mechanisms of rock fracture has important ramifications in many mining and reservoir engineering applications. We simulate the damage evolution and fracture propagation in an isotropic sandstone specimen containing a pre-existing 3-D surface flaw in different configurations under uniaxial compression. We apply a damage model based on the unified strength theory and solve the solid deformation and damage evolution equations using the Finite Element Method (FEM) with tetrahedron elements on unstructured meshes through the simulation software, eScript. Unstructured meshes provide higher geometrical flexibility and allow a more accurate way to model the varying flaw depth, angle, and length through locally adapted FEM meshes. The heterogeneity of rock is considered by initializing material properties using a Weibull distribution sampled over a cubic grid. In our model, we introduce a length scale related to the rock heterogeneity which is independent of the mesh size. We investigate the effect of parameters including the heterogeneity of the elastic moduli and geometry of the single flaw in the stress strain response. The generation of three typical surface cracking patterns, called wing cracks, anti-wing cracks and far-field cracks were identified, and these depend on the geometry of the pre-existing surface flaw. This model results help to advance our understanding of fracture and damage growth in heterogeneous rock with the aim to develop fracture simulators for different industry applications.

Keywords: finite element method, heterogeneity, isotropic damage, uniaxial compression

Procedia PDF Downloads 218
5792 Accelerated Molecular Simulation: A Convolution Approach

Authors: Jannes Quer, Amir Niknejad, Marcus Weber

Abstract:

Computational Drug Design is often based on Molecular Dynamics simulations of molecular systems. Molecular Dynamics can be used to simulate, e.g., the binding and unbinding event of a small drug-like molecule with regard to the active site of an enzyme or a receptor. However, the time-scale of the overall binding event is many orders of magnitude longer than the time-scale of simulation. Thus, there is a need to speed-up molecular simulations. In order to speed up simulations, the molecular dynamics trajectories have to be ”steared” out of local minimizers of the potential energy surface – the so-called metastabilities – of the molecular system. Increasing the kinetic energy (temperature) is one possibility to accelerate simulated processes. However, with temperature the entropy of the molecular system increases, too. But this kind ”stearing” is not directed enough to stear the molecule out of the minimum toward the saddle point. In this article, we give a new mathematical idea, how a potential energy surface can be changed in such a way, that entropy is kept under control while the trajectories are still steared out of the metastabilities. In order to compute the unsteared transition behaviour based on a steared simulation, we propose to use extrapolation methods. In the end we mathematically show, that our method accelerates the simulations along the direction, in which the curvature of the potential energy surface changes the most, i.e., from local minimizers towards saddle points.

Keywords: extrapolation, Eyring-Kramers, metastability, multilevel sampling

Procedia PDF Downloads 328
5791 Determination of Dynamic Soil Properties Using Multichannel Analysis of Surface Wave (MASW) Techniques in Earth-Filled Dam

Authors: Noppadon Sintuboon, Benjamas Sawatdipong, Anchalee Kongsuk

Abstract:

This study was conducted to investigate the engineering parameters: compressional wave: Vp, shear wave: Vs, and density: ρ related to the dynamically geotechnical properties of soils compaction in the core of earth-filled dam located in northern part of Thailand by using multichannel analysis of surface wave (MASW) techniques. The Vp, Vs, and ρ from MASW were 1,624 - 1,649 m/s, 301-323 m/s, and 1,829 kg/m3, respectively. Those parameters were calculated to Poison’s ratio: ν (0.48), shear modulus: G (1.66 x 108 - 1.92 x 108 kg/m2), Vp/Vs ratio (5.10 – 5.39) and Standard Penetration Test (SPT) showing the dynamic characteristics of soil deformation and stress resulting from dynamic loads. The results of this study will be useful in primary evaluating the current condition and foundation of the dam and can be compared to the data from the laboratory in the future.

Keywords: earth-filled dam, MASW, dynamic elastic constant, shear wave

Procedia PDF Downloads 297
5790 Stabilizing Effect of Magnetic Field in a Thermally Modulated Porous Layer

Authors: M. Meenasaranya, S. Saravanan

Abstract:

Nonlinear stability analysis is carried out to determine the effect of surface temperature modulation in an infinite horizontal porous layer heated from below. The layer is saturated by an electrically conducting, viscous, incompressible and Newtonian fluid. The Brinkman model is used for momentum equation, and the Boussinesq approximation is invoked. The system is assumed to be bounded by rigid boundaries. The energy theory is implemented to find the global exponential stability region of the considered system. The results are analysed for arbitrary values of modulation frequency and amplitude. The existence of subcritical instability region is confirmed by comparing the obtained result with the known linear result. The vertical magnetic field is found to stabilize the system.

Keywords: Brinkman model, energy method, magnetic field, surface temperature modulation

Procedia PDF Downloads 395
5789 Soil Characteristics and Liquefaction Potential of the Bengkulu Region Based on the Microtremor Method

Authors: Aditya Setyo Rahman, Dwikorita Karnawati, Muzli, Dadang Permana, Sigit Pramono, Fajri Syukur Rahmatullah, Oriza Sativa, Moehajirin, Edy Santoso, Nur Hidayati Oktavia, Ardian Yudhi Octantyo, Robby Wallansha, Juwita Sari Pradita, Nur Fani Habibah, Audia Kaluku, Amelia Chelcea, Yoga Dharma Persada, Anton Sugiharto

Abstract:

Earthquake vibrations on the surface are not only affected by the magnitude of the earthquake and the distance from the hypocenter but also by the characteristics of the local soil. Variations and changes in soil characteristics from the depth of the bedrock to the surface can cause an amplification of earthquake vibrations that also affect the impact they may have on the surface. Soil characteristics vary widely even at relatively close distances, so for earthquake hazard mapping in cities with earthquake threats, it is necessary to study the characteristics of the local soil on a detailed or micro-scale (microzonation). This study proposes seismic microzonation and liquefaction potential based on microtremor observations. We carried out 143 microtremor observations, and the observation sites were spread across all populated sub-districts in Bengkulu City; the results showed that the dominance of Bengkulu City had medium soil types with a dominant period value of 0.4 < T₀ < 0.6, and there was one location with soft soil characteristics in the river, shaved with T₀ > 0.6. These results correlate with the potential for liquefaction as indicated by a seismic vulnerability index (K𝓰) greater than 5.

Keywords: microtremor, dominant period, microzonation, seismic vulnerability index

Procedia PDF Downloads 120
5788 Role of Calcination Treatment on the Structural Properties and Photocatalytic Activity of Nanorice N-Doped TiO₂ Catalyst

Authors: Totsaporn Suwannaruang, Kitirote Wantala

Abstract:

The purposes of this research were to synthesize titanium dioxide photocatalyst doped with nitrogen (N-doped TiO₂) by hydrothermal method and to test the photocatalytic degradation of paraquat under UV and visible light illumination. The effect of calcination treatment temperature on their physical and chemical properties and photocatalytic efficiencies were also investigated. The characterizations of calcined N-doped TiO₂ photocatalysts such as specific surface area, textural properties, bandgap energy, surface morphology, crystallinity, phase structure, elements and state of charges were investigated by Brunauer, Emmett, Teller (BET) and Barrett, Joyner, Halenda (BJH) equations, UV-Visible diffuse reflectance spectroscopy (UV-Vis-DRS) by using the Kubelka-Munk theory, Wide-angle X-ray scattering (WAXS), Focussed ion beam scanning electron microscopy (FIB-SEM), X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS), respectively. The results showed that the effect of calcination temperature was significant on surface morphology, crystallinity, specific surface area, pore size diameter, bandgap energy and nitrogen content level, but insignificant on phase structure and oxidation state of titanium (Ti) atom. The N-doped TiO₂ samples illustrated only anatase crystalline phase due to nitrogen dopant in TiO₂ restrained the phase transformation from anatase to rutile. The samples presented the nanorice-like morphology. The expansion on the particle was found at 650 and 700°C of calcination temperature, resulting in increased pore size diameter. The bandgap energy was determined by Kubelka-Munk theory to be in the range 3.07-3.18 eV, which appeared slightly lower than anatase standard (3.20 eV), resulting in the nitrogen dopant could modify the optical absorption edge of TiO₂ from UV to visible light region. The nitrogen content was observed at 100, 300 and 400°C only. Also, the nitrogen element disappeared at 500°C onwards. The nitrogen (N) atom can be incorporated in TiO₂ structure with the interstitial site. The uncalcined (100°C) sample displayed the highest percent paraquat degradation under UV and visible light irradiation due to this sample revealed both the highest specific surface area and nitrogen content level. Moreover, percent paraquat removal significantly decreased with increasing calcination treatment temperature. The nitrogen content level in TiO₂ accelerated the rate of reaction with combining the effect of the specific surface area that generated the electrons and holes during illuminated with light. Therefore, the specific surface area and nitrogen content level demonstrated the important roles in the photocatalytic activity of paraquat under UV and visible light illumination.

Keywords: restraining phase transformation, interstitial site, chemical charge state, photocatalysis, paraquat degradation

Procedia PDF Downloads 157