Search results for: point cloud imaging
5371 Cell-Cell Interactions in Diseased Conditions Revealed by Three Dimensional and Intravital Two Photon Microscope: From Visualization to Quantification
Authors: Satoshi Nishimura
Abstract:
Although much information has been garnered from the genomes of humans and mice, it remains difficult to extend that information to explain physiological and pathological phenomena. This is because the processes underlying life are by nature stochastic and fluctuate with time. Thus, we developed novel "in vivo molecular imaging" method based on single and two-photon microscopy. We visualized and analyzed many life phenomena, including common adult diseases. We integrated the knowledge obtained, and established new models that will serve as the basis for new minimally invasive therapeutic approaches.Keywords: two photon microscope, intravital visualization, thrombus, artery
Procedia PDF Downloads 3735370 Bread Quality Improvement with Special Novel Additives
Authors: Mónika Bartalné-Berceli, Eszter Izsó, Szilveszter Gergely, András Salgó
Abstract:
Nowadays a significant portion of the Earth's population does not have access to healthy food. Either because they can not afford them or because they do not know which they are. The aim of the VIIth Framework CHANCE project (Nr. 266331) supported by the European Union has been to develop relatively cheap food favorable from nutritional point of view and has acceptable quality for consumers. Within the project we dealt with manufacturing of bread belonging to basic foods. We had examined the enrichment of bread products with four kinds of bran, with a special milling product of grain industry (aleurone flour) and with a soy-based sprouted additive. The applied concentration of the six mentioned additives has been optimized and the physical and sensory properties of the bread products were monitored. The weight of the enriched breads increased slightly, however the volume and height decreased slightly compared to the corresponding data of the control bread. The composition of the final product is favorable affected by these additives having highly preferred composition from nutritional point of view.Keywords: bread products, brans, YASO, aleurone flour
Procedia PDF Downloads 3875369 Hardware-in-the-Loop Test for Automatic Voltage Regulator of Synchronous Condenser
Authors: Ha Thi Nguyen, Guangya Yang, Arne Hejde Nielsen, Peter Højgaard Jensen
Abstract:
Automatic voltage regulator (AVR) plays an important role in volt/var control of synchronous condenser (SC) in power systems. Test AVR performance in steady-state and dynamic conditions in real grid is expensive, low efficiency, and hard to achieve. To address this issue, we implement hardware-in-the-loop (HiL) test for the AVR of SC to test the steady-state and dynamic performances of AVR in different operating conditions. Startup procedure of the system and voltage set point changes are studied to evaluate the AVR hardware response. Overexcitation, underexcitation, and AVR set point loss are tested to compare the performance of SC with the AVR hardware and that of simulation. The comparative results demonstrate how AVR will work in a real system. The results show HiL test is an effective approach for testing devices before deployment and is able to parameterize the controller with lower cost, higher efficiency, and more flexibility.Keywords: automatic voltage regulator, hardware-in-the-loop, synchronous condenser, real time digital simulator
Procedia PDF Downloads 2515368 Computational Study on Traumatic Brain Injury Using Magnetic Resonance Imaging-Based 3D Viscoelastic Model
Authors: Tanu Khanuja, Harikrishnan N. Unni
Abstract:
Head is the most vulnerable part of human body and may cause severe life threatening injuries. As the in vivo brain response cannot be recorded during injury, computational investigation of the head model could be really helpful to understand the injury mechanism. Majority of the physical damage to living tissues are caused by relative motion within the tissue due to tensile and shearing structural failures. The present Finite Element study focuses on investigating intracranial pressure and stress/strain distributions resulting from impact loads on various sites of human head. This is performed by the development of the 3D model of a human head with major segments like cerebrum, cerebellum, brain stem, CSF (cerebrospinal fluid), and skull from patient specific MRI (magnetic resonance imaging). The semi-automatic segmentation of head is performed using AMIRA software to extract finer grooves of the brain. To maintain the accuracy high number of mesh elements are required followed by high computational time. Therefore, the mesh optimization has also been performed using tetrahedral elements. In addition, model validation with experimental literature is performed as well. Hard tissues like skull is modeled as elastic whereas soft tissues like brain is modeled with viscoelastic prony series material model. This paper intends to obtain insights into the severity of brain injury by analyzing impacts on frontal, top, back, and temporal sites of the head. Yield stress (based on von Mises stress criterion for tissues) and intracranial pressure distribution due to impact on different sites (frontal, parietal, etc.) are compared and the extent of damage to cerebral tissues is discussed in detail. This paper finds that how the back impact is more injurious to overall head than the other. The present work would be helpful to understand the injury mechanism of traumatic brain injury more effectively.Keywords: dynamic impact analysis, finite element analysis, intracranial pressure, MRI, traumatic brain injury, von Misses stress
Procedia PDF Downloads 1635367 Novel Ultrasensitive Point of Care Device for Diagnosis of Human Schistosomiasis Mansoni
Authors: Ibrahim Aly, Waleed Elawamy, Hanan Taher, Amira Matar
Abstract:
Schistosomiasis is infection with blood flukes of the genus Schistosoma, which are acquired trans-cutaneously by swimming or wading in contaminated freshwater. The present study was proposed to produce ultra-sensitive, field-friendly high-throughput rapid immunochromatography diagnostic device for accurate detection of asymptomatic parasite carriers in schistosomiasis pre-elimination settings.For assessing diagnostic potential of rapid device, 50 blood samples from patients with schistosomiasis mansoni, 29 other proven parasitic diseases and 25 blood samples as negative control were from healthy individuals were used. The sensitivity of Quantitative antigen-capture nano-ELISAwas 82 %, and specificity was 87.1 %, where the sensitivity of Nano Dot- ELISA was 86 % and specificity was 90.7 %. The sensitivity of diagnostic device was 78 % and specificity was 85.2 %, with PPV and NPV of 86.2 % and 83.1 %, respectively.The Point of care device resulted in a good performance for the diagnosis of low-intensity infections, it was able to identify 19 out of 25 (76 %) individuals with ⩽7 eggs, 10 out of 14 individuals (71.4 %) with 11–99 eggs and 100 % of individuals with 100–399 eggs.Keywords: schistosomiasis, immunochromatography, naon-dot-ELISa, diagnostis device
Procedia PDF Downloads 765366 Optimal Tuning of RST Controller Using PSO Optimization for Synchronous Generator Based Wind Turbine under Three-Phase Voltage Dips
Authors: K. Tahir, C. Belfedal, T. Allaoui, C. Gerard, M. Doumi
Abstract:
In this paper, we presented an optimized RST controller using Particle Swarm Optimization (PSO) meta-heuristic technique of the active and reactive power regulation of a grid connected wind turbine based on a wound field synchronous generator. This regulation is achieved below the synchronous speed, by means of a maximum power point tracking algorithm. The control of our system is tested under typical wind variations and parameters variation, fault grid condition by simulation. Some results are presented and discussed to prove simplicity and efficiency of the WRSG control for WECS. On the other hand, according to simulation results, variable speed driven WRSG is not significantly impacted in fault conditions.Keywords: wind energy, particle swarm optimization, wound rotor synchronous generator, power control, RST controller, maximum power point tracking
Procedia PDF Downloads 4515365 Experimental and Numerical Investigation of Fracture Behavior of Foamed Concrete Based on Three-Point Bending Test of Beams with Initial Notch
Authors: M. Kozłowski, M. Kadela
Abstract:
Foamed concrete is known for its low self-weight and excellent thermal and acoustic properties. For many years, it has been used worldwide for insulation to foundations and roof tiles, as backfill to retaining walls, sound insulation, etc. However, in the last years it has become a promising material also for structural purposes e.g. for stabilization of weak soils. Due to favorable properties of foamed concrete, many interests and studies were involved to analyze its strength, mechanical, thermal and acoustic properties. However, these studies do not cover the investigation of fracture energy which is the core factor governing the damage and fracture mechanisms. Only limited number of publications can be found in literature. The paper presents the results of experimental investigation and numerical campaign of foamed concrete based on three-point bending test of beams with initial notch. First part of the paper presents the results of a series of static loading tests performed to investigate the fracture properties of foamed concrete of varying density. Beam specimens with dimensions of 100×100×840 mm with a central notch were tested in three-point bending. Subsequently, remaining halves of the specimens with dimensions of 100×100×420 mm were tested again as un-notched beams in the same set-up with reduced distance between supports. The tests were performed in a hydraulic displacement controlled testing machine with a load capacity of 5 kN. Apart from measuring the loading and mid-span displacement, a crack mouth opening displacement (CMOD) was monitored. Based on the load – displacement curves of notched beams the values of fracture energy and tensile stress at failure were calculated. The flexural tensile strength was obtained on un-notched beams with dimensions of 100×100×420 mm. Moreover, cube specimens 150×150×150 mm were tested in compression to determine the compressive strength. Second part of the paper deals with numerical investigation of the fracture behavior of beams with initial notch presented in the first part of the paper. Extended Finite Element Method (XFEM) was used to simulate and analyze the damage and fracture process. The influence of meshing and variation of mechanical properties on results was investigated. Numerical models simulate correctly the behavior of beams observed during three-point bending. The numerical results show that XFEM can be used to simulate different fracture toughness of foamed concrete and fracture types. Using the XFEM and computer simulation technology allow for reliable approximation of load–bearing capacity and damage mechanisms of beams made of foamed concrete, which provides some foundations for realistic structural applications.Keywords: foamed concrete, fracture energy, three-point bending, XFEM
Procedia PDF Downloads 3005364 Simple Multipath Compensation for Frequency Modulated Signals: A Case of Radio Frequency vs. Quadrature Baseband
Authors: Lusungu Ndovi
Abstract:
Radio propagation from point-to-point is affected by the physical channel in many ways. A signal arriving at a destination travels through a number of different paths which are referred to as multi-paths. Research in this area of wireless communications has progressed well over the years with the research taking different angles of focus. By this is meant that some researchers focus on ways of reducing or eluding Multipath effects whilst others focus on ways of mitigating the effects of Multipath through compensation schemes. Baseband processing is seen as one field of signal processing that is cardinal to the advancement of software-defined radio technology. This has led to wide research into the carrying out certain algorithms at baseband. This paper considers compensating for Multipath for Frequency Modulated signals. The compensation process is carried out at Radio frequency (RF) and at Quadrature baseband (QBB) and the results are compared. Simulations are carried out using MatLab so as to show the benefits of working at lower QBB frequencies than at RF.Keywords: quadrature baseband, qadio frequency, qultipath compensation, frequency qodulation, signal processing
Procedia PDF Downloads 4815363 Predicting Subsurface Abnormalities Growth Using Physics-Informed Neural Networks
Authors: Mehrdad Shafiei Dizaji, Hoda Azari
Abstract:
The research explores the pioneering integration of Physics-Informed Neural Networks (PINNs) into the domain of Ground-Penetrating Radar (GPR) data prediction, akin to advancements in medical imaging for tracking tumor progression in the human body. This research presents a detailed development framework for a specialized PINN model proficient at interpreting and forecasting GPR data, much like how medical imaging models predict tumor behavior. By harnessing the synergy between deep learning algorithms and the physical laws governing subsurface structures—or, in medical terms, human tissues—the model effectively embeds the physics of electromagnetic wave propagation into its architecture. This ensures that predictions not only align with fundamental physical principles but also mirror the precision needed in medical diagnostics for detecting and monitoring tumors. The suggested deep learning structure comprises three components: a CNN, a spatial feature channel attention (SFCA) mechanism, and ConvLSTM, along with temporal feature frame attention (TFFA) modules. The attention mechanism computes channel attention and temporal attention weights using self-adaptation, thereby fine-tuning the visual and temporal feature responses to extract the most pertinent and significant visual and temporal features. By integrating physics directly into the neural network, our model has shown enhanced accuracy in forecasting GPR data. This improvement is vital for conducting effective assessments of bridge deck conditions and other evaluations related to civil infrastructure. The use of Physics-Informed Neural Networks (PINNs) has demonstrated the potential to transform the field of Non-Destructive Evaluation (NDE) by enhancing the precision of infrastructure deterioration predictions. Moreover, it offers a deeper insight into the fundamental mechanisms of deterioration, viewed through the prism of physics-based models.Keywords: physics-informed neural networks, deep learning, ground-penetrating radar (GPR), NDE, ConvLSTM, physics, data driven
Procedia PDF Downloads 405362 Monitoring Land Productivity Dynamics of Gombe State, Nigeria
Authors: Ishiyaku Abdulkadir, Satish Kumar J
Abstract:
Land Productivity is a measure of the greenness of above-ground biomass in health and potential gain and is not related to agricultural productivity. Monitoring land productivity dynamics is essential to identify, especially when and where the trend is characterized degraded for mitigation measures. This research aims to monitor the land productivity trend of Gombe State between 2001 and 2015. QGIS was used to compute NDVI from AVHRR/MODIS datasets in a cloud-based method. The result appears that land area with improving productivity account for 773sq.km with 4.31%, stable productivity traced to 4,195.6 sq.km with 23.40%, stable but stressed productivity represent 18.7sq.km account for 0.10%, early sign of decline productivity occupied 5203.1sq.km with 29%, declining productivity account for 7019.7sq.km, represent 39.2%, water bodies occupied 718.7sq.km traced to 4% of the state’s area.Keywords: above-ground biomass, dynamics, land productivity, man-environment relationship
Procedia PDF Downloads 1455361 Ectopic Mediastinal Parathyroid Adenoma: A Case Report with Diagnostic and Management Challenges
Authors: Augustina Konadu Larbi-Ampofo, Ekemini Umoinwek
Abstract:
Background: Hypercalcaemia is a common electrolyte imbalance that increases mortality if poorly controlled. Primary hyperparathyroidism often presents like this with a prevalence of 0.1-0.3%. Management due to an ectopic parathyroid adenoma in the mediastinum is challenging, especially in a patient with a pacemaker. Case Presentation: A 79-year-old woman with a history of a previous cardiac arrest, permanent pacemaker, ischaemic heart disease, bilateral renal calculi, rectal polyps, liver cirrhosis, and a family history of hyperthyroidism presented to the emergency department with acute back pain. Management and Outcome: The patient was diagnosed with primary hyperparathyroidism due to her elevated corrected calcium and parathyroid hormone levels. Parathyroid investigations consisting of an NM MIBI scan, SPECT-CT, 4D parathyroid scan, and an ultrasound scan of the neck and thorax confirmed an ectopic parathyroid adenoma in the mediastinum at the level of the aortic arch, along with benign thyroid nodules. The location of the adenoma warranted a thoracoscopic surgical approach; however, the presence of her pacemaker and other cardiovascular conditions predisposed her to a potentially poorer post-operative outcome. Discussion: Mediastinal ectopic parathyroid adenomas are rare and difficult to diagnose and treat, often needing a multimodal imaging approach for accurate localisation. Surgery is a definitive treatment; however, in this patient, long-term medical treatment with cinacalcet was the only next suitable treatment option. The difficulty with this is that cinacalcet tackles the biochemical markers of the disease entity and not the disease itself, leaving room for what happens next if there is refractory/uncontrolled hypercalcaemia in this patient with a pacemaker. Moreover, the coexistence of her multiple conditions raises the suspicion of an underlying multisystemic or multiple endocrine disorder, with multiple endocrine neoplasia coming to mind, necessitating further genetic or autoimmune investigations. Conclusion: Mediastinal ectopic parathyroid adenomas are rare, with diagnostic and management challenges.Keywords: mediastinal ectopic parathyroid adenoma, hyperparathyroidism, SPECT/CT, nuclear medicine, multimodal imaging
Procedia PDF Downloads 175360 DAG Design and Tradeoff for Full Live Virtual Machine Migration over XIA Network
Authors: Dalu Zhang, Xiang Jin, Dejiang Zhou, Jianpeng Wang, Haiying Jiang
Abstract:
Traditional TCP/IP network is showing lots of shortages and research for future networks is becoming a hotspot. FIA (Future Internet Architecture) and FIA-NP (Next Phase) are supported by US NSF for future Internet designing. Moreover, virtual machine migration is a significant technique in cloud computing. As a network application, it should also be supported in XIA (expressive Internet Architecture), which is in both FIA and FIA-NP projects. This paper is an experimental study aims at verifying the feasibility of VM migration over XIA. We present three ways to maintain VM connectivity and communication states concerning DAG design and routing table modification. VM migration experiments are conducted intra-AD and inter-AD with KVM instances. The procedure is achieved by a migration control protocol which is suitable for the characters of XIA. Evaluation results show that our solutions can well supports full live VM migration over XIA network respectively, keeping services seamless.Keywords: DAG, downtime, virtual machine migration, XIA
Procedia PDF Downloads 8555359 Identification of Accumulated Hydrocarbon Based on Heat Propagation Analysis in Order to Develop Mature Field: Case Study in South Sumatra Basin, Indonesia
Authors: Kukuh Suprayogi, Muhamad Natsir, Olif Kurniawan, Hot Parulian, Bayu Fitriana, Fery Mustofa
Abstract:
The new approach by utilizing the heat propagation analysis carried out by studying and evaluating the effect of the presence of hydrocarbons to the flow of heat that goes from the bottom surface to surface. Heat propagation is determined by the thermal conductivity of rocks. The thermal conductivity of rock itself is a quantity that describes the ability of a rock to deliver heat. This quantity depends on the constituent rock lithology, large porosity, and pore fluid filler. The higher the thermal conductivity of a rock, the more easily the flow of heat passing through these rocks. With the same sense, the heat flow will more easily pass through the rock when the rock is filled with water than hydrocarbons, given the nature of the hydrocarbons having more insulator against heat. The main objective of this research is to try to make the model the heat propagation calculations in degrees Celsius from the subsurface to the surface which is then compared with the surface temperature is measured directly at the point of location. In calculating the propagation of heat, we need to first determine the thermal conductivity of rocks, where the rocks at the point calculation are not composed of homogeneous but consist of strata. Therefore, we need to determine the mineral constituent and porosity values of each stratum. As for the parameters of pore fluid filler, we assume that all the pores filled with water. Once we get a thermal conductivity value of each unit of the rock, then we begin to model the propagation of heat profile from the bottom to the surface. The initial value of the temperature that we use comes from the data bottom hole temperature (BHT) is obtained from drilling results. Results of calculations per depths the temperature is displayed in plotting temperature versus depth profiles that describe the propagation of heat from the bottom of the well to the surface, note that pore fluid is water. In the technical implementation, we can identify the magnitude of the effect of hydrocarbons in reducing the amount of heat that crept to the surface based on the calculation of propagation of heat at a certain point and compared with measurements of surface temperature at that point, assuming that the surface temperature measured is the temperature that comes from the asthenosphere. This publication proves that the accumulation of hydrocarbon can be identified by analysis of heat propagation profile which could be a method for identifying the presence of hydrocarbons.Keywords: thermal conductivity, rock, pore fluid, heat propagation
Procedia PDF Downloads 1085358 Context-Aware Point-Of-Interests Recommender Systems Using Integrated Sentiment and Network Analysis
Authors: Ho Yeon Park, Kyoung-Jae Kim
Abstract:
Recently, user’s interests for location-based social network service increases according to the advances of social web and location-based technologies. It may be easy to recommend preferred items if we can use user’s preference, context and social network information simultaneously. In this study, we propose context-aware POI (point-of-interests) recommender systems using location-based network analysis and sentiment analysis which consider context, social network information and implicit user’s preference score. We propose a context-aware POI recommendation system consisting of three sub-modules and an integrated recommendation system of them. First, we will develop a recommendation module based on network analysis. This module combines social network analysis and cluster-indexing collaboration filtering. Next, this study develops a recommendation module using social singular value decomposition (SVD) and implicit SVD. In this research, we will develop a recommendation module that can recommend preference scores based on the frequency of POI visits of user in POI recommendation process by using social and implicit SVD which can reflect implicit feedback in collaborative filtering. We also develop a recommendation module using them that can estimate preference scores based on the recommendation. Finally, this study will propose a recommendation module using opinion mining and emotional analysis using data such as reviews of POIs extracted from location-based social networks. Finally, we will develop an integration algorithm that combines the results of the three recommendation modules proposed in this research. Experimental results show the usefulness of the proposed model in relation to the recommended performance.Keywords: sentiment analysis, network analysis, recommender systems, point-of-interests, business analytics
Procedia PDF Downloads 2505357 Dissecting Big Trajectory Data to Analyse Road Network Travel Efficiency
Authors: Rania Alshikhe, Vinita Jindal
Abstract:
Digital innovation has played a crucial role in managing smart transportation. For this, big trajectory data collected from traveling vehicles, such as taxis through installed global positioning system (GPS)-enabled devices can be utilized. It offers an unprecedented opportunity to trace the movements of vehicles in fine spatiotemporal granularity. This paper aims to explore big trajectory data to measure the travel efficiency of road networks using the proposed statistical travel efficiency measure (STEM) across an entire city. Further, it identifies the cause of low travel efficiency by proposed least square approximation network-based causality exploration (LANCE). Finally, the resulting data analysis reveals the causes of low travel efficiency, along with the road segments that need to be optimized to improve the traffic conditions and thus minimize the average travel time from given point A to point B in the road network. Obtained results show that our proposed approach outperforms the baseline algorithms for measuring the travel efficiency of the road network.Keywords: GPS trajectory, road network, taxi trips, digital map, big data, STEM, LANCE
Procedia PDF Downloads 1575356 A Conceptual Framework of Digital Twin for Homecare
Authors: Raja Omman Zafar, Yves Rybarczyk, Johan Borg
Abstract:
This article proposes a conceptual framework for the application of digital twin technology in home care. The main goal is to bridge the gap between advanced digital twin concepts and their practical implementation in home care. This study uses a literature review and thematic analysis approach to synthesize existing knowledge and proposes a structured framework suitable for homecare applications. The proposed framework integrates key components such as IoT sensors, data-driven models, cloud computing, and user interface design, highlighting the importance of personalized and predictive homecare solutions. This framework can significantly improve the efficiency, accuracy, and reliability of homecare services. It paves the way for the implementation of digital twins in home care, promoting real-time monitoring, early intervention, and better outcomes.Keywords: digital twin, homecare, older adults, healthcare, IoT, artificial intelligence
Procedia PDF Downloads 715355 Improving Communication System through Router Configuration: The Nigerian Navy Experience
Authors: Saidu I. Rambo, Emmanuel O. Ibam, Sunday O. Adewale
Abstract:
The configuration of routers for effective communication in the Nigerian Navy (NN) enables the navy to improve on the current communication systems. The current system is faced with challenges that make the systems partially effective. The major implementation of the system is to configure routers using hierarchical model and obtaining a VSAT option on C-band platform. These routers will act as a link between Naval Headquarters and the Commands under it. The routers main responsibilities are to forward packets from source location to destination using a Link State Routing Protocol (LSRP). Also using the Point to Point Protocol (PPP), creates a strong encrypted password using Challenge Handshake Authentication Protocol (CHAP) which uses one-way hash function of Message Digest 5 (MD5) to provide complete protection against hackers/intruders. Routers can be configured using a Linux operating system or internet work operating system in the Microsoft platform. With this, system packets can be forwarded to various locations more effectively than the present system being used.Keywords: C-band, communication, router, VSAT
Procedia PDF Downloads 3665354 Density Determination of Liquid Niobium by Means of Ohmic Pulse-Heating for Critical Point Estimation
Authors: Matthias Leitner, Gernot Pottlacher
Abstract:
Experimental determination of critical point data like critical temperature, critical pressure, critical volume and critical compressibility of high-melting metals such as niobium is very rare due to the outstanding experimental difficulties in reaching the necessary extreme temperature and pressure regimes. Experimental techniques to achieve such extreme conditions could be diamond anvil devices, two stage gas guns or metal samples hit by explosively accelerated flyers. Electrical pulse-heating under increased pressures would be another choice. This technique heats thin wire samples of 0.5 mm diameter and 40 mm length from room temperature to melting and then further to the end of the stable phase, the spinodal line, within several microseconds. When crossing the spinodal line, the sample explodes and reaches the gaseous phase. In our laboratory, pulse-heating experiments can be performed under variation of the ambient pressure from 1 to 5000 bar and allow a direct determination of critical point data for low-melting, but not for high-melting metals. However, the critical point also can be estimated by extrapolating the liquid phase density according to theoretical models. A reasonable prerequisite for the extrapolation is the existence of data that cover as much as possible of the liquid phase and at the same time exhibit small uncertainties. Ohmic pulse-heating was therefore applied to determine thermal volume expansion, and from that density of niobium over the entire liquid phase. As a first step, experiments under ambient pressure were performed. The second step will be to perform experiments under high-pressure conditions. During the heating process, shadow images of the expanding sample wire were captured at a frame rate of 4 × 105 fps to monitor the radial expansion as a function of time. Simultaneously, the sample radiance was measured with a pyrometer operating at a mean effective wavelength of 652 nm. To increase the accuracy of temperature deduction, spectral emittance in the liquid phase is also taken into account. Due to the high heating rates of about 2 × 108 K/s, longitudinal expansion of the wire is inhibited which implies an increased radial expansion. As a consequence, measuring the temperature dependent radial expansion is sufficient to deduce density as a function of temperature. This is accomplished by evaluating the full widths at half maximum of the cup-shaped intensity profiles that are calculated from each shadow image of the expanding wire. Relating these diameters to the diameter obtained before the pulse-heating start, the temperature dependent volume expansion is calculated. With the help of the known room-temperature density, volume expansion is then converted into density data. The so-obtained liquid density behavior is compared to existing literature data and provides another independent source of experimental data. In this work, the newly determined off-critical liquid phase density was in a second step utilized as input data for the estimation of niobium’s critical point. The approach used, heuristically takes into account the crossover from mean field to Ising behavior, as well as the non-linearity of the phase diagram’s diameter.Keywords: critical point data, density, liquid metals, niobium, ohmic pulse-heating, volume expansion
Procedia PDF Downloads 2195353 Determination of Mercury in Gold Ores by CVAAS Method
Authors: Ratna Siti Khodijah, Mirzam Abdurrachman
Abstract:
Gold is recovered from gold ores. Within the ores, there are not only gold but also several types of precious metals. Copper, silver, and platinum group elements (ruthenium, rhodium, palladium, rhenium, osmium, and iridium) are metals commonly found in the ores. These metals combine to form an ore because they have the same properties. It is due to their position in periodic-system-of-elements are near to gold. However, the presence of mercury in every gold ore has not been mentioned, even though it is located right next to gold in the periodic-system-of-elements and they are located in the same block, d-block. Thus, it is possible that mercury is contained in the ores. Moreover, the elements of the same group with mercury—zinc and cadmium—sometimes can be found in the ores. It is suspected that mercury can not be detected because the processing of gold ores usually using fire assay method. Before the ores melting, mercury would evaporate because it has the lowest boiling point of all precious metal in the ores. Therefore, it suggested doing research on the presence of mercury in gold ores by CVAAS method. The results of this study would obtain the amount of mercury in gold ores that should be purified. So it can be produced economically if possible.Keywords: boiling point, d-block, fire assay, precious metal
Procedia PDF Downloads 3415352 Report of Glucagonoma in a Dog: Ultrasonographic Morphologic Imaging and Histopathologic Diagnosis
Authors: Javad Khoshnegah, Hossein Nourani, Ali Mirshahi
Abstract:
A 12-year-old female Terrier presented with lethargy, decreased appetite, melena, polyuria and polydipsia. On physical examination skin lesions including crusting, erythema and pupolopustular lesions, were observed mainly on the abdomen. Based on blood examinations, ultrasonography, necropsy and histopathological findings, the condition was diagnosed as superficial necrolytic dermatitis. Gross necropsy revealed hepatomegaly (severe vacuolar change of the hepatocytes) and a 5×5 mass adjusent to mesenteric lymph nodes which is finally diagnosed as tumor. Immunohistochemical analysis of the neoplastic cells revealed that the tumor was a glucagonoma.Keywords: dog, glucagonoma, immunohistochemistry, tumor
Procedia PDF Downloads 2355351 Cyber Attacks Management in IoT Networks Using Deep Learning and Edge Computing
Authors: Asmaa El Harat, Toumi Hicham, Youssef Baddi
Abstract:
This survey delves into the complex realm of Internet of Things (IoT) security, highlighting the urgent need for effective cybersecurity measures as IoT devices become increasingly common. It explores a wide array of cyber threats targeting IoT devices and focuses on mitigating these attacks through the combined use of deep learning and machine learning algorithms, as well as edge and cloud computing paradigms. The survey starts with an overview of the IoT landscape and the various types of attacks that IoT devices face. It then reviews key machine learning and deep learning algorithms employed in IoT cybersecurity, providing a detailed comparison to assist in selecting the most suitable algorithms. Finally, the survey provides valuable insights for cybersecurity professionals and researchers aiming to enhance security in the intricate world of IoT.Keywords: internet of things (IoT), cybersecurity, machine learning, deep learning
Procedia PDF Downloads 315350 Analysis of the Current and Ideal Situation of Iran’s Football Talent Management Process from the Perspective of the Elites
Authors: Mehran Nasiri, Ardeshir Poornemat
Abstract:
The aim of this study was to investigate the current and ideal situations of the process of talent identification in Iranian football from the point of view of Iranian instructors of the Asian Football Confederation (AFC). This research was a descriptive-analytical study; in data collection phase a questionnaire was used, whose face validity was confirmed by experts of Physical Education and Sports Science. The reliability of questionnaire was estimated through the use of Cronbach's alpha method (0.91). This study involved 122 participants of Iranian instructors of the AFC who were selected based on stratified random sampling method. Descriptive statistics were used to describe the variables and inferential statistics (Chi-square) were used to test the hypotheses of the study at significant level (p ≤ 0.05). The results of Chi-square test related to the point of view of Iranian instructors of the AFC showed that the grass-roots scientific method was the best way to identify football players (0.001), less than 10 years old were the best ages for talent identification (0.001), the Football Federation was revealed to be the most important organization in talent identification (0.002), clubs were shown to be the most important institution in developing talents (0.001), trained scouts of Football Federation were demonstrated to be the best and most appropriate group for talent identification (0.001), and being referred by the football academy coaches was shown to be the best way to attract talented football players in Iran (0.001). It was also found that there was a huge difference between the current and ideal situation of the process of talent identification in Iranian football from the point of view of Iranian instructors of the AFC. Hence, it is recommended that the policy makers of talent identification for Iranian football provide a comprehensive, clear and systematic model of talent identification and development processes for the clubs and football teams, so that the talent identification process helps to nurture football talents more efficiently.Keywords: current situation, talent finding, ideal situation, instructors (AFC)
Procedia PDF Downloads 2135349 Correlation of Clinical and Sonographic Findings with Cytohistology for Diagnosis of Ovarian Tumours
Authors: Meenakshi Barsaul Chauhan, Aastha Chauhan, Shilpa Hurmade, Rajeev Sen, Jyotsna Sen, Monika Dalal
Abstract:
Introduction: Ovarian masses are common forms of neoplasm in women and represent 2/3rd of gynaecological malignancies. A pre-operative suggestion of malignancy can guide the gynecologist to refer women with suspected pelvic mass to a gynecological oncologist for appropriate therapy and optimized treatment, which can improve survival. In the younger age group preoperative differentiation into benign or malignant pathology can decide for conservative or radical surgery. Imaging modalities have a definite role in establishing the diagnosis. By using International Ovarian Tumor Analysis (IOTA) classification with sonography, costly radiological methods like Magnetic Resonance Imaging (MRI) / computed tomography (CT) scan can be reduced, especially in developing countries like India. Thus, this study is being undertaken to evaluate the role of clinical methods and sonography for diagnosis of the nature of the ovarian tumor. Material And Methods: This prospective observational study was conducted on 40 patients presenting with ovarian masses, in the Department of Obstetrics and Gynaecology, at a tertiary care center in northern India. Functional cysts were excluded. Ultrasonography and color Doppler were performed on all the cases.IOTA rules were applied, which take into account locularity, size, presence of solid components, acoustic shadow, dopper flow etc . Magnetic Resonance Imaging (MRI) / computed tomography (CT) scans abdomen and pelvis were done in cases where sonography was inconclusive. In inoperable cases, Fine needle aspiration cytology (FNAC) was done. The histopathology report after surgery and cytology report after FNAC was correlated statistically with the pre-operative diagnosis made clinically and sonographically using IOTA rules. Statistical Analysis: Descriptive measures were analyzed by using mean and standard deviation and the Student t-test was applied and the proportion was analyzed by applying the chi-square test. Inferential measures were analyzed by sensitivity, specificity, negative predictive value, and positive predictive value. Results: Provisional diagnosis of the benign tumor was made in 16(42.5%) and of the malignant tumor was made in 24(57.5%) patients on the basis of clinical findings. With IOTA simple rules on sonography, 15(37.5%) were found to be benign, while 23 (57.5%) were found to be malignant and findings were inconclusive in 2 patients (5%). FNAC/Histopathology reported that benign ovarian tumors were 14 (35%) and 26(65%) were malignant, which was taken as the gold standard. The clinical finding alone was found to have a sensitivity of 66.6% and a specificity of 90.9%. USG alone had a sensitivity of 86% and a specificity of 80%. When clinical findings and IOTA simple rules of sonography were combined (excluding inconclusive masses), the sensitivity and specificity were 83.3% and 92.3%, respectively. While including inconclusive masses, sensitivity came out to be 91.6% and specificity was 89.2. Conclusion: IOTA's simple sonography rules are highly sensitive and specific in the prediction of ovarian malignancy and also easy to use and easily reproducible. Thus, combining clinical examination with USG will help in the better management of patients in terms of time, cost and better prognosis. This will also avoid the need for costlier modalities like CT, and MRI.Keywords: benign, international ovarian tumor analysis classification, malignant, ovarian tumours, sonography
Procedia PDF Downloads 805348 European Environmental Policy for Road Transport: Analysis of the Perverse Effects Generated and Proposals for a Good Practice Guide
Authors: Pedro Pablo Ramírez Sánchez, Alassane Ballé Ndiaye, Roberto Rendeiro Martín-Cejas
Abstract:
The aim of this paper is to analyse the different environmental policies adopted in Europe for car emissions, to comment on some of the possible perverse effects generated and point out these policies which are considered more efficient under the environmental perspective. This paper is focused on passenger cars as this category is the most significant in road transport. The utility of this research lies in this being the first step or basis to improve and optimise actual policies. The methodology applied in this paper refers to a comparative analysis from a practical and theoretical point of view of European environmental policies in road transport. This work describes an overview of the road transport industry in Europe pointing out some relevant aspects such as the contribution of road transport to total emissions and the vehicle fleet in Europe. Additionally, we propose a brief practice guide with the combined policies in order to optimise their aim.Keywords: air quality, climate change, emission, environment, perverse effect, road transport, tax policy
Procedia PDF Downloads 1615347 Effects of Preparation Conditions on the Properties of Crumb Rubber Modified Binder
Authors: Baha Vural Kök, Mehmet Yilmaz, Mustafa Akpolat, Cihat Sav
Abstract:
Various types of additives are used frequently in order to improve the rheological and mechanical properties of bituminous mixtures. Small devices instead of full scale machines are used for bitumen modification in the laboratory. These laboratory scale devices vary in terms of their properties such as mixing rate, mixing blade and the amount of binder. In this study, the effect of mixing rate and time during the bitumen modification processes on conventional and rheological properties of pure and crumb rubber modified binder were investigated. Penetration, softening point, rotational viscosity (RV) and dynamic shear rheometer (DSR) tests were applied to pure and CR modified bitumen. It was concluded that the penetration and softening point test did not show the efficiency of CR obtained by different mixing conditions. Besides, oxidation that occurred during the preparation processes plays a great part in the improvement effects of the modified binder.Keywords: bitumen, crumb rubber, modification, rheological properties
Procedia PDF Downloads 3165346 Development of a Methodology for Surgery Planning and Control: A Management Approach to Handle the Conflict of High Utilization and Low Overtime
Authors: Timo Miebach, Kirsten Hoeper, Carolin Felix
Abstract:
In times of competitive pressures and demographic change, hospitals have to reconsider their strategies as a company. Due to the fact, that operations are one of the main income and one of the primary cost drivers otherwise, a process-oriented approach and an efficient use of resources seems to be the right way for getting a consistent market position. Thus, the efficient operation room occupancy planning is an important cause variable for the success and continued the existence of these institutions. A high utilization of resources is essential. This means a very high, but nevertheless sensible capacity-oriented utilization of working systems that can be realized by avoiding downtimes and a thoughtful occupancy planning. This engineering approach should help hospitals to reach her break-even point. Firstly, the aim is to establish a strategy point, which can be used for the generation of a planned throughput time. Secondly, the operation planning and control should be facilitated and implemented accurately by the generation of time modules. More than 100,000 data records of the Hannover Medical School were analyzed. The data records contain information about the type of conducted operation, the duration of the individual process steps, and all other organizational-specific data such as an operating room. Based on the aforementioned data base, a generally valid model was developed by an analysis to define a strategy point which takes the conflict of capacity utilization and low overtime into account. Furthermore, time modules were generated in this work, which allows a simplified and flexible operation planning and control for the operation manager. By the time modules, it is possible to reduce a high average value of the idle times of the operation rooms. Furthermore, the potential is used to minimize the idle time spread.Keywords: capacity, operating room, surgery planning and control, utilization
Procedia PDF Downloads 2525345 Comparative Study between the Absorbed Dose of 67ga-Ecc and 68ga-Ecc
Authors: H. Yousefnia, S. Zolghadri, S. Shanesazzadeh, A.Lahooti, A. R. Jalilian
Abstract:
In this study, 68Ga-ECC and 67Ga-ECC were both prepared with the radiochemical purity of higher than 97% in less than 30 min. The biodistribution data for 68Ga-ECC showed the extraction of the most of the activity from the urinary tract. The absorbed dose was estimated based on biodistribution data in mice by the medical internal radiation dose (MIRD) method. Comparison between human absorbed dose estimation for these two agents indicated the values of approximately ten-fold higher after injection of 67Ga-ECC than 68Ga-ECC in the most organs. The results showed that 68Ga-ECC can be considered as a more potential agent for renal imaging compared to 67Ga-ECC.Keywords: effective absorbed dose, ethylenecysteamine cysteine, Ga-67, Ga-68
Procedia PDF Downloads 4695344 Neural Rendering Applied to Confocal Microscopy Images
Authors: Daniel Li
Abstract:
We present a novel application of neural rendering methods to confocal microscopy. Neural rendering and implicit neural representations have developed at a remarkable pace, and are prevalent in modern 3D computer vision literature. However, they have not yet been applied to optical microscopy, an important imaging field where 3D volume information may be heavily sought after. In this paper, we employ neural rendering on confocal microscopy focus stack data and share the results. We highlight the benefits and potential of adding neural rendering to the toolkit of microscopy image processing techniques.Keywords: neural rendering, implicit neural representations, confocal microscopy, medical image processing
Procedia PDF Downloads 6585343 In-Flight Radiometric Performances Analysis of an Airborne Optical Payload
Authors: Caixia Gao, Chuanrong Li, Lingli Tang, Lingling Ma, Yaokai Liu, Xinhong Wang, Yongsheng Zhou
Abstract:
Performances analysis of remote sensing sensor is required to pursue a range of scientific research and application objectives. Laboratory analysis of any remote sensing instrument is essential, but not sufficient to establish a valid inflight one. In this study, with the aid of the in situ measurements and corresponding image of three-gray scale permanent artificial target, the in-flight radiometric performances analyses (in-flight radiometric calibration, dynamic range and response linearity, signal-noise-ratio (SNR), radiometric resolution) of self-developed short-wave infrared (SWIR) camera are performed. To acquire the inflight calibration coefficients of the SWIR camera, the at-sensor radiances (Li) for the artificial targets are firstly simulated with in situ measurements (atmosphere parameter and spectral reflectance of the target) and viewing geometries using MODTRAN model. With these radiances and the corresponding digital numbers (DN) in the image, a straight line with a formulation of L = G × DN + B is fitted by a minimization regression method, and the fitted coefficients, G and B, are inflight calibration coefficients. And then the high point (LH) and the low point (LL) of dynamic range can be described as LH= (G × DNH + B) and LL= B, respectively, where DNH is equal to 2n − 1 (n is the quantization number of the payload). Meanwhile, the sensor’s response linearity (δ) is described as the correlation coefficient of the regressed line. The results show that the calibration coefficients (G and B) are 0.0083 W·sr−1m−2µm−1 and −3.5 W·sr−1m−2µm−1; the low point of dynamic range is −3.5 W·sr−1m−2µm−1 and the high point is 30.5 W·sr−1m−2µm−1; the response linearity is approximately 99%. Furthermore, a SNR normalization method is used to assess the sensor’s SNR, and the normalized SNR is about 59.6 when the mean value of radiance is equal to 11.0 W·sr−1m−2µm−1; subsequently, the radiometric resolution is calculated about 0.1845 W•sr-1m-2μm-1. Moreover, in order to validate the result, a comparison of the measured radiance with a radiative-transfer-code-predicted over four portable artificial targets with reflectance of 20%, 30%, 40%, 50% respectively, is performed. It is noted that relative error for the calibration is within 6.6%.Keywords: calibration and validation site, SWIR camera, in-flight radiometric calibration, dynamic range, response linearity
Procedia PDF Downloads 2715342 Cooperation of Unmanned Vehicles for Accomplishing Missions
Authors: Ahmet Ozcan, Onder Alparslan, Anil Sezgin, Omer Cetin
Abstract:
The use of unmanned systems for different purposes has become very popular over the past decade. Expectations from these systems have also shown an incredible increase in this parallel. But meeting the demands of the tasks are often not possible with the usage of a single unmanned vehicle in a mission, so it is necessary to use multiple autonomous vehicles with different abilities together in coordination. Therefore the usage of the same type of vehicles together as a swarm is helped especially to satisfy the time constraints of the missions effectively. In other words, it allows sharing the workload by the various numbers of homogenous platforms together. Besides, it is possible to say there are many kinds of problems that require the usage of the different capabilities of the heterogeneous platforms together cooperatively to achieve successful results. In this case, cooperative working brings additional problems beyond the homogeneous clusters. In the scenario presented as an example problem, it is expected that an autonomous ground vehicle, which is lack of its position information, manage to perform point-to-point navigation without losing its way in a previously unknown labyrinth. Furthermore, the ground vehicle is equipped with very limited sensors such as ultrasonic sensors that can detect obstacles. It is very hard to plan or complete the mission for the ground vehicle by self without lost its way in the unknown labyrinth. Thus, in order to assist the ground vehicle, the autonomous air drone is also used to solve the problem cooperatively. The autonomous drone also has limited sensors like downward looking camera and IMU, and it also lacks computing its global position. In this context, it is aimed to solve the problem effectively without taking additional support or input from the outside, just benefiting capabilities of two autonomous vehicles. To manage the point-to-point navigation in a previously unknown labyrinth, the platforms have to work together coordinated. In this paper, cooperative work of heterogeneous unmanned systems is handled in an applied sample scenario, and it is mentioned that how to work together with an autonomous ground vehicle and the autonomous flying platform together in a harmony to take advantage of different platform-specific capabilities. The difficulties of using heterogeneous multiple autonomous platforms in a mission are put forward, and the successful solutions are defined and implemented against the problems like spatially distributed tasks planning, simultaneous coordinated motion, effective communication, and sensor fusion.Keywords: unmanned systems, heterogeneous autonomous vehicles, coordination, task planning
Procedia PDF Downloads 128