Search results for: outer space treaty
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4118

Search results for: outer space treaty

2768 Application of Adaptive Architecture in Building Technologies: A Case Study of Neuhoff Site in Nashville, Tennessee

Authors: Shohreh Moshiri, Hossein Alimohammadi

Abstract:

Building construction has a great impact on climate change. Adaptive design strategies were developed to provide new life and purpose to old buildings and create new environments with economic benefits to meet resident needs. The role of smart material systems is undeniable in providing adaptivity of the architectural environments and their effects on creating better adaptive building environments. In this research, a case study named Neuhoff site located near Cumberland River in the Germantown neighborhood in the city of Nashville, Tennessee, was considered. This building in the early 1920s was constructed as a meat-packing facility and then served as a mixed-use space; however, New City has partnered with world-class architects to reinvent this site to be changed to mixed-use waterfront development. The future office space will be designed with LEED certification as a goal. Environmentally friendly sensitive materials and designs will offer for all adaptive reuse of the building. The smart materials and their applications, especially in the field of building technology and architecture, were emphasized in providing a renovation plan for the site. The advantages and qualities of smart material systems were targeted to explore in this research on the field of architecture. Also, this research helps to understand better the effects of smart material systems on the construction and design processes, exploration of the way to make architecture with better adaptive characteristics, plus provide optimal environmental situations for the users, which reflect on the climatic, structural, and architectural performances.

Keywords: adaptive architecture, building technology, case study, smart material systems

Procedia PDF Downloads 62
2767 Pareto System of Optimal Placement and Sizing of Distributed Generation in Radial Distribution Networks Using Particle Swarm Optimization

Authors: Sani M. Lawal, Idris Musa, Aliyu D. Usman

Abstract:

The Pareto approach of optimal solutions in a search space that evolved in multi-objective optimization problems is adopted in this paper, which stands for a set of solutions in the search space. This paper aims at presenting an optimal placement of Distributed Generation (DG) in radial distribution networks with an optimal size for minimization of power loss and voltage deviation as well as maximizing voltage profile of the networks. And these problems are formulated using particle swarm optimization (PSO) as a constraint nonlinear optimization problem with both locations and sizes of DG being continuous. The objective functions adopted are the total active power loss function and voltage deviation function. The multiple nature of the problem, made it necessary to form a multi-objective function in search of the solution that consists of both the DG location and size. The proposed PSO algorithm is used to determine optimal placement and size of DG in a distribution network. The output indicates that PSO algorithm technique shows an edge over other types of search methods due to its effectiveness and computational efficiency. The proposed method is tested on the standard IEEE 34-bus and validated with 33-bus test systems distribution networks. Results indicate that the sizing and location of DG are system dependent and should be optimally selected before installing the distributed generators in the system and also an improvement in the voltage profile and power loss reduction have been achieved.

Keywords: distributed generation, pareto, particle swarm optimization, power loss, voltage deviation

Procedia PDF Downloads 358
2766 Comparison of Several Diagnostic Methods for Detecting Bovine Viral Diarrhea Virus Infection in Cattle

Authors: Azizollah Khodakaram- Tafti, Ali Mohammadi, Ghasem Farjanikish

Abstract:

Bovine viral diarrhea virus (BVDV) is one of the most important viral pathogens of cattle worldwide caused by Pestivirus genus, Flaviviridae family.The aim of the present study was to comparison several diagnostic methods and determine the prevalence of BVDV infection for the first time in dairy herds of Fars province, Iran. For initial screening, a total of 400 blood samples were randomly collected from 12 industrial dairy herds and analyzed using reverse transcription (RT)-PCR on the buffy coat. In the second step, blood samples and also ear notch biopsies were collected from 100 cattle of infected farms and tested by antigen capture ELISA (ACE), RT-PCR and immunohistochemistry (IHC). The results of nested RT-PCR (outer primers 0I100/1400R and inner primers BD1/BD2) was successful in 16 out of 400 buffy coat samples (4%) as acute infection in initial screening. Also, 8 out of 100 samples (2%) were positive as persistent infection (PI) by all of the diagnostic tests similarly including RT-PCR, ACE and IHC on buffy coat, serum and skin samples, respectively. Immunoreactivity for bovine BVDV antigen as brown, coarsely to finely granular was observed within the cytoplasm of epithelial cells of epidermis and hair follicles and also subcutaneous stromal cells. These findings confirm the importance of monitoring BVDV infection in cattle of this region and suggest detection and elimination of PI calves for controlling and eradication of this disease.

Keywords: antigen capture ELISA, bovine viral diarrhea virus, immunohistochemistry, RT-PCR, cattle

Procedia PDF Downloads 355
2765 Determination of the Relative Humidity Profiles in an Internal Micro-Climate Conditioned Using Evaporative Cooling

Authors: M. Bonello, D. Micallef, S. P. Borg

Abstract:

Driven by increased comfort standards, but at the same time high energy consciousness, energy-efficient space cooling has become an essential aspect of building design. Its aims are simple, aiming at providing satisfactory thermal comfort for individuals in an interior space using low energy consumption cooling systems. In this context, evaporative cooling is both an energy-efficient and an eco-friendly cooling process. In the past two decades, several academic studies have been performed to determine the resulting thermal comfort produced by an evaporative cooling system, including studies on temperature profiles, air speed profiles, effect of clothing and personnel activity. To the best knowledge of the authors, no studies have yet considered the analysis of relative humidity (RH) profiles in a space cooled using evaporative cooling. Such a study will determine the effect of different humidity levels on a person's thermal comfort and aid in the consequent improvement designs of such future systems. Under this premise, the research objective is to characterise the resulting different RH profiles in a chamber micro-climate using the evaporative cooling system in which the inlet air speed, temperature and humidity content are varied. The chamber shall be modelled using Computational Fluid Dynamics (CFD) in ANSYS Fluent. Relative humidity shall be modelled using a species transport model while the k-ε RNG formulation is the proposed turbulence model that is to be used. The model shall be validated with measurements taken using an identical test chamber in which tests are to be conducted under the different inlet conditions mentioned above, followed by the verification of the model's mesh and time step. The verified and validated model will then be used to simulate other inlet conditions which would be impractical to conduct in the actual chamber. More details of the modelling and experimental approach will be provided in the full paper The main conclusions from this work are two-fold: the micro-climatic relative humidity spatial distribution within the room is important to consider in the context of investigating comfort at occupant level; and the investigation of a human being's thermal comfort (based on Predicted Mean Vote – Predicted Percentage Dissatisfied [PMV-PPD] values) and its variation with different locations of relative humidity values. The study provides the necessary groundwork for investigating the micro-climatic RH conditions of environments cooled using evaporative cooling. Future work may also target the analysis of ways in which evaporative cooling systems may be improved to better the thermal comfort of human beings, specifically relating to the humidity content around a sedentary person.

Keywords: chamber micro-climate, evaporative cooling, relative humidity, thermal comfort

Procedia PDF Downloads 151
2764 Numerical Modal Analysis of a Multi-Material 3D-Printed Composite Bushing and Its Application

Authors: Paweł Żur, Alicja Żur, Andrzej Baier

Abstract:

Modal analysis is a crucial tool in the field of engineering for understanding the dynamic behavior of structures. In this study, numerical modal analysis was conducted on a multi-material 3D-printed composite bushing, which comprised a polylactic acid (PLA) outer shell and a thermoplastic polyurethane (TPU) flexible filling. The objective was to investigate the modal characteristics of the bushing and assess its potential for practical applications. The analysis involved the development of a finite element model of the bushing, which was subsequently subjected to modal analysis techniques. Natural frequencies, mode shapes, and damping ratios were determined to identify the dominant vibration modes and their corresponding responses. The numerical modal analysis provided valuable insights into the dynamic behavior of the bushing, enabling a comprehensive understanding of its structural integrity and performance. Furthermore, the study expanded its scope by investigating the entire shaft mounting of a small electric car, incorporating the 3D-printed composite bushing. The shaft mounting system was subjected to numerical modal analysis to evaluate its dynamic characteristics and potential vibrational issues. The results of the modal analysis highlighted the effectiveness of the 3D-printed composite bushing in minimizing vibrations and optimizing the performance of the shaft mounting system. The findings contribute to the broader field of composite material applications in automotive engineering and provide valuable insights for the design and optimization of similar components.

Keywords: 3D printing, composite bushing, modal analysis, multi-material

Procedia PDF Downloads 93
2763 Intelligent Fault Diagnosis for the Connection Elements of Modular Offshore Platforms

Authors: Jixiang Lei, Alexander Fuchs, Franz Pernkopf, Katrin Ellermann

Abstract:

Within the Space@Sea project, funded by the Horizon 2020 program, an island consisting of multiple platforms was designed. The platforms are connected by ropes and fenders. The connection is critical with respect to the safety of the whole system. Therefore, fault detection systems are investigated, which could detect early warning signs for a possible failure in the connection elements. Previously, a model-based method called Extended Kalman Filter was developed to detect the reduction of rope stiffness. This method detected several types of faults reliably, but some types of faults were much more difficult to detect. Furthermore, the model-based method is sensitive to environmental noise. When the wave height is low, a long time is needed to detect a fault and the accuracy is not always satisfactory. In this sense, it is necessary to develop a more accurate and robust technique that can detect all rope faults under a wide range of operational conditions. Inspired by this work on the Space at Sea design, we introduce a fault diagnosis method based on deep neural networks. Our method cannot only detect rope degradation by using the acceleration data from each platform but also estimate the contributions of the specific acceleration sensors using methods from explainable AI. In order to adapt to different operational conditions, the domain adaptation technique DANN is applied. The proposed model can accurately estimate rope degradation under a wide range of environmental conditions and help users understand the relationship between the output and the contributions of each acceleration sensor.

Keywords: fault diagnosis, deep learning, domain adaptation, explainable AI

Procedia PDF Downloads 172
2762 Triangular Libration Points in the R3bp under Combined Effects of Oblateness, Radiation and Power-Law Profile

Authors: Babatunde James Falaye, Shi Hai Dong, Kayode John Oyewumi

Abstract:

We study the e ffects of oblateness up to J4 of the primaries and power-law density pro file (PDP) on the linear stability of libration location of an in nitesimal mass within the framework of restricted three body problem (R3BP), by using a more realistic model in which a disc with PDP is rotating around the common center of the system mass with perturbed mean motion. The existence and stability of triangular equilibrium points have been explored. It has been shown that triangular equilibrium points are stable for 0 < μ < μc and unstable for μc ≤ μ ≤ 1/2, where c denotes the critical mass parameter. We find that, the oblateness up to J2 of the primaries and the radiation reduces the stability range while the oblateness up to J4 of the primaries increases the size of stability both in the context where PDP is considered and ignored. The PDP has an e ect of about ≈0:01 reduction on the application of c to Earth-Moon and Jupiter-Moons systems. We find that the comprehensive eff ects of the perturbations have a stabilizing proclivity. However, the oblateness up to J2 of the primaries and the radiation of the primaries have tendency for instability, while coecients up to J4 of the primaries have stability predisposition. In the limiting case c = 0, and also by setting appropriate parameter(s) to zero, our results are in excellent agreement with the ones obtained previously. Libration points play a very important role in space mission and as a consequence, our results have a practical application in space dynamics and related areas. The model may be applied to study the navigation and station-keeping operations of spacecraft (in nitesimal mass) around the Jupiter (more massive) -Callisto (less massive) system, where PDP accounts for the circumsolar ring of asteroidal dust, which has a cloud of dust permanently in its wake.

Keywords: libration points, oblateness, power-law density profile, restricted three-body problem

Procedia PDF Downloads 317
2761 Nucleophile Mediated Addition-Fragmentation Generation of Aryl Radicals from Aryl Diazonium Salts

Authors: Elene Tatunashvili, Bun Chan, Philippe E. Nashar, Christopher S. P. McErlean

Abstract:

The reduction of aryl diazonium salts is one of the most efficient ways to generate aryl radicals for use in a wide range of transformations, including Sandmeyer-type reactions, Meerwein arylations of olefins and Gomberg-Bachmann-Hey arylations of heteroaromatic systems. The aryl diazonium species can be reduced electrochemically, by UV irradiation, inner-sphere and outer-sphere single electron transfer processes (SET) from metal salts, SET from photo-excited organic catalysts or fragmentation of adducts with weak bases (acetate, hydroxide, etc.). This paper details an approach for the metal-free reduction of aryl diazonium salts, which facilitates the efficient synthesis of various aromatic compounds under exceedingly mild reaction conditions. By measuring the oxidation potential of a number of organic molecules, a series of nucleophiles were identified that reduce aryl diazonium salts via the addition-fragmentation mechanism. This approach leads to unprecedented operational simplicity: The reactions are very rapid and proceed in the open air; there is no need for external irradiation or heating, and the process is compatible with a large number of radical reactions. We illustrate these advantages by using the addition-fragmentation strategy to regioselectively arylate a series of heterocyclic compounds, to synthesize ketones by arylation of silyl enol ethers, and to synthesize benzothiophene and phenanthrene derivatives by radical annulation reactions.

Keywords: diazonium salts, hantzsch esters, oxygen, radical reactions, synthetic methods

Procedia PDF Downloads 143
2760 Visual Outcome After 360-Degree Retinectomy in Total Rhegmatogenous Retinal Detachment with Advanced Proliferative Vitreoretinopathy: A Case Series

Authors: Andriati Nadhilah Widyarini, Ezra Margareth

Abstract:

Introduction: Rhegmatogenous retinal detachment is a condition where there’s a break in the retina, which allows the vitreous to directly enter the subretinal space. Proliferative vitreoretinopathy (PVR) may develop due to this condition and can result in a new break, which could cause traction on the previously detached retina. Various methods of therapy can be done to treat this complication. Case: This case series involved 2 eyes of 2 patients who had total retinal detachment with advanced PVR. Pars plana vitrectomy was performed, and a 360-degree retinectomy procedure with perfluorocarbon liquid usage was done. This was followed by endo laser retinopexy to surround the border of retinectomy. 5000 cs silicone oil was used in 1 eye, whereas 12% of perfluoropropane gas was used in the other eye as a tamponade. These procedures were performed with meticulous attention to prevent any fluid from entering the subretinal space. Postoperative examination showed attachment of the retina and improvement of the patient’s visual acuity. Both eyes’ intraocular pressure was in the normal range. One eye developed retinal displacement, but no other complications occurred. Discussion: Rhegmatogenous retinal detachment with advanced PVR is a complex situation for vitreoretinal surgeons. PVR is characterized by the growth and migration of preretinal or subretinal membranes. PVR is the most common cause of retinal reattachment failure. A 360-degree retinectomy is an alternative surgical method to overcome this condition. Objectives of this procedure are releasing retinal traction caused by PVR, reducing the recurrence rate of PVR, and reattaching the retina to the pigment epithelial surface. Conclusion: 360-degree retinectomy provides satisfactory retinal reattachment and visual outcome improvement in rhegmatogenous retinal detachment with advanced PVR.

Keywords: RRD, retinectomy, pars plana, advanced PVR

Procedia PDF Downloads 44
2759 Analysis of Kilistra (Gokyurt) Settlement within the Context of Traditional Residential Architecture

Authors: Esra Yaldız, Tugba Bulbul Bahtiyar, Dicle Aydın

Abstract:

Humans meet their need for shelter via housing which they structure in line with habits and necessities. In housing culture, traditional dwelling has an important role as a social and cultural transmitter. It provides concrete data by being planned in parallel with users’ life style and habits, having their own dynamics and components as well as their designs in harmony with nature, environment and the context they exist. Textures of traditional dwelling create a healthy and cozy living environment by means of adaptation to natural conditions, topography, climate, and context; utilization of construction materials found nearby and usage of traditional techniques and forms; and natural isolation of construction materials used. One of the examples of traditional settlements in Anatolia is Kilistra (Gökyurt) settlement of Konya province. Being among the important centers of Christianity in the past, besides having distinctive architecture, culture, natural features, and geographical differences (climate, geological structure, material), Kilistra can also be identified as a traditional settlement consisting of family, religious and economic structures as well as cultural interaction. The foundation of this study is the traditional residential texture of Kilistra with its unique features. The objective of this study is to assess the conformity of traditional residential texture of Kilistra with present topography, climatic data, and geographical values within the context of human scale construction, usage of green space, indigenous construction materials, construction form, building envelope, and space organization in housing.

Keywords: traditional residential architecture, Kilistra, Anatolia, Konya

Procedia PDF Downloads 403
2758 Understanding Tactical Urbanisms in Derelict Areas

Authors: Berna Yaylalı, Isin Can Traunmüller

Abstract:

This paper explores the emergent bottom-up practices in the fields of architecture and urban design within comparative perspectives of two cities. As a temporary, easily affordable intervention that gives the possibility of transforming neglected spaces into vibrant public spaces, tactical urbanism, together with creative place-making strategies, presents alternative ways of creating sustainable developments in derelict and underused areas. This study examines the potential of social and physical developments through a reading of case studies of two creative spatial practices: a pop-up garden transformed from an unused derelict space in Favoriten, Vienna, and an urban community garden in Kuzguncuk, Istanbul. Two cities are chosen according to their multicultural population and diversity. Istanbul was selected as a design city by UNESCO Creative Cities Network in 2017, and Vienna was declared an open and livable city by its local government. This research will use media archives and reports, interviews with locals and local governments, site observations, and visual recordings as methods to provide a critical reading on creative public spaces from the view of local users in these neighborhoods. Reflecting on these emergent ways, this study aims at discussing the production process of tactile urbanism with the practices of locals and the decision-making process with cases from İstanbul and Vienna. The comparison between their place-making strategies in tactical urbanism will give important insights for future developments.

Keywords: creative city, tactical urbanism, neglected area, public space

Procedia PDF Downloads 95
2757 Allium Cepa Extract Provides Neuroprotection Against Ischemia Reperfusion Induced Cognitive Dysfunction and Brain Damage in Mice

Authors: Jaspal Rana, Alkem Laboratories, Baddi, Himachal Pradesh, India Chitkara University, Punjab, India

Abstract:

Oxidative stress has been identified as an underlying cause of ischemia-reperfusion (IR) related cognitive dysfunction and brain damage. Therefore, antioxidant based therapies to treat IR injury are being investigated. Allium cepa L. (onion) is used as culinary medicine and is documented to have marked antioxidant effects. Hence, the present study was designed to evaluate the effect of A. cepa outer scale extract (ACE) against IR induced cognition and biochemical deficit in mice. ACE was prepared by maceration with 70% methanol and fractionated into ethylacetate and aqueous fractions. Bilateral common carotid artery occlusion for 10 min followed by 24 h reperfusion was used to induce cerebral IR injury. Following IR injury, ACE (100 and 200 mg/kg) was administered orally to animals for 7 days once daily. Behavioral outcomes (memory and sensorimotor functions) were evaluated using Morris water maze and neurological severity score. Cerebral infarct size, brain thiobarbituric acid reactive species, reduced glutathione, and superoxide dismutase activity was also determined. Treatment with ACE significantly ameliorated IR mediated deterioration of memory and sensorimotor functions and rise in brain oxidative stress in animals. The results of the present investigation revealed that ACE improved functional outcomes after cerebral IR injury, which may be attributed to its antioxidant properties.

Keywords: stroke, neuroprotection, ischemia reperfusion, herbal drugs

Procedia PDF Downloads 98
2756 Selective Oxidation of 6Mn-2Si Advanced High Strength Steels during Intercritical Annealing Treatment

Authors: Maedeh Pourmajidian, Joseph R. McDermid

Abstract:

Advanced High Strength Steels are revolutionizing both the steel and automotive industries due to their high specific strength and ability to absorb energy during crash events. This allows manufacturers to design vehicles with significantly increased fuel efficiency without compromising passenger safety. To maintain the structural integrity of the fabricated parts, they must be protected from corrosion damage through continuous hot-dip galvanizing process, which is challenging due to selective oxidation of Mn and Si on the surface of this AHSSs. The effects of process atmosphere oxygen partial pressure and small additions of Sn on the selective oxidation of a medium-Mn C-6Mn-2Si advanced high strength steel was investigated. Intercritical annealing heat treatments were carried out at 690˚C in an N2-5%H2 process atmosphere under dew points ranging from –50˚C to +5˚C. Surface oxide chemistries, morphologies, and thicknesses were determined at a variety of length scales by several techniques, including SEM, TEM+EELS, and XPS. TEM observations of the sample cross-sections revealed the transition to internal oxidation at the +5˚C dew point. EELS results suggested that the internal oxides network was composed of a multi-layer oxide structure with varying chemistry from oxide core towards the outer part. The combined effect of employing a known surface active element as a function of process atmosphere on the surface structure development and the possible impact on reactive wetting of the steel substrates by the continuous galvanizing zinc bath will be discussed.

Keywords: 3G AHSS, hot-dip galvanizing, oxygen partial pressure, selective oxidation

Procedia PDF Downloads 393
2755 Optimization Method of the Number of Berth at Bus Rapid Transit Stations Based on Passenger Flow Demand

Authors: Wei Kunkun, Cao Wanyang, Xu Yujie, Qiao Yuzhi, Liu Yingning

Abstract:

The reasonable design of bus parking spaces can improve the traffic capacity of the station and reduce traffic congestion. In order to reasonably determine the number of berths at BRT (Bus Rapid Transit) stops, it is based on the actual bus rapid transit station observation data, scheduling data, and passenger flow data. Optimize the number of station berths from the perspective of optimizing the balance of supply and demand at the site. Combined with the classical capacity calculation model, this paper first analyzes the important factors affecting the traffic capacity of BRT stops by using SPSS PRO and MATLAB programming software, namely the distribution of BRT stops and the distribution of BRT stop time. Secondly, the method of calculating the number of the classic human capital management (HCM) model is optimized based on the actual passenger demand of the station, and the method applicable to the actual number of station berths is proposed. Taking Gangding Station of Zhongshan Avenue Bus Rapid Transit Corridor in Guangzhou as an example, based on the calculation method proposed in this paper, the number of berths of sub-station 1, sub-station 2 and sub-station 3 is 2, which reduces the road space of the station by 33.3% compared with the previous berth 3 of each sub-station, and returns to social vehicles. Therefore, under the condition of ensuring the passenger flow demand of BRT stations, the road space of the station is reduced, and the road is returned to social vehicles, the traffic capacity of social vehicles is improved, and the traffic capacity and efficiency of the BRT corridor system are improved as a whole.

Keywords: urban transportation, bus rapid transit station, HCM model, capacity, number of berths

Procedia PDF Downloads 91
2754 Modified Acetamidobenzoxazolone Based Biomarker for Translocator Protein Mapping during Neuroinflammation

Authors: Anjani Kumar Tiwari, Neelam Kumari, Anil Mishra

Abstract:

The 18-kDa translocator protein (TSPO) previously called as peripheral benzodiazepine receptor, is proven biomarker for variety of neuroinflammation. TSPO is tryptophane rich five transmembranal protein found on outer mitochondrial membrane of steroid synthesising and immunomodulatory cells. In case of neuronal damage or inflammation the expression level of TSPO get upregulated as an immunomodulatory response. By utilizing Benzoxazolone as a basic scaffold, series of TSPO ligands have been designed followed by their screening through in silico studies. Synthesis has been planned by employing convergent methodology in six high yielding steps. For the synthesized ligands the ‘in vitro’ assay was performed to determine the binding affinity in term of Ki. On ischemic rat brain, autoradiography studies were also carried to check the specificity and affinity of the designed radiolabelled ligand for TSPO.Screening was performed on the basis of GScore of CADD based schrodinger software. All the modified and better prospective compound were successfully carried out and characterized by spectroscopic techniques (FTIR, NMR and HRMS). In vitro binding assay showed best binding affinity Ki = 6.1+ 0.3 for TSPO over central benzodiazepine receptor (CBR) Ki > 200. ARG studies indicated higher uptake of two analogues on the lesion side compared with that on the non-lesion side of ischemic rat brains. Displacement experiments with unlabelled ligand had minimized the difference in uptake between the two sides which indicates the specificity of the ligand towards TSPO receptor.

Keywords: TSPO, PET, imaging, Acetamidobenzoxazolone

Procedia PDF Downloads 136
2753 The Assessment of Natural Ventilation Performance for Thermal Comfort in Educational Space: A Case Study of Design Studio in the Arab Academy for Science and Technology, Alexandria

Authors: Alaa Sarhan, Rania Abd El Gelil, Hana Awad

Abstract:

Through the last decades, the impact of thermal comfort on the working performance of users and occupants of an indoor space has been a concern. Research papers concluded that natural ventilation quality directly impacts the levels of thermal comfort. Natural ventilation must be put into account during the design process in order to improve the inhabitant's efficiency and productivity. One example of daily long-term occupancy spaces is educational facilities. Many individuals spend long times receiving a considerable amount of knowledge, and it takes additional time to apply this knowledge. Thus, this research is concerned with user's level of thermal comfort in design studios of educational facilities. The natural ventilation quality in spaces is affected by a number of parameters including orientation, opening design, and many other factors. This research aims to investigate the conscious manipulation of the physical parameters of the spaces and its impact on natural ventilation performance which subsequently affects thermal comfort of users. The current research uses inductive and deductive methods to define natural ventilation design considerations, which are used in a field study in a studio in the university building in Alexandria (AAST) to evaluate natural ventilation performance through analyzing and comparing the current case to the developed framework and conducting computational fluid dynamics simulation. Results have proved that natural ventilation performance is successful by only 50% of the natural ventilation design framework; these results are supported by CFD simulation.

Keywords: educational buildings, natural ventilation, , mediterranean climate, thermal comfort

Procedia PDF Downloads 212
2752 Green Design Study of Prefabricated Community Control Measures in Response to Public Health Emergencies

Authors: Enjia Zhang

Abstract:

During the prevention and control of the COVID-19 pandemic, all communities in China were gated and under strict management, which was highly effective in preventing the spread of the epidemic from spreading. Based on the TRIZ theory, this paper intends to propose green design strategies of community control in response to public health emergencies and to optimize community control facilities according to the principle of minimum transformation. Through the questionnaire method, this paper investigates and summarizes the situation and problems of community control during the COVID-19 pandemic. Based on these problems, the TRIZ theory is introduced to figure out the problems and associates them with prefabricated facilities. Afterward, the innovation points and solutions of prefabricated community control measures are proposed by using the contradiction matrix. This paper summarizes the current situation of community control under public health emergencies and concludes the problems such as simple forms of temporary roadblocks, sudden increase of community traffic pressure, and difficulties to access public spaces. The importance of entrance and exit control in community control is emphasized. Therefore, the community control measures are supposed to focus on traffic control, and the external access control measures, including motor vehicles, non-motor vehicles, residents and non-residents access control, and internal public space access control measures, including public space control shared with the society or adjacent communities, are proposed in order to make the community keep the open characteristics and have the flexibility to deal with sudden public health emergencies in the future.

Keywords: green design, community control, prefabricated structure, public health emergency

Procedia PDF Downloads 123
2751 Implementing 3D Printing for 3D Digital Modeling in the Classroom

Authors: Saritdikhun Somasa

Abstract:

3D printing fabrication has empowered many artists in many fields. Artists who work in stop motion, 3D modeling, toy design, product design, sculpture, and fine arts become one-stop shop operations–where they can design, prototype, and distribute their designs for commercial or fine art purposes. The author has developed a digital sculpting course that fosters digital software, peripheral hardware, and 3D printing with traditional sculpting concept techniques to address the complexities of this multifaceted process, allowing the students to produce complex 3d-printed work. The author will detail the preparation and planning for pre- to post-process 3D printing elements, including software, materials, space, equipment, tools, and schedule consideration for small to medium figurine design statues in a semester-long class. In addition, the author provides insight into teaching challenges in the non-studio space that requires students to work intensively on post-printed models to assemble parts, finish, and refine the 3D printed surface. Even though this paper focuses on the 3D printing processes and techniques for small to medium design statue projects for the Digital Media program, the author hopes the paper will benefit other fields of study such as craft practices, product design, and fine-arts programs. Other schools that might implement 3D printing and fabrication in their programs will find helpful information in this paper, such as a teaching plan, choices of equipment and materials, adaptation for non-studio spaces, and putting together a complete and well-resolved project for students.

Keywords: 3D digital modeling, 3D digital sculpting, 3D modeling, 3D printing, 3D digital fabrication

Procedia PDF Downloads 99
2750 Evaluating Daylight Performance in an Office Environment in Malaysia, Using Venetian Blind System: Case Study

Authors: Fatemeh Deldarabdolmaleki, Mohamad Fakri Zaky Bin Ja'afar

Abstract:

Having a daylit space together with view results in a pleasant and productive environment for office employees. A daylit space is a space which utilizes daylight as a basic source of illumination to fulfill user’s visual demands and minimizes the electric energy consumption. Malaysian weather is hot and humid all over the year because of its location in the equatorial belt. however, because most of the commercial buildings in Malaysia are air-conditioned, huge glass windows are normally installed in order to keep the physical and visual relation between inside and outside. As a result of climatic situation and mentioned new trend, an ordinary office has huge heat gain, glare, and discomfort for occupants. Balancing occupant’s comfort and energy conservation in a tropical climate is a real challenge. This study concentrates on evaluating a venetian blind system using per pixel analyzing tools based on the suggested cut-out metrics by the literature. Workplace area in a private office room has been selected as a case study. Eight-day measurement experiment was conducted to investigate the effect of different venetian blind angles in an office area under daylight conditions in Serdang, Malaysia. The study goal was to explore daylight comfort of a commercially available venetian blind system, its’ daylight sufficiency and excess (8:00 AM to 5 PM) as well as Glare examination. Recently developed software, analyzing High Dynamic Range Images (HDRI captured by CCD camera), such as radiance based Evalglare and hdrscope help to investigate luminance-based metrics. The main key factors are illuminance and luminance levels, mean and maximum luminance, daylight glare probability (DGP) and luminance ratio of the selected mask regions. The findings show that in most cases, morning session needs artificial lighting in order to achieve daylight comfort. However, in some conditions (e.g. 10° and 40° slat angles) in the second half of day the workplane illuminance level exceeds the maximum of 2000 lx. Generally, a rising trend is discovered toward mean window luminance and the most unpleasant cases occur after 2 P.M. Considering the luminance criteria rating, the uncomfortable conditions occur in the afternoon session. Surprisingly in no blind condition, extreme case of window/task ratio is not common. Studying the daylight glare probability, there is not any DGP value higher than 0.35 in this experiment.

Keywords: daylighting, energy simulation, office environment, Venetian blind

Procedia PDF Downloads 248
2749 Innovative Design Considerations for Adaptive Spacecraft

Authors: K. Parandhama Gowd

Abstract:

Space technologies have changed the way we live in the present day society and manage many aspects of our daily affairs through Remote sensing, Navigation & Communications. Further, defense and military usage of spacecraft has increased tremendously along with civilian purposes. The number of satellites deployed in space in Low Earth Orbit (LEO), Medium Earth Orbit (MEO), and the Geostationary Orbit (GEO) has gone up. The dependency on remote sensing and operational capabilities are most invariably to be exploited more and more in future. Every country is acquiring spacecraft in one way or other for their daily needs, and spacecraft numbers are likely to increase significantly and create spacecraft traffic problems. The aim of this research paper is to propose innovative design concepts for adaptive spacecraft. The main idea here is to improve existing design methods of spacecraft design and development to further improve upon design considerations for futuristic adaptive spacecraft with inbuilt features for automatic adaptability and self-protection. In other words, the innovative design considerations proposed here are to have future spacecraft with self-organizing capabilities for orbital control and protection from anti-satellite weapons (ASAT). Here, an attempt is made to propose design and develop futuristic spacecraft for 2030 and beyond due to tremendous advancements in VVLSI, miniaturization, and nano antenna array technologies, including nano technologies are expected.

Keywords: satellites, low earth orbit (LEO), medium earth orbit (MEO), geostationary earth orbit (GEO), self-organizing control system, anti-satellite weapons (ASAT), orbital control, radar warning receiver, missile warning receiver, laser warning receiver, attitude and orbit control systems (AOCS), command and data handling (CDH)

Procedia PDF Downloads 289
2748 Analysis of the Scattered Fields by Dielectric Sphere Inside Different Dielectric Mediums: The Case of the Source and Observation Point Is Reciprocal

Authors: Emi̇ne Avşar Aydin, Nezahat Günenç Tuncel, A. Hami̇t Serbest

Abstract:

The electromagnetic scattering from a canonical structure is an important issue in electromagnetic theory. In this study, the electromagnetic scattering from a dielectric sphere with oblique incidence is investigated. The incident field is considered as a plane wave with H polarized. The scattered and transmitted field expressions with unknown coefficients are written. The unknown coefficients are obtained by using exact boundary conditions. Then, the sphere is considered as having frequency dependent dielectric permittivity. The frequency dependence is shown by Cole-Cole model. The far scattered field expressions are found respect to different incidence angles in the 1-8 GHz frequency range. The observation point is the angular distance of pi from an incident wave. While an incident wave comes with a certain angle, observation point turns from 0 to 360 degrees. According to this, scattered field amplitude is maximum at the location of the incident wave, scattered field amplitude is minimum at the across incident wave. Also, the scattered fields are plotted versus frequency to show frequency-dependence explicitly. Graphics are shown for some incident angles compared with the Harrington's solution. Thus, the results are obtained faster and more reliable with reciprocal rotation. It is expected that when there is another sphere with different properties in the outer sphere, the presence and location of the sphere will be detected faster. In addition, this study leads to use for biomedical applications in the future.

Keywords: scattering, dielectric sphere, oblique incidence, reciprocal rotation

Procedia PDF Downloads 287
2747 Seeking Compatibility between Green Infrastructure and Recentralization: The Case of Greater Toronto Area

Authors: Sara Saboonian, Pierre Filion

Abstract:

There are two distinct planning approaches attempting to transform the North American suburb so as to reduce its adverse environmental impacts. The first one, the recentralization approach, proposes intensification, multi-functionality and more reliance on public transit and walking. It thus offers an alternative to the prevailing low-density, spatial specialization and automobile dependence of the North American suburb. The second approach concentrates instead on the provision of green infrastructure, which rely on natural systems rather than on highly engineered solutions to deal with the infrastructure needs of suburban areas. There are tensions between these two approaches as recentralization generally overlooks green infrastructure, which can be space consuming (as in the case of water retention systems), and thus conflicts with the intensification goals of recentralization. The research investigates three Canadian planned suburban centres in the Greater Toronto Area, where recentralization is the current planning practice, despite rising awareness of the benefits of green infrastructure. Methods include reviewing the literature on green infrastructure planning, a critical analysis of the Ontario provincial plans for recentralization, surveying residents’ preferences regarding alternative suburban development models, and interviewing officials who deal with the local planning of the three centres. The case studies expose the difficulties in creating planned suburban centres that accommodate green infrastructure while adhering to recentralization principles. Until now, planners have been mostly focussed on recentralization at the expense of green infrastructure. In this context, the frequent lack of compatibility between recentralization and the space requirements of green infrastructure explains the limited presence of such infrastructures in planned suburban centres. Finally, while much attention has been given in the planning discourse to the economic and lifestyle benefits of recentralization, much less has been made of the wide range of advantages of green infrastructure, which explains limited public mobilization over the development of green infrastructure networks. The paper will concentrate on ways of combining recentralization with green infrastructure strategies and identify the aspects of the two approaches that are most compatible with each other. The outcome of such blending will marry high density, public-transit oriented developments, which generate walkability and street-level animation, with the presence of green space, naturalized settings and reliance on renewable energy. The paper will advance a planning framework that will fuse green infrastructure with recentralization, thus ensuring the achievement of higher density and reduced reliance on the car along with the provision of critical ecosystem services throughout cities. This will support and enhance the objectives of both green infrastructure and recentralization.

Keywords: environmental-based planning, green infrastructure, multi-functionality, recentralization

Procedia PDF Downloads 128
2746 Study of Heat Transfer through the Ground and its Accumulation Properties to Increase the Energy Efficiency of Underground Buildings

Authors: Sandeep Bandarwadkar, Tadas Zdankus

Abstract:

To maintain a comfortable indoor temperature for its residents in the colder season, heating a building is necessary. Due to the expansion in the construction sectors, the consumption of heating energy is increasing. According to Eurostat data, in the European Union, the share of energy consumption of heating energy for space and cooling in residential buildings was around 63% in 2019. These figures indicate that heating energy still accounts for a significant portion of total energy consumption in Europe. Innovation is crucial to reduce energy consumption in buildings and achieve greater energy efficiency and sustainability. It can bring about new solutions that are smarter and more natural energy generation to reduce greenhouse gas emissions. The ground can serve as an effective and sustainable heat accumulator for heating and cooling. The temperature of the ground is higher than that of the ambient air in the colder period and lower in the warmer period. The building deep in the soil could use less thermal energy compared to the above-ground buildings that provide the same amount of thermal comfort. The temperature difference between the soil and the air inside the building decreases as the temperature of the soil increases. In progress, this process generates the condition that acts against heat loss. However, heat dissipates further to the consecutive layers and reaches thermal equilibrium. The charging of the ground by heat and its dissipation through the adjacent soil layers was investigated experimentally. The results of this research showed that 9% of the energy savings in partially underground buildings and 44.4% in completely underground buildings were derived from heating the space. Heat loss to the ground is treated as a charge of the soil by thermal energy. The dependence of the intensity of the charge on time was analysed and presented.

Keywords: heat transfer, accumulation of heat, underground building, soil charge

Procedia PDF Downloads 65
2745 Investigation of Detectability of Orbital Objects/Debris in Geostationary Earth Orbit by Microwave Kinetic Inductance Detectors

Authors: Saeed Vahedikamal, Ian Hepburn

Abstract:

Microwave Kinetic Inductance Detectors (MKIDs) are considered as one of the most promising photon detectors of the future in many Astronomical applications such as exoplanet detections. The MKID advantages stem from their single photon sensitivity (ranging from UV to optical and near infrared), photon energy resolution and high temporal capability (~microseconds). There has been substantial progress in the development of these detectors and MKIDs with Megapixel arrays is now possible. The unique capability of recording an incident photon and its energy (or wavelength) while also registering its time of arrival to within a microsecond enables an array of MKIDs to produce a four-dimensional data block of x, y, z and t comprising x, y spatial, z axis per pixel spectral and t axis per pixel which is temporal. This offers the possibility that the spectrum and brightness variation for any detected piece of space debris as a function of time might offer a unique identifier or fingerprint. Such a fingerprint signal from any object identified in multiple detections by different observers has the potential to determine the orbital features of the object and be used for their tracking. Modelling performed so far shows that with a 20 cm telescope located at an Astronomical observatory (e.g. La Palma, Canary Islands) we could detect sub cm objects at GEO. By considering a Lambertian sphere with a 10 % reflectivity (albedo of the Moon) we anticipate the following for a GEO object: 10 cm object imaged in a 1 second image capture; 1.2 cm object for a 70 second image integration or 0.65 cm object for a 4 minute image integration. We present details of our modelling and the potential instrument for a dedicated GEO surveillance system.

Keywords: space debris, orbital debris, detection system, observation, microwave kinetic inductance detectors, MKID

Procedia PDF Downloads 88
2744 Micro-Transformation Strategy Of Residential Transportation Space Based On The Demand Of Residents: Taking A Residential District In Wuhan, China As An Example

Authors: Hong Geng, Zaiyu Fan

Abstract:

With the acceleration of urbanization and motorization in China, the scale of cities and the travel distance of residents are constantly expanding, and the number of cars is continuously increasing, so the urban traffic problem is more and more serious. Traffic congestion, environmental pollution, energy consumption, travel safety and direct interference between traffic and other urban activities are increasingly prominent problems brought about by motorized development. This not only has a serious impact on the lives of the residents but also has a major impact on the healthy development of the city. The paper found that, in order to solve the development of motorization, a number of problems will arise; urban planning and traffic planning and design in residential planning often take into account the development of motorized traffic but neglects the demand for street life. This kind of planning has resulted in the destruction of the traditional communication space of the residential area, the pollution of noise and exhaust gas, and the potential safety risks of the residential area, which has disturbed the previously quiet and comfortable life of the residential area, resulting in the inconvenience of residents' life and the loss of street vitality. Based on these facts, this paper takes a residential area in Wuhan as the research object, through the actual investigation and research, from the perspective of micro-transformation analysis, combined with the concept of traffic micro-reconstruction governance. And research puts forward the residential traffic optimization strategies such as strengthening the interaction and connection between the residential area and the urban street system, street traffic classification and organization.

Keywords: micro-transformation, residential traffic, residents demand, traffic microcirculation

Procedia PDF Downloads 111
2743 Eco-Parcel As a Semi-Qualitative Approach to Support Environmental Impacts Assessments in Nature-Based Tourism Destinations

Authors: Halima Kilungu, Pantaleo, K. T. Munishi

Abstract:

Climate and land-cover change affect nature-based tourism (NBT) due to its attractions' close connection to natural environments and climate. Thus, knowledge of how each attraction reacts to the changing environments and devising simple yet science based approaches to respond to these changes from a tourism perspective in space and time is timely. Nevertheless, no specific approaches exist to address the knowledge gap. The eco-parcel approach is devised to address the gap and operationalized in Serengeti and Kilimanjaro National Parks: the most climate-sensitive NBT destinations in Africa. The approach is partly descriptive and has three simple steps: (1) to identify and define tourist attractions (i.e. biotic and abiotic attractions). This creates an important database of the most poorly kept information on attractions' types in NBT destinations. (2) To create a spatial and temporal link of each attraction and describe its characteristic environments (e.g. vegetation, soil, water and rock outcrops). This is the most limited attractions' information yet important as a proxy of changes in attractions. (3) To assess the importance of individual attractions for tourism based on tourists' preferences. This information enables an accurate assessment of the value of individual attractions for tourism. The importance of the eco-parcel approach is that it describes how each attraction emerges from and is connected to specific environments, which define its attractiveness in space and time. This information allows accurate assessment of the likely losses or gains of individual attractions when climate or environment changes in specific destinations and equips tourism stakeholders with informed responses.

Keywords: climate change, environmental change, nature-based tourism, Serengeti National Park, Kilimanjaro National Park

Procedia PDF Downloads 116
2742 Effect of Green Roofs to Prevent the Dissipation of Energy in Mountainous Areas

Authors: Mina Ganji Morad, Maziar Azadisoleimanieh, Sina Ganji Morad

Abstract:

A green roof is formed by green plants alive and has many positive impacts in the regional climatic, as well as indoor. Green roof system to prevent solar radiation plays a role in the cooling space. The cooling is done by reducing thermal fluctuations on the exterior of the roof and by increasing the roof heat capacity which cause to keep the space under the roof cool in the summer and heating rate increases during the winter. A roof garden is one of the recommended ways to reduce energy consumption in large cities. Despite the scale of the city green roofs have effective functions, such as beautiful view of city and decontaminating the urban landscape and reduce mental stress, and in an exchange of energy and heat from outside to inside spaces. This article is based on a review of 20 articles and 10 books and valid survey results on the positive effects of green roofs to prevent energy waste in the building. According to these publications, three of the conventional roof, green roof typical and green roof with certain administrative details (layers of glass) and the use of resistant plants and shrubs have been analyzed and compared their heat transfer. The results of these studies showed that one of the best green roof systems for mountainous climate is tree and shrub system that in addition to being resistant to climate change in mountainous regions, will benefit from the other advantages of green roof. Due to the severity of climate change in mountainous areas it is essential to prevent the waste of buildings heating and cooling energy. Proper climate design can greatly help to reduce energy.

Keywords: green roof, heat transfer, reducing energy consumption, mountainous areas, sustainable architecture

Procedia PDF Downloads 392
2741 Spoken Rhetoric in Arabic Heritage

Authors: Ihab Al-Mokrani

Abstract:

The Arabic heritage has two types of spoken rhetoric: the first type which al-Jaahiz calls “the rhetoric of the sign,” which means body language, and the rhetoric of silence which is of no less importance than the rhetoric of the sign, the speaker’s appearance and movements, etc. The second type is the spoken performance of utterances which bears written rhetoric arts like metaphor, simile, metonymy, etc. Rationale of the study: First: in spite of the factual existence of rhetorical phenomena in the Arabic heritage, there has been no contemporary study handling the spoken rhetoric in the Arabic heritage. Second: Arabic Civilization is originally a spoken one. Comparing the Arabic culture and civilization, from one side, to the Greek, roman or Pharaonic cultures and civilizations, from the other side, shows that the latter cultures and civilizations started and flourished written while the former started among illiterate people who had no interest in writing until recently. That sort of difference on the part of the Arabic culture and civilization created a rhetoric different from rhetoric in the other cultures and civilizations. Third: the spoken nature of the Arabic civilization influenced the Arabic rhetoric in the sense that specific rhetorical arts have been introduced matching that spoken nature. One of these arts is the art of concision which compensates for the absence of writing’s means of preserving the text. In addition, this interprets why many of the definitions of the Arabic rhetoric were defining rhetoric as the art of concision. Also, this interprets the fact that the literary genres known in the Arabic culture were limited by the available narrow space like poetry, anecdotes, and stories, while the literary genres in the Greek culture were of wide space as epics and drama. This is not of any contrast to the fact that some Arabic poetry would exceed 100 lines of poetry as Arabic poetry was based on the line organic unity, which means that every line could stand alone with a full meaning that is not dependent on the rest of the poem; and that last aspect has never happened in any culture other than the Arabic culture.

Keywords: Arabic rhetoric, spoken rhetoric, Arabic heritage, culture

Procedia PDF Downloads 766
2740 Perceptions and Spatial Realities: Women and the City of Limassol

Authors: Anna Papadopoulou

Abstract:

Women’s relationship to the post-industrial city has been defined by a reciprocal relationship between women’s identity and urban form. Women’s place within the social structure has been influenced by often limiting conditions set by the built environment, and, concurrently, women’s active role in social processes has definitively impacted urban development. Cities in Cyprus present unique locations for urban investigations pertaining to gender because of the country’s particular urban history: unlike most prominent European cities that have experienced approximately five hundred years of urban growth spurred by industrial development, Cypriot cities did not begin to form until the end of the Ottoman occupation that occurred in the last quarter of the nineteenth century. Consequently, Cyprus’ urban history is distinctive in that it coincides with international awakenings towards gender equality. This paper is drawn from a study of a contemporary urban narrative of Limassolian women and aims to elucidate spatial and perceptual boundaries that are inherent, constructed and implied. Within the context of this study, gender - in its socially constructed form - becomes a tool for reading and understanding the urban landscape, as well as a vehicle to impact the production and consumption of space. The investigation evaluates urban changes through the lens of women’s entry into the workforce which is a profound event in the social process and consequently explores issues of space and time, connectivity, and access, perceptions and awareness. A narrative of gendered urbanism has been derived from semi-structured interviews where the findings are studied, organised, analysed and synthesised through a grounded theory approach. These qualitative findings have been complemented and specialised by a series of informal observations and mappings.

Keywords: boundaries, gender, Limassol, urbanism

Procedia PDF Downloads 231
2739 Investigation on the Structure of Temperature-Responsive N-isopropylacrylamide Microgels Containing a New Hydrophobic Crosslinker

Authors: G. Roshan Deen, J. S. Pedersen

Abstract:

Temperature-responsive poly(N-isopropyl acrylamide) PNIPAM microgels crosslinked with a new hydrophobic chemical crosslinker was prepared by surfactant-mediated precipitation emulsion polymerization. The temperature-responsive property of the microgel and the influence of the crosslinker on the swelling behaviour was studied systematically by light scattering and small-angle X-ray scattering (SAXS). The radius of gyration (Rg) and the hydrodynamic radius (Rh) of the microgels decreased with increase in temperature due to the volume phase transition from a swollen to a collapsed state. The ratio of Rg/Rh below the transition temperature was lower than that of hard-spheres due to the lower crosslinking density of the microgels. The SAXS data was analysed by a model in which the microgels were modelled as core-shell particles with a graded interface. The model at intermediate temperatures included a central core and a more diffuse outer layer describing pending polymer chains with a low crosslinking density. In the fully swollen state, the microgels were modelled with a single component with a broad graded surface. In the collapsed state they were modelled as homogeneous and relatively compact particles. The polymer volume fraction inside the microgel was also derived based on the model and was found to increase with increase in temperature as a result of collapse of the microgel to compact particles. The polymer volume fraction in the core of the microgel in the collapsed state was about 60% which is higher than that of similar microgels crosslinked with hydrophilic and flexible cross-linkers.

Keywords: microgels, SAXS, hydrophobic crosslinker, light scattering

Procedia PDF Downloads 421