Search results for: network distributed diagnosis
6966 Benefits of Therapeutic Climbing on Multiple Components of Attention in Attention Deficit Hyperactivity Disorder Children
Authors: Elaheh Hosseini, Otmar Bock, Monika Thomas
Abstract:
The purpose of the present study was to determine the effect of climbing therapy on the components of attention of children with attention-deficit hyperactivity disorder (ADHD). Forty children with ADHD were assigned to either an intervention group or a control group. The exercise group participated in a climbing therapy program for ten weeks, whereas no intervention was administered to the control group. All two groups were then assessed with the same battery of attention tests used in our earlier study. We found that compared to the ‘intervention’ group, performance was higher in the ‘control’ group on tests of sustained, divided and distributed attention, on all four tests. The intervention group showed a significant improvement in components of attention after ten weeks. From this we conclude that climbing therapy can improve the attention of children with ADHD and can be considered as a promising intervention and a standalone treatment for children with ADHD.Keywords: ADHD, climbing therapy, distributed attention, divided attention, selective attention, sustained attention
Procedia PDF Downloads 1626965 Gender Effects in EEG-Based Functional Brain Networks
Authors: Mahdi Jalili
Abstract:
Functional connectivity in the human brain can be represented as a network using electroencephalography (EEG) signals. Network representation of EEG time series can be an efficient vehicle to understand the underlying mechanisms of brain function. Brain functional networks – whose nodes are brain regions and edges correspond to functional links between them – are characterized by neurobiologically meaningful graph theory metrics. This study investigates the degree to which graph theory metrics are sex dependent. To this end, EEGs from 24 healthy female subjects and 21 healthy male subjects were recorded in eyes-closed resting state conditions. The connectivity matrices were extracted using correlation analysis and were further binarized to obtain binary functional networks. Global and local efficiency measures – as graph theory metrics– were computed for the extracted networks. We found that male brains have a significantly greater global efficiency (i.e., global communicability of the network) across all frequency bands for a wide range of cost values in both hemispheres. Furthermore, for a range of cost values, female brains showed significantly greater right-hemispheric local efficiency (i.e., local connectivity) than male brains.Keywords: EEG, brain, functional networks, network science, graph theory
Procedia PDF Downloads 4436964 Finite Volume Method in Loop Network in Hydraulic Transient
Authors: Hossain Samani, Mohammad Ehteram
Abstract:
In this paper, we consider finite volume method (FVM) in water hammer. We will simulate these techniques on a looped network with complex boundary conditions. After comparing methods, we see the FVM method as the best method. We compare the results of FVM with experimental data. Finite volume using staggered grid is applied for solving water hammer equations.Keywords: hydraulic transient, water hammer, interpolation, non-liner interpolation
Procedia PDF Downloads 3496963 Identification and Optimisation of South Africa's Basic Access Road Network
Authors: Diogo Prosdocimi, Don Ross, Matthew Townshend
Abstract:
Road authorities are mandated within limited budgets to both deliver improved access to basic services and facilitate economic growth. This responsibility is further complicated if maintenance backlogs and funding shortfalls exist, as evident in many countries including South Africa. These conditions require authorities to make difficult prioritisation decisions, with the effect that Road Asset Management Systems with a one-dimensional focus on traffic volumes may overlook the maintenance of low-volume roads that provide isolated communities with vital access to basic services. Given these challenges, this paper overlays the full South African road network with geo-referenced information for population, primary and secondary schools, and healthcare facilities to identify the network of connective roads between communities and basic service centres. This connective network is then rationalised according to the Gross Value Added and number of jobs per mesozone, administrative and functional road classifications, speed limit, and road length, location, and name to estimate the Basic Access Road Network. A two-step floating catchment area (2SFCA) method, capturing a weighted assessment of drive-time to service centres and the ratio of people within a catchment area to teachers and healthcare workers, is subsequently applied to generate a Multivariate Road Index. This Index is used to assign higher maintenance priority to roads within the Basic Access Road Network that provide more people with better access to services. The relatively limited incidence of Basic Access Roads indicates that authorities could maintain the entire estimated network without exhausting the available road budget before practical economic considerations get any purchase. Despite this fact, a final case study modelling exercise is performed for the Namakwa District Municipality to demonstrate the extent to which optimal relocation of schools and healthcare facilities could minimise the Basic Access Road Network and thereby release budget for investment in roads that best promote GDP growth.Keywords: basic access roads, multivariate road index, road prioritisation, two-step floating catchment area method
Procedia PDF Downloads 2316962 Joubert Syndrome in Children as Multicentric Screening in Ten Different Places in World
Authors: Bajraktarevic Adnan, Djukic Branka, Sporisevic Lutvo, Krdzalic Zecevic Belma, Uzicanin Sajra, Hadzimuratovic Admir, Hadzimuratovic Hadzipasic Emina, Abduzaimovic Alisa, Kustric Amer, Suljevic Ismet, Serafi Ismail, Tahmiscija Indira, Khatib Hakam, Semic Jusufagic Aida, Haas Helmut, Vladicic Aleksandra, Aplenc Richard, Kadic Deovic Aida
Abstract:
Introduction: Joubert syndrome has an autosomal recessive pattern of inheritance. It is referred as the brain malfunctioning and caused due to the underdevelopment of the cerebellar vermis. Associated conditions involving the eye, the kidney, and ocular disease are well described. Aims: Research helps us better understand this diseases, Joubert syndrome and can lead to advances in diagnosis and treatment. Methods: Different several conditions have been described in which the molar tooth sign and characteristics of Joubert syndrome in ten different places in the world. Carrier testing and diagnosis are available if one of these gene mutations has been identified in an affected family member. Results: Authors have described eleven cases during twenty years of Joubert syndrome. It is a clinically and genetically heterogeneous group of disorders characterized by hypoplasia of the cerebellar vermis with the characteristic neuroradiologic molar tooth sign, and accompanying neurologic symptoms, including dysregulation of breathing pattern and developmental delay. We made confirmation of diagnosis in twin sisters with Joubert syndrome with renal anomalies. Ocular symptoms have existed in seven cases (63.64%) from total eleven. Eleven cases were different sex, five boys (45.45%) and six girls (54.44%). Conclusions: Joubert syndrome is inherited as an autosomal recessive genetic disorder with several features of the disease.Keywords: Joubert syndrome, cerebellooculorenal syndrome, autosomal recessive genetic disorder (ARGD), children
Procedia PDF Downloads 2786961 Global Stability Analysis of a Coupled Model for Healthy and Cancerous Cells Dynamics in Acute Myeloid Leukemia
Authors: Abdelhafid Zenati, Mohamed Tadjine
Abstract:
The mathematical formulation of biomedical problems is an important phase to understand and predict the dynamic of the controlled population. In this paper we perform a stability analysis of a coupled model for healthy and cancerous cells dynamics in Acute Myeloid Leukemia, this represents our first aim. Second, we illustrate the effect of the interconnection between healthy and cancer cells. The PDE-based model is transformed to a nonlinear distributed state space model (delay system). For an equilibrium point of interest, necessary and sufficient conditions of global asymptotic stability are given. Thus, we came up to give necessary and sufficient conditions of global asymptotic stability of the origin and the healthy situation and control of the dynamics of normal hematopoietic stem cells and cancerous during myelode Acute leukemia. Simulation studies are given to illustrate the developed results.Keywords: distributed delay, global stability, modelling, nonlinear models, PDE, state space
Procedia PDF Downloads 2526960 Bone Marrow Edema Syndrome in the Foot and Ankle
Authors: S. Alireza Mirghasemi, Elly Trepman, Mohammad Saleh Sadeghi, Narges Rahimi Gabaran, Shervin Rashidinia
Abstract:
Bone marrow edema syndrome (BMES) is an uncommon and self-limited syndrome characterized by atraumatic extremity pain with unknown of etiology. Symptom onset may include sudden or gradual swelling and pain at rest or during activity, usually at night. This syndrome mostly affects middle-aged men and younger women who have pain in the lower extremities. The most common sites involved with BMES, in decreasing order of frequency, are the bones about the hip, knee, ankle, and foot. The diagnosis of BMES is made with magnetic resonance imaging to exclude other causes of bone marrow edema. The correct diagnosis often is delayed because of the low prevalence and nonspecific signs in the foot and ankle. This delay may intensify bone pain and impair patient function and quality of life. The goal of BMES treatment is to relieve pain and shorten disease duration. Treatment options are limited and may include symptomatic treatment, pharmacologic treatment, and surgery.Keywords: transient osteoporosis, bone marrow edema syndrome, iloprost, bisphosphonates
Procedia PDF Downloads 3636959 Regional Treatment Trends in Canada Derived from Pharmacy Records
Abstract:
Cardiometabolic conditions (hypertension, diabetes, and hyperlipidemia) are major public health concerns. Analysis of all prescription records from about 10 million patients at the largest network of pharmacies in Canada reveals small year-over-year increases in the treatment prevalence of cardiometabolic diseases prior to the COVID-19 pandemic. Cardiometabolic treatment rates increase with age and are higher in males than females. Hypertension treatment rates were 24% in males and 19% in females in 2021. Diabetes treatment rates were 10% in males and 7% in females in 2021. Geospatial analysis using patient addresses reveals interesting differences among provinces and neighborhoods in Canada. Using digital surveys distributed among 8,504 Canadian adults, an increase in hypertension awareness with age and female gender was observed. However, 7% of seniors and 6% of middle-aged Canadians reported uncontrolled blood pressure (>140/90 mmHg). In addition, elevated blood pressure (130-139/80-89 mmHg) was reported by 20% of seniors and 14% of middle-aged Canadians.Keywords: cardiometabolic conditions, diabetes, hypertension, precision public health
Procedia PDF Downloads 1166958 Exploring the Applications of Neural Networks in the Adaptive Learning Environment
Authors: Baladitya Swaika, Rahul Khatry
Abstract:
Computer Adaptive Tests (CATs) is one of the most efficient ways for testing the cognitive abilities of students. CATs are based on Item Response Theory (IRT) which is based on item selection and ability estimation using statistical methods of maximum information selection/selection from posterior and maximum-likelihood (ML)/maximum a posteriori (MAP) estimators respectively. This study aims at combining both classical and Bayesian approaches to IRT to create a dataset which is then fed to a neural network which automates the process of ability estimation and then comparing it to traditional CAT models designed using IRT. This study uses python as the base coding language, pymc for statistical modelling of the IRT and scikit-learn for neural network implementations. On creation of the model and on comparison, it is found that the Neural Network based model performs 7-10% worse than the IRT model for score estimations. Although performing poorly, compared to the IRT model, the neural network model can be beneficially used in back-ends for reducing time complexity as the IRT model would have to re-calculate the ability every-time it gets a request whereas the prediction from a neural network could be done in a single step for an existing trained Regressor. This study also proposes a new kind of framework whereby the neural network model could be used to incorporate feature sets, other than the normal IRT feature set and use a neural network’s capacity of learning unknown functions to give rise to better CAT models. Categorical features like test type, etc. could be learnt and incorporated in IRT functions with the help of techniques like logistic regression and can be used to learn functions and expressed as models which may not be trivial to be expressed via equations. This kind of a framework, when implemented would be highly advantageous in psychometrics and cognitive assessments. This study gives a brief overview as to how neural networks can be used in adaptive testing, not only by reducing time-complexity but also by being able to incorporate newer and better datasets which would eventually lead to higher quality testing.Keywords: computer adaptive tests, item response theory, machine learning, neural networks
Procedia PDF Downloads 1756957 Hysteresis Modeling in Iron-Dominated Magnets Based on a Deep Neural Network Approach
Authors: Maria Amodeo, Pasquale Arpaia, Marco Buzio, Vincenzo Di Capua, Francesco Donnarumma
Abstract:
Different deep neural network architectures have been compared and tested to predict magnetic hysteresis in the context of pulsed electromagnets for experimental physics applications. Modelling quasi-static or dynamic major and especially minor hysteresis loops is one of the most challenging topics for computational magnetism. Recent attempts at mathematical prediction in this context using Preisach models could not attain better than percent-level accuracy. Hence, this work explores neural network approaches and shows that the architecture that best fits the measured magnetic field behaviour, including the effects of hysteresis and eddy currents, is the nonlinear autoregressive exogenous neural network (NARX) model. This architecture aims to achieve a relative RMSE of the order of a few 100 ppm for complex magnetic field cycling, including arbitrary sequences of pseudo-random high field and low field cycles. The NARX-based architecture is compared with the state-of-the-art, showing better performance than the classical operator-based and differential models, and is tested on a reference quadrupole magnetic lens used for CERN particle beams, chosen as a case study. The training and test datasets are a representative example of real-world magnet operation; this makes the good result obtained very promising for future applications in this context.Keywords: deep neural network, magnetic modelling, measurement and empirical software engineering, NARX
Procedia PDF Downloads 1306956 A Secure Routing Algorithm for Underwater Wireless Sensor Networks
Authors: Seyed Mahdi Jameii
Abstract:
Underwater wireless sensor networks have been attracting the interest of many researchers lately, and the past three decades have beheld the rapid progress of underwater acoustic communication. One of the major problems in underwater wireless sensor networks is how to transfer data from the moving node to the base stations and choose the optimized route for data transmission. Secure routing in underwater wireless sensor network (UWCNs) is necessary for packet delivery. Some routing protocols are proposed for underwater wireless sensor networks. However, a few researches have been done on secure routing in underwater sensor networks. In this article, a secure routing protocol is provided to resist against wormhole and sybil attacks. The results indicated acceptable performance in terms of increasing the packet delivery ratio with regards to the attacks, increasing network lifetime by creating balance in the network energy consumption, high detection rates against the attacks, and low-end to end delay.Keywords: attacks, routing, security, underwater wireless sensor networks
Procedia PDF Downloads 4186955 A Case Report on Neonatal Conjunctivitis in Pugs
Authors: Maria L. G. Lourenco, Viviane Y. Hibaru, Keylla H. N. P. Pereira, Fabiana F. Souza, Joao C. P. Ferreira, Simone B. Chiacchio, Luiz H. A. Machado
Abstract:
Neonatal conjunctivitis, or ophthalmia, is an infection of the conjunctiva or cornea before opening the eyelids. It is believed that immunodeficiency contributes to the development of the condition. This study aims at reporting a case of ophthalmia neonatorum in a dog, in addition to its diagnosis and treatment. A litter of five pug neonates was admitted to the Sao Paulo State University (UNESP) Veterinary Hospital, Botucatu, Sao Paulo, Brazil, with complaints of ocular secretion. The neonates were five days old. The clinical examination revealed that three newborns presented swelling in the ocular region and a purulent secretion in the medial corner of the eye that was exerting pressure on the ocular globes, which are compatible with the description of this disease. The diagnosis was made based on the clinical signs and bacterial culture of the secretion, which revealed the presence of bacteria belonging to the genus Staphylococcus sp. The laboratory assays did not reveal any alterations. The treatment was instituted gently, opening the eyelids early and cleaning the purulent ocular secretion with saline solution. An ophthalmic ointment with retinol, amino acids, methionine, and chloramphenicol (Epitezan®) was prescribed four times a day for seven days. Blood plasma (2 mL/100 g) was administered subcutaneously because bacterial infections in neonates may represent a failure in the transference of passive immunity. A more thorough cleaning of the environment was also recommended. Neonatal conjunctivitis has a simple diagnosis and treatment. If not treated early, it can evolve to adherence of the eyelids to the cornea, ulceration, and perforation of the cornea. Therefore, the prognosis is favorable as long as the condition is diagnosed early, and the treatment is instituted quickly.Keywords: ophthalmia neonatorum, neonatal infection, puppy, newborn
Procedia PDF Downloads 1406954 An Efficient Algorithm for Global Alignment of Protein-Protein Interaction Networks
Authors: Duc Dong Do, Ngoc Ha Tran, Thanh Hai Dang, Cao Cuong Dang, Xuan Huan Hoang
Abstract:
Global aligning two protein-protein interaction networks is an essentially important task in bioinformatics/computational biology field of study. It is a challenging and widely studied research topic in recent years. Accurately aligned networks allow us to identify functional modules of proteins and/ororthologous proteins from which unknown functions of a protein can be inferred. We here introduce a novel efficient heuristic global network alignment algorithm called FASTAn, including two phases: the first to construct an initial alignment and the second to improve such alignment by exerting a local optimization repeated procedure. The experimental results demonstrated that FASTAn outperformed the state-of-the-art global network alignment algorithm namely SPINAL in terms of both commonly used objective scores and the run-time.Keywords: FASTAn, Heuristic algorithm, biological network alignment, protein-protein interaction networks
Procedia PDF Downloads 6046953 Scheduling Tasks in Embedded Systems Based on NoC Architecture
Authors: D. Dorota
Abstract:
This paper presents a method to generate and schedule task in the architecture of embedded systems based on the simulated annealing. This method takes into account the attribute of divisibility of tasks. A proposal represents the process in the form of trees. Despite the fact that the architecture of Network-on-Chip (NoC) is an interesting alternative to a bus architecture based on multi-processors systems, it requires a lot of work that ensures the optimization of communication. This paper proposes an effective approach to generate dedicated NoC topology solving communication problems. Network NoC is generated taking into account the energy consumption and resource issues. Ultimately generated is minimal, dedicated NoC topology. The proposed solution is assumed to be a simple router design and the minimum number of lines.Keywords: Network-on-Chip, NoC-based embedded systems, scheduling task in embedded systems, simulated annealing
Procedia PDF Downloads 3776952 Multi-Stream Graph Attention Network for Recommendation with Knowledge Graph
Abstract:
In recent years, Graph neural network has been widely used in knowledge graph recommendation. The existing recommendation methods based on graph neural network extract information from knowledge graph through entity and relation, which may not be efficient in the way of information extraction. In order to better propose useful entity information for the current recommendation task in the knowledge graph, we propose an end-to-end Neural network Model based on multi-stream graph attentional Mechanism (MSGAT), which can effectively integrate the knowledge graph into the recommendation system by evaluating the importance of entities from both users and items. Specifically, we use the attention mechanism from the user's perspective to distil the domain nodes information of the predicted item in the knowledge graph, to enhance the user's information on items, and generate the feature representation of the predicted item. Due to user history, click items can reflect the user's interest distribution, we propose a multi-stream attention mechanism, based on the user's preference for entities and relationships, and the similarity between items to be predicted and entities, aggregate user history click item's neighborhood entity information in the knowledge graph and generate the user's feature representation. We evaluate our model on three real recommendation datasets: Movielens-1M (ML-1M), LFM-1B 2015 (LFM-1B), and Amazon-Book (AZ-book). Experimental results show that compared with the most advanced models, our proposed model can better capture the entity information in the knowledge graph, which proves the validity and accuracy of the model.Keywords: graph attention network, knowledge graph, recommendation, information propagation
Procedia PDF Downloads 1176951 Idiopathic Gingival Fibromatosis
Authors: Bandana Koirala, Shivalal Sharma
Abstract:
Introduction: Gingival enlargements are quite common and may be either inflammatory, non-inflammatory or a combination of both. Idiopathic gingival enlargement is a rare condition with a proliferative fibrous lesion of the gingival tissue that causes esthetic and functional problems. It is of undetermined etiology. Case Description: This case report addresses the diagnosis and treatment of a case of idiopathic gingival enlargement in a 9-year-old male patient. The patient presented with a generalized diffuse gingival enlargement involving the entire maxillary and the mandibular arch with extension on occlusal, buccal, lingual, and palatal surfaces with just parts of occlusal surfaces of few upper and lower molars visible resulting in open mouth, difficulty in mastication and speech. Biopsy report confirmed the diagnosis of fibromatosis gingivae. Gingivectomy was carried out in all four quadrants by using external bevel incision. Conclusion: Though total esthetics could not be restored due to unusual bony enlargement, the general appearance improved satisfactorily. Treatment after complete excision however, improved the masticatory competence to a great extent.Keywords: idiopathic gingival fibromatosis, gingival enlargement, gingivectomy, medical and health sciences
Procedia PDF Downloads 3296950 Investigation of Clustering Algorithms Used in Wireless Sensor Networks
Authors: Naim Karasekreter, Ugur Fidan, Fatih Basciftci
Abstract:
Wireless sensor networks are networks in which more than one sensor node is organized among themselves. The working principle is based on the transfer of the sensed data over the other nodes in the network to the central station. Wireless sensor networks concentrate on routing algorithms, energy efficiency and clustering algorithms. In the clustering method, the nodes in the network are divided into clusters using different parameters and the most suitable cluster head is selected from among them. The data to be sent to the center is sent per cluster, and the cluster head is transmitted to the center. With this method, the network traffic is reduced and the energy efficiency of the nodes is increased. In this study, clustering algorithms were examined in terms of clustering performances and cluster head selection characteristics to try to identify weak and strong sides. This work is supported by the Project 17.Kariyer.123 of Afyon Kocatepe University BAP Commission.Keywords: wireless sensor networks (WSN), clustering algorithm, cluster head, clustering
Procedia PDF Downloads 5136949 Multivariate Analysis on Water Quality Attributes Using Master-Slave Neural Network Model
Authors: A. Clementking, C. Jothi Venkateswaran
Abstract:
Mathematical and computational functionalities such as descriptive mining, optimization, and predictions are espoused to resolve natural resource planning. The water quality prediction and its attributes influence determinations are adopted optimization techniques. The water properties are tainted while merging water resource one with another. This work aimed to predict influencing water resource distribution connectivity in accordance to water quality and sediment using an innovative proposed master-slave neural network back-propagation model. The experiment results are arrived through collecting water quality attributes, computation of water quality index, design and development of neural network model to determine water quality and sediment, master–slave back propagation neural network back-propagation model to determine variations on water quality and sediment attributes between the water resources and the recommendation for connectivity. The homogeneous and parallel biochemical reactions are influences water quality and sediment while distributing water from one location to another. Therefore, an innovative master-slave neural network model [M (9:9:2)::S(9:9:2)] designed and developed to predict the attribute variations. The result of training dataset given as an input to master model and its maximum weights are assigned as an input to the slave model to predict the water quality. The developed master-slave model is predicted physicochemical attributes weight variations for 85 % to 90% of water quality as a target values.The sediment level variations also predicated from 0.01 to 0.05% of each water quality percentage. The model produced the significant variations on physiochemical attribute weights. According to the predicated experimental weight variation on training data set, effective recommendations are made to connect different resources.Keywords: master-slave back propagation neural network model(MSBPNNM), water quality analysis, multivariate analysis, environmental mining
Procedia PDF Downloads 4776948 Time to CT in Major Trauma in Coffs Harbour Health Campus - The Australian Rural Centre Experience
Authors: Thampi Rawther, Jack Cecire, Andrew Sutherland
Abstract:
Introduction: CT facilitates the diagnosis of potentially life-threatening injuries and facilitates early management. There is evidence that reduced CT acquisition time reduces mortality and length of hospital stay. Currently, there are variable recommendations for ideal timing. Indeed, the NHS standard contract for a major trauma service and STAG both recommend immediate access to CT within a maximum time of 60min and appropriate reporting within 60min of the scan. At Coffs Harbour Health Campus (CHHC), a CT radiographer is on site between 8am-11pm. Aim: To investigate the average time to CT at CHHC and assess for any significant relationship between time to CT and injury severity score (ISS) or time of triage. Method: All major trauma calls between Jan 2021-Oct 2021 were audited (N=87). Patients were excluded if they went from ED to the theatre. Time to CT is defined as the time between triage to the timestamp on the first CT image. Median and interquartile range was used as a measure of central tendency as the data was not normally distributed, and Chi-square test was used to determine association. Results: The median time to CT is 51.5min (IQR 40-74). We found no relationship between time to CT and ISS (P=0.18) and time of triage to time to CT (P=0.35). We compared this to other centres such as John Hunter Hospital and Gold Coast Hospital. We found that the median CT acquisition times were 76min (IQR 52-115) and 43min, respectively. Conclusion: This shows an avenue for improvement given 35% of CT’s were >30min. Furthermore, being proactive and aware of time to CT as an important factor to trauma management can be another avenue for improvement. Based on this, we will re-audit in 12-24months to assess if any improvement has been made.Keywords: imaging, rural surgery, trauma surgery, improvement
Procedia PDF Downloads 1036947 A Two-Dimensional Problem Micropolar Thermoelastic Medium under the Effect of Laser Irradiation and Distributed Sources
Authors: Devinder Singh, Rajneesh Kumar, Arvind Kumar
Abstract:
The present investigation deals with the deformation of micropolar generalized thermoelastic solid subjected to thermo-mechanical loading due to a thermal laser pulse. Laplace transform and Fourier transform techniques are used to solve the problem. Thermo-mechanical laser interactions are taken as distributed sources to describe the application of the approach. The closed form expressions of normal stress, tangential stress, coupled stress and temperature are obtained in the domain. Numerical inversion technique of Laplace transform and Fourier transform has been implied to obtain the resulting quantities in the physical domain after developing a computer program. The normal stress, tangential stress, coupled stress and temperature are depicted graphically to show the effect of relaxation times. Some particular cases of interest are deduced from the present investigation.Keywords: pulse laser, integral transform, thermoelastic, boundary value problem
Procedia PDF Downloads 6166946 Massively-Parallel Bit-Serial Neural Networks for Fast Epilepsy Diagnosis: A Feasibility Study
Authors: Si Mon Kueh, Tom J. Kazmierski
Abstract:
There are about 1% of the world population suffering from the hidden disability known as epilepsy and major developing countries are not fully equipped to counter this problem. In order to reduce the inconvenience and danger of epilepsy, different methods have been researched by using a artificial neural network (ANN) classification to distinguish epileptic waveforms from normal brain waveforms. This paper outlines the aim of achieving massive ANN parallelization through a dedicated hardware using bit-serial processing. The design of this bit-serial Neural Processing Element (NPE) is presented which implements the functionality of a complete neuron using variable accuracy. The proposed design has been tested taking into consideration non-idealities of a hardware ANN. The NPE consists of a bit-serial multiplier which uses only 16 logic elements on an Altera Cyclone IV FPGA and a bit-serial ALU as well as a look-up table. Arrays of NPEs can be driven by a single controller which executes the neural processing algorithm. In conclusion, the proposed compact NPE design allows the construction of complex hardware ANNs that can be implemented in a portable equipment that suits the needs of a single epileptic patient in his or her daily activities to predict the occurrences of impending tonic conic seizures.Keywords: Artificial Neural Networks (ANN), bit-serial neural processor, FPGA, Neural Processing Element (NPE)
Procedia PDF Downloads 3216945 Molecular Characterization of Dirofilaria repens in Dogs from Karnataka, India
Authors: D. S. Malatesh, K. J. Ananda, C. Ansar Kamran, K. Ganesh Udupa
Abstract:
Dirofilaria repens is a mosquito-borne filarioid nematode of dogs and other carnivores and accidentally affects humans. D. repens is reported in many countries, including India. Subcutaneous dirofilariosis caused by D. repens is a zoonotic disease, widely distributed throughout Europe, Asia, and Africa, with higher prevalence reported in dogs from Sri Lanka (30-60%), Iran (61%) and Italy (21-25%). Dirofilariasis in dogs was diagnosed by detection of microfilariae in blood. Identification of different Dirofilaria species was done by using molecular methods like polymerase chain reaction (PCR). Even though many researchers reported molecular evidence of D. repens across India, to our best knowledge there is no data available on molecular diagnosis of D. repens in dogs and its zoonotic implication in Karnataka state a southern state in India. The aim of the present study was to identify the Dirofilaria species occurring in dogs from Karnataka, India. Out of 310 samples screened for the presence of microfilariae using traditional diagnostic methods, 99 (31.93%) were positive for the presence of microfilariae. Based on the morphometry, the microfilariae were identified as D. repens. For confirmation of species, the samples were subjected to PCR using pan filarial primers (DIDR-F1, DIDR-R1) for amplification of internal transcribed spacer region 2 (ITS2) of the ribosomal DNA. The PCR product of 484 base pairs on agarose gel was indicative of D. repens. Hence, a single PCR reaction using pan filarial primers can be used to differentiate filarial species found in dogs. The present study confirms that dirofilarial species occurring in dogs from Karnataka is D. repens and further sequencing studies are needed for genotypic characterization of D. repens.Keywords: Dirofilaria repens, molecular characterization, polymerase chain reaction, Karnataka, India
Procedia PDF Downloads 1426944 Rain Gauges Network Optimization in Southern Peninsular Malaysia
Authors: Mohd Khairul Bazli Mohd Aziz, Fadhilah Yusof, Zulkifli Yusop, Zalina Mohd Daud, Mohammad Afif Kasno
Abstract:
Recent developed rainfall network design techniques have been discussed and compared by many researchers worldwide due to the demand of acquiring higher levels of accuracy from collected data. In many studies, rain-gauge networks are designed to provide good estimation for areal rainfall and for flood modelling and prediction. In a certain study, even using lumped models for flood forecasting, a proper gauge network can significantly improve the results. Therefore existing rainfall network in Johor must be optimized and redesigned in order to meet the required level of accuracy preset by rainfall data users. The well-known geostatistics method (variance-reduction method) that is combined with simulated annealing was used as an algorithm of optimization in this study to obtain the optimal number and locations of the rain gauges. Rain gauge network structure is not only dependent on the station density; station location also plays an important role in determining whether information is acquired accurately. The existing network of 84 rain gauges in Johor is optimized and redesigned by using rainfall, humidity, solar radiation, temperature and wind speed data during monsoon season (November – February) for the period of 1975 – 2008. Three different semivariogram models which are Spherical, Gaussian and Exponential were used and their performances were also compared in this study. Cross validation technique was applied to compute the errors and the result showed that exponential model is the best semivariogram. It was found that the proposed method was satisfied by a network of 64 rain gauges with the minimum estimated variance and 20 of the existing ones were removed and relocated. An existing network may consist of redundant stations that may make little or no contribution to the network performance for providing quality data. Therefore, two different cases were considered in this study. The first case considered the removed stations that were optimally relocated into new locations to investigate their influence in the calculated estimated variance and the second case explored the possibility to relocate all 84 existing stations into new locations to determine the optimal position. The relocations of the stations in both cases have shown that the new optimal locations have managed to reduce the estimated variance and it has proven that locations played an important role in determining the optimal network.Keywords: geostatistics, simulated annealing, semivariogram, optimization
Procedia PDF Downloads 3026943 A Scalable Media Job Framework for an Open Source Search Engine
Authors: Pooja Mishra, Chris Pollett
Abstract:
This paper explores efficient ways to implement various media-updating features like news aggregation, video conversion, and bulk email handling. All of these jobs share the property that they are periodic in nature, and they all benefit from being handled in a distributed fashion. The data for these jobs also often comes from a social or collaborative source. We isolate the class of periodic, one round map reduce jobs as a useful setting to describe and handle media updating tasks. As such tasks are simpler than general map reduce jobs, programming them in a general map reduce platform could easily become tedious. This paper presents a MediaUpdater module of the Yioop Open Source Search Engine Web Portal designed to handle such jobs via an extension of a PHP class. We describe how to implement various media-updating tasks in our system as well as experiments carried out using these implementations on an Amazon Web Services cluster.Keywords: distributed jobs framework, news aggregation, video conversion, email
Procedia PDF Downloads 2996942 A Literature Review of Precision Agriculture: Applications of Diagnostic Diseases in Corn, Potato, and Rice Based on Artificial Intelligence
Authors: Carolina Zambrana, Grover Zurita
Abstract:
The food loss production that occurs in deficient agricultural production is one of the major problems worldwide. This puts the population's food security and the efficiency of farming investments at risk. It is to be expected that this food security will be achieved with the own and efficient production of each country. It will have an impact on the well-being of its population and, thus, also on food sovereignty. The production losses in quantity and quality occur due to the lack of efficient detection of diseases at an early stage. It is very difficult to solve the agriculture efficiency using traditional methods since it takes a long time to be carried out due to detection imprecision of the main diseases, especially when the production areas are extensive. Therefore, the main objective of this research study is to perform a systematic literature review, of the latest five years, of Precision Agriculture (PA) to be able to understand the state of the art of the set of new technologies, procedures, and optimization processes with Artificial Intelligence (AI). This study will focus on Corns, Potatoes, and Rice diagnostic diseases. The extensive literature review will be performed on Elsevier, Scopus, and IEEE databases. In addition, this research will focus on advanced digital imaging processing and the development of software and hardware for PA. The convolution neural network will be handling special attention due to its outstanding diagnostic results. Moreover, the studied data will be incorporated with artificial intelligence algorithms for the automatic diagnosis of crop quality. Finally, precision agriculture with technology applied to the agricultural sector allows the land to be exploited efficiently. This system requires sensors, drones, data acquisition cards, and global positioning systems. This research seeks to merge different areas of science, control engineering, electronics, digital image processing, and artificial intelligence for the development, in the near future, of a low-cost image measurement system that allows the optimization of crops with AI.Keywords: precision agriculture, convolutional neural network, deep learning, artificial intelligence
Procedia PDF Downloads 796941 Evaluating the Diagnostic Accuracy of the ctDNA Methylation for Liver Cancer
Authors: Maomao Cao
Abstract:
Objective: To test the performance of ctDNA methylation for the detection of liver cancer. Methods: A total of 1233 individuals have been recruited in 2017. 15 male and 15 female samples (including 10 cases of liver cancer) were randomly selected in the present study. CfDNA was extracted by MagPure Circulating DNA Maxi Kit. The concentration of cfDNA was obtained by Qubit™ dsDNA HS Assay Kit. A pre-constructed predictive model was used to analyze methylation data and to give a predictive score for each cfDNA sample. Individuals with a predictive score greater than or equal to 80 were classified as having liver cancer. CT tests were considered the gold standard. Sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) for the diagnosis of liver cancer were calculated. Results: 9 patients were diagnosed with liver cancer according to the prediction model (with high sensitivity and threshold of 80 points), with scores of 99.2, 91.9, 96.6, 92.4, 91.3, 92.5, 96.8, 91.1, and 92.2, respectively. The sensitivity, specificity, positive predictive value, and negative predictive value of ctDNA methylation for the diagnosis of liver cancer were 0.70, 0.90, 0.78, and 0.86, respectively. Conclusions: ctDNA methylation could be an acceptable diagnostic modality for the detection of liver cancer.Keywords: liver cancer, ctDNA methylation, detection, diagnostic performance
Procedia PDF Downloads 1516940 A Systematic Review on Factors/Predictors and Outcomes of Parental Distress in Childhood Acute Lymphoblastic Leukemia
Authors: Ana Ferraz, Martim Santos, M. Graça Pereira
Abstract:
Distress among parents of children with acute lymphoblastic leukemia (ALL) is common during treatment and can persist several years post-diagnosis, impacting the adjustment of children and parents themselves. Current evidence is needed to examine the scope and nature of parental distress in childhood ALL. This review focused on associated variables, predictors, and outcomes of parental distress following their ALL diagnosis of their child. PubMed, Web of Science, and PsycINFO databases were searched for English and Spanish papers published from 1983 to 2021. PRISMA statement was followed, and papers were evaluated through a standardized methodological quality assessment tool (NHLBI). Of the 28 papers included, 16 were evaluated as fair, eight as good, and four as poor. Regarding results, 11 papers reported subgroup differences, and 15 found potential predictors of parental distress, including sociodemographic, psychosocial, psychological, family, health, and ALL-specific variables. Significant correlations were found between parental distress, social support, illness cognitions, and resilience, as well as contradictory results regarding the impact of sociodemographic variables on parental distress. Family cohesion and caregiver burden were associated with distress, and the use of healthy coping strategies was associated with less anxiety. Caregiver strain contributed to distress, and the overall impact of illness positively predicted anxiety in mothers and somatization in fathers. Differences in parental distress were found regarding group risk, time since diagnosis, and treatment phases. Thirteen papers explored the outcomes of parental distress on psychological, family, health, and social/education outcomes. Parental distress was the most important predictor of family strain. Significant correlations were found between parental distress at diagnosis and further psychological adjustment of parents themselves and their children. Most papers reported correlations between parental distress on children’s adjustment and quality of life, although few studies reported no association. Correlations between maternal depression and child participation in education and social life were also found. Longitudinal studies are needed to better understand parental distress and its consequences on health outcomes, in particular. Future interventions should focus mainly on parents on distress reduction and psychological adjustment, both in parents and children over time.Keywords: childhood acute lymphoblastic leukemia, family, parental distress, psychological adjustment, quality of life
Procedia PDF Downloads 1086939 Survey Based Data Security Evaluation in Pakistan Financial Institutions against Malicious Attacks
Authors: Naveed Ghani, Samreen Javed
Abstract:
In today’s heterogeneous network environment, there is a growing demand for distrust clients to jointly execute secure network to prevent from malicious attacks as the defining task of propagating malicious code is to locate new targets to attack. Residual risk is always there no matter what solutions are implemented or whet so ever security methodology or standards being adapted. Security is the first and crucial phase in the field of Computer Science. The main aim of the Computer Security is gathering of information with secure network. No one need wonder what all that malware is trying to do: It's trying to steal money through data theft, bank transfers, stolen passwords, or swiped identities. From there, with the help of our survey we learn about the importance of white listing, antimalware programs, security patches, log files, honey pots, and more used in banks for financial data protection but there’s also a need of implementing the IPV6 tunneling with Crypto data transformation according to the requirements of new technology to prevent the organization from new Malware attacks and crafting of its own messages and sending them to the target. In this paper the writer has given the idea of implementing IPV6 Tunneling Secessions on private data transmission from financial organizations whose secrecy needed to be safeguarded.Keywords: network worms, malware infection propagating malicious code, virus, security, VPN
Procedia PDF Downloads 3586938 A Prediction Model for Dynamic Responses of Building from Earthquake Based on Evolutionary Learning
Authors: Kyu Jin Kim, Byung Kwan Oh, Hyo Seon Park
Abstract:
The seismic responses-based structural health monitoring system has been performed to prevent seismic damage. Structural seismic damage of building is caused by the instantaneous stress concentration which is related with dynamic characteristic of earthquake. Meanwhile, seismic response analysis to estimate the dynamic responses of building demands significantly high computational cost. To prevent the failure of structural members from the characteristic of the earthquake and the significantly high computational cost for seismic response analysis, this paper presents an artificial neural network (ANN) based prediction model for dynamic responses of building considering specific time length. Through the measured dynamic responses, input and output node of the ANN are formed by the length of specific time, and adopted for the training. In the model, evolutionary radial basis function neural network (ERBFNN), that radial basis function network (RBFN) is integrated with evolutionary optimization algorithm to find variables in RBF, is implemented. The effectiveness of the proposed model is verified through an analytical study applying responses from dynamic analysis for multi-degree of freedom system to training data in ERBFNN.Keywords: structural health monitoring, dynamic response, artificial neural network, radial basis function network, genetic algorithm
Procedia PDF Downloads 3046937 Mix Proportioning and Strength Prediction of High Performance Concrete Including Waste Using Artificial Neural Network
Authors: D. G. Badagha, C. D. Modhera, S. A. Vasanwala
Abstract:
There is a great challenge for civil engineering field to contribute in environment prevention by finding out alternatives of cement and natural aggregates. There is a problem of global warming due to cement utilization in concrete, so it is necessary to give sustainable solution to produce concrete containing waste. It is very difficult to produce designated grade of concrete containing different ingredient and water cement ratio including waste to achieve desired fresh and harden properties of concrete as per requirement and specifications. To achieve the desired grade of concrete, a number of trials have to be taken, and then after evaluating the different parameters at long time performance, the concrete can be finalized to use for different purposes. This research work is carried out to solve the problem of time, cost and serviceability in the field of construction. In this research work, artificial neural network introduced to fix proportion of concrete ingredient with 50% waste replacement for M20, M25, M30, M35, M40, M45, M50, M55 and M60 grades of concrete. By using the neural network, mix design of high performance concrete was finalized, and the main basic mechanical properties were predicted at 3 days, 7 days and 28 days. The predicted strength was compared with the actual experimental mix design and concrete cube strength after 3 days, 7 days and 28 days. This experimentally and neural network based mix design can be used practically in field to give cost effective, time saving, feasible and sustainable high performance concrete for different types of structures.Keywords: artificial neural network, high performance concrete, rebound hammer, strength prediction
Procedia PDF Downloads 155