Search results for: gantry machine
1498 Mining Big Data in Telecommunications Industry: Challenges, Techniques, and Revenue Opportunity
Authors: Hoda A. Abdel Hafez
Abstract:
Mining big data represents a big challenge nowadays. Many types of research are concerned with mining massive amounts of data and big data streams. Mining big data faces a lot of challenges including scalability, speed, heterogeneity, accuracy, provenance and privacy. In telecommunication industry, mining big data is like a mining for gold; it represents a big opportunity and maximizing the revenue streams in this industry. This paper discusses the characteristics of big data (volume, variety, velocity and veracity), data mining techniques and tools for handling very large data sets, mining big data in telecommunication and the benefits and opportunities gained from them.Keywords: mining big data, big data, machine learning, telecommunication
Procedia PDF Downloads 4071497 Classification of Emotions in Emergency Call Center Conversations
Authors: Magdalena Igras, Joanna Grzybowska, Mariusz Ziółko
Abstract:
The study of emotions expressed in emergency phone call is presented, covering both statistical analysis of emotions configurations and an attempt to automatically classify emotions. An emergency call is a situation usually accompanied by intense, authentic emotions. They influence (and may inhibit) the communication between caller and responder. In order to support responders in their responsible and psychically exhaustive work, we studied when and in which combinations emotions appeared in calls. A corpus of 45 hours of conversations (about 3300 calls) from emergency call center was collected. Each recording was manually tagged with labels of emotions valence (positive, negative or neutral), type (sadness, tiredness, anxiety, surprise, stress, anger, fury, calm, relief, compassion, satisfaction, amusement, joy) and arousal (weak, typical, varying, high) on the basis of perceptual judgment of two annotators. As we concluded, basic emotions tend to appear in specific configurations depending on the overall situational context and attitude of speaker. After performing statistical analysis we distinguished four main types of emotional behavior of callers: worry/helplessness (sadness, tiredness, compassion), alarm (anxiety, intense stress), mistake or neutral request for information (calm, surprise, sometimes with amusement) and pretension/insisting (anger, fury). The frequency of profiles was respectively: 51%, 21%, 18% and 8% of recordings. A model of presenting the complex emotional profiles on the two-dimensional (tension-insecurity) plane was introduced. In the stage of acoustic analysis, a set of prosodic parameters, as well as Mel-Frequency Cepstral Coefficients (MFCC) were used. Using these parameters, complex emotional states were modeled with machine learning techniques including Gaussian mixture models, decision trees and discriminant analysis. Results of classification with several methods will be presented and compared with the state of the art results obtained for classification of basic emotions. Future work will include optimization of the algorithm to perform in real time in order to track changes of emotions during a conversation.Keywords: acoustic analysis, complex emotions, emotion recognition, machine learning
Procedia PDF Downloads 3951496 Assessing the Efficacy of Artificial Intelligence Integration in the FLO Health Application
Authors: Reema Alghamdi, Rasees Aleisa, Layan Sukkar
Abstract:
The primary objective of this research is to conduct an examination of the Flo menstrual cycle application. We do that by evaluating the user experience and their satisfaction with integrated AI features. The study seeks to gather data from primary resources, primarily through surveys, to gather different insights about the application, like its usability functionality in addition to the overall user satisfaction. The focus of our project will be particularly directed towards the impact and user perspectives regarding the integration of artificial intelligence features within the application, contributing to an understanding of the holistic user experience.Keywords: period, women health, machine learning, AI features, menstrual cycle
Procedia PDF Downloads 731495 Theoretical Modelling of Molecular Mechanisms in Stimuli-Responsive Polymers
Authors: Catherine Vasnetsov, Victor Vasnetsov
Abstract:
Context: Thermo-responsive polymers are materials that undergo significant changes in their physical properties in response to temperature changes. These polymers have gained significant attention in research due to their potential applications in various industries and medicine. However, the molecular mechanisms underlying their behavior are not well understood, particularly in relation to cosolvency, which is crucial for practical applications. Research Aim: This study aimed to theoretically investigate the phenomenon of cosolvency in long-chain polymers using the Flory-Huggins statistical-mechanical framework. The main objective was to understand the interactions between the polymer, solvent, and cosolvent under different conditions. Methodology: The research employed a combination of Monte Carlo computer simulations and advanced machine-learning methods. The Flory-Huggins mean field theory was used as the basis for the simulations. Spinodal graphs and ternary plots were utilized to develop an initial computer model for predicting polymer behavior. Molecular dynamic simulations were conducted to mimic real-life polymer systems. Machine learning techniques were incorporated to enhance the accuracy and reliability of the simulations. Findings: The simulations revealed that the addition of very low or very high volumes of cosolvent molecules resulted in smaller radii of gyration for the polymer, indicating poor miscibility. However, intermediate volume fractions of cosolvent led to higher radii of gyration, suggesting improved miscibility. These findings provide a possible microscopic explanation for the cosolvency phenomenon in polymer systems. Theoretical Importance: This research contributes to a better understanding of the behavior of thermo-responsive polymers and the role of cosolvency. The findings provide insights into the molecular mechanisms underlying cosolvency and offer specific predictions for future experimental investigations. The study also presents a more rigorous analysis of the Flory-Huggins free energy theory in the context of polymer systems. Data Collection and Analysis Procedures: The data for this study was collected through Monte Carlo computer simulations and molecular dynamic simulations. The interactions between the polymer, solvent, and cosolvent were analyzed using the Flory-Huggins mean field theory. Machine learning techniques were employed to enhance the accuracy of the simulations. The collected data was then analyzed to determine the impact of cosolvent volume fractions on the radii of gyration of the polymer. Question Addressed: The research addressed the question of how cosolvency affects the behavior of long-chain polymers. Specifically, the study aimed to investigate the interactions between the polymer, solvent, and cosolvent under different volume fractions and understand the resulting changes in the radii of gyration. Conclusion: In conclusion, this study utilized theoretical modeling and computer simulations to investigate the phenomenon of cosolvency in long-chain polymers. The findings suggest that moderate cosolvent volume fractions can lead to improved miscibility, as indicated by higher radii of gyration. These insights contribute to a better understanding of the molecular mechanisms underlying cosolvency in polymer systems and provide predictions for future experimental studies. The research also enhances the theoretical analysis of the Flory-Huggins free energy theory.Keywords: molecular modelling, flory-huggins, cosolvency, stimuli-responsive polymers
Procedia PDF Downloads 681494 Underwater Image Enhancement and Reconstruction Using CNN and the MultiUNet Model
Authors: Snehal G. Teli, R. J. Shelke
Abstract:
CNN and MultiUNet models are the framework for the proposed method for enhancing and reconstructing underwater images. Multiscale merging of features and regeneration are both performed by the MultiUNet. CNN collects relevant features. Extensive tests on benchmark datasets show that the proposed strategy performs better than the latest methods. As a result of this work, underwater images can be represented and interpreted in a number of underwater applications with greater clarity. This strategy will advance underwater exploration and marine research by enhancing real-time underwater image processing systems, underwater robotic vision, and underwater surveillance.Keywords: convolutional neural network, image enhancement, machine learning, multiunet, underwater images
Procedia PDF Downloads 741493 RA-Apriori: An Efficient and Faster MapReduce-Based Algorithm for Frequent Itemset Mining on Apache Flink
Authors: Sanjay Rathee, Arti Kashyap
Abstract:
Extraction of useful information from large datasets is one of the most important research problems. Association rule mining is one of the best methods for this purpose. Finding possible associations between items in large transaction based datasets (finding frequent patterns) is most important part of the association rule mining. There exist many algorithms to find frequent patterns but Apriori algorithm always remains a preferred choice due to its ease of implementation and natural tendency to be parallelized. Many single-machine based Apriori variants exist but massive amount of data available these days is above capacity of a single machine. Therefore, to meet the demands of this ever-growing huge data, there is a need of multiple machines based Apriori algorithm. For these types of distributed applications, MapReduce is a popular fault-tolerant framework. Hadoop is one of the best open-source software frameworks with MapReduce approach for distributed storage and distributed processing of huge datasets using clusters built from commodity hardware. However, heavy disk I/O operation at each iteration of a highly iterative algorithm like Apriori makes Hadoop inefficient. A number of MapReduce-based platforms are being developed for parallel computing in recent years. Among them, two platforms, namely, Spark and Flink have attracted a lot of attention because of their inbuilt support to distributed computations. Earlier we proposed a reduced- Apriori algorithm on Spark platform which outperforms parallel Apriori, one because of use of Spark and secondly because of the improvement we proposed in standard Apriori. Therefore, this work is a natural sequel of our work and targets on implementing, testing and benchmarking Apriori and Reduced-Apriori and our new algorithm ReducedAll-Apriori on Apache Flink and compares it with Spark implementation. Flink, a streaming dataflow engine, overcomes disk I/O bottlenecks in MapReduce, providing an ideal platform for distributed Apriori. Flink's pipelining based structure allows starting a next iteration as soon as partial results of earlier iteration are available. Therefore, there is no need to wait for all reducers result to start a next iteration. We conduct in-depth experiments to gain insight into the effectiveness, efficiency and scalability of the Apriori and RA-Apriori algorithm on Flink.Keywords: apriori, apache flink, Mapreduce, spark, Hadoop, R-Apriori, frequent itemset mining
Procedia PDF Downloads 2941492 Beyond Possibilities: Re-Reading Republican Ankara
Authors: Zelal Çınar
Abstract:
This paper aims to expose the effects of the ideological program of Turkish Republic on city planning, through the first plan of Ankara. As the new capital, Ankara was planned to be the ‘showcase’ of modern Turkey. It was to represent all new ideologies and the country’s cultural similarities with the west. At the same time it was to underline the national identity and independence of Turkish republic. To this end, a new plan for the capital was designed by German city planner Carl Christopher Lörcher. Diametrically opposed with the existing fabric of the city, this plan was built on the basis of papers and plans, on ideological aims. On the contrary, this paper argues that the city is a machine of possibilities, rather than a clear, materialized system.Keywords: architecture, ideology, modernization, urban planning
Procedia PDF Downloads 2701491 Health Status Monitoring of COVID-19 Patient's through Blood Tests and Naïve-Bayes
Authors: Carlos Arias-Alcaide, Cristina Soguero-Ruiz, Paloma Santos-Álvarez, Adrián García-Romero, Inmaculada Mora-Jiménez
Abstract:
Analysing clinical data with computers in such a way that have an impact on the practitioners’ workflow is a challenge nowadays. This paper provides a first approach for monitoring the health status of COVID-19 patients through the use of some biomarkers (blood tests) and the simplest Naïve Bayes classifier. Data of two Spanish hospitals were considered, showing the potential of our approach to estimate reasonable posterior probabilities even some days before the event.Keywords: Bayesian model, blood biomarkers, classification, health tracing, machine learning, posterior probability
Procedia PDF Downloads 2301490 An Alternative Credit Scoring System in China’s Consumer Lendingmarket: A System Based on Digital Footprint Data
Authors: Minjuan Sun
Abstract:
Ever since the late 1990s, China has experienced explosive growth in consumer lending, especially in short-term consumer loans, among which, the growth rate of non-bank lending has surpassed bank lending due to the development in financial technology. On the other hand, China does not have a universal credit scoring and registration system that can guide lenders during the processes of credit evaluation and risk control, for example, an individual’s bank credit records are not available for online lenders to see and vice versa. Given this context, the purpose of this paper is three-fold. First, we explore if and how alternative digital footprint data can be utilized to assess borrower’s creditworthiness. Then, we perform a comparative analysis of machine learning methods for the canonical problem of credit default prediction. Finally, we analyze, from an institutional point of view, the necessity of establishing a viable and nationally universal credit registration and scoring system utilizing online digital footprints, so that more people in China can have better access to the consumption loan market. Two different types of digital footprint data are utilized to match with bank’s loan default records. Each separately captures distinct dimensions of a person’s characteristics, such as his shopping patterns and certain aspects of his personality or inferred demographics revealed by social media features like profile image and nickname. We find both datasets can generate either acceptable or excellent prediction results, and different types of data tend to complement each other to get better performances. Typically, the traditional types of data banks normally use like income, occupation, and credit history, update over longer cycles, hence they can’t reflect more immediate changes, like the financial status changes caused by the business crisis; whereas digital footprints can update daily, weekly, or monthly, thus capable of providing a more comprehensive profile of the borrower’s credit capabilities and risks. From the empirical and quantitative examination, we believe digital footprints can become an alternative information source for creditworthiness assessment, because of their near-universal data coverage, and because they can by and large resolve the "thin-file" issue, due to the fact that digital footprints come in much larger volume and higher frequency.Keywords: credit score, digital footprint, Fintech, machine learning
Procedia PDF Downloads 1581489 IoT Continuous Monitoring Biochemical Oxygen Demand Wastewater Effluent Quality: Machine Learning Algorithms
Authors: Sergio Celaschi, Henrique Canavarro de Alencar, Claaudecir Biazoli
Abstract:
Effluent quality is of the highest priority for compliance with the permit limits of environmental protection agencies and ensures the protection of their local water system. Of the pollutants monitored, the biochemical oxygen demand (BOD) posed one of the greatest challenges. This work presents a solution for wastewater treatment plants - WWTP’s ability to react to different situations and meet treatment goals. Delayed BOD5 results from the lab take 7 to 8 analysis days, hindered the WWTP’s ability to react to different situations and meet treatment goals. Reducing BOD turnaround time from days to hours is our quest. Such a solution is based on a system of two BOD bioreactors associated with Digital Twin (DT) and Machine Learning (ML) methodologies via an Internet of Things (IoT) platform to monitor and control a WWTP to support decision making. DT is a virtual and dynamic replica of a production process. DT requires the ability to collect and store real-time sensor data related to the operating environment. Furthermore, it integrates and organizes the data on a digital platform and applies analytical models allowing a deeper understanding of the real process to catch sooner anomalies. In our system of continuous time monitoring of the BOD suppressed by the effluent treatment process, the DT algorithm for analyzing the data uses ML on a chemical kinetic parameterized model. The continuous BOD monitoring system, capable of providing results in a fraction of the time required by BOD5 analysis, is composed of two thermally isolated batch bioreactors. Each bioreactor contains input/output access to wastewater sample (influent and effluent), hydraulic conduction tubes, pumps, and valves for batch sample and dilution water, air supply for dissolved oxygen (DO) saturation, cooler/heater for sample thermal stability, optical ODO sensor based on fluorescence quenching, pH, ORP, temperature, and atmospheric pressure sensors, local PLC/CPU for TCP/IP data transmission interface. The dynamic BOD system monitoring range covers 2 mg/L < BOD < 2,000 mg/L. In addition to the BOD monitoring system, there are many other operational WWTP sensors. The CPU data is transmitted/received to/from the digital platform, which in turn performs analyses at periodic intervals, aiming to feed the learning process. BOD bulletins and their credibility intervals are made available in 12-hour intervals to web users. The chemical kinetics ML algorithm is composed of a coupled system of four first-order ordinary differential equations for the molar masses of DO, organic material present in the sample, biomass, and products (CO₂ and H₂O) of the reaction. This system is solved numerically linked to its initial conditions: DO (saturated) and initial products of the kinetic oxidation process; CO₂ = H₂0 = 0. The initial values for organic matter and biomass are estimated by the method of minimization of the mean square deviations. A real case of continuous monitoring of BOD wastewater effluent quality is being conducted by deploying an IoT application on a large wastewater purification system located in S. Paulo, Brazil.Keywords: effluent treatment, biochemical oxygen demand, continuous monitoring, IoT, machine learning
Procedia PDF Downloads 721488 An Algorithm Based on the Nonlinear Filter Generator for Speech Encryption
Authors: A. Belmeguenai, K. Mansouri, R. Djemili
Abstract:
This work present a new algorithm based on the nonlinear filter generator for speech encryption and decryption. The proposed algorithm consists on the use a linear feedback shift register (LFSR) whose polynomial is primitive and nonlinear Boolean function. The purpose of this system is to construct Keystream with good statistical properties, but also easily computable on a machine with limited capacity calculated. This proposed speech encryption scheme is very simple, highly efficient, and fast to implement the speech encryption and decryption. We conclude the paper by showing that this system can resist certain known attacks.Keywords: nonlinear filter generator, stream ciphers, speech encryption, security analysis
Procedia PDF Downloads 2941487 A Machine Learning-Assisted Crime and Threat Intelligence Hunter
Authors: Mohammad Shameel, Peter K. K. Loh, James H. Ng
Abstract:
Cybercrime is a new category of crime which poses a different challenge for crime investigators and incident responders. Attackers can mask their identities using a suite of tools and with the help of the deep web, which makes them difficult to track down. Scouring the deep web manually takes time and is inefficient. There is a growing need for a tool to scour the deep web to obtain useful evidence or intel automatically. In this paper, we will explain the background and motivation behind the research, present a survey of existing research on related tools, describe the design of our own crime/threat intelligence hunting tool prototype, demonstrate its capability with some test cases and lastly, conclude with proposals for future enhancements.Keywords: cybercrime, deep web, threat intelligence, web crawler
Procedia PDF Downloads 1721486 Mood Recognition Using Indian Music
Authors: Vishwa Joshi
Abstract:
The study of mood recognition in the field of music has gained a lot of momentum in the recent years with machine learning and data mining techniques and many audio features contributing considerably to analyze and identify the relation of mood plus music. In this paper we consider the same idea forward and come up with making an effort to build a system for automatic recognition of mood underlying the audio song’s clips by mining their audio features and have evaluated several data classification algorithms in order to learn, train and test the model describing the moods of these audio songs and developed an open source framework. Before classification, Preprocessing and Feature Extraction phase is necessary for removing noise and gathering features respectively.Keywords: music, mood, features, classification
Procedia PDF Downloads 4931485 Imputation Technique for Feature Selection in Microarray Data Set
Authors: Younies Saeed Hassan Mahmoud, Mai Mabrouk, Elsayed Sallam
Abstract:
Analysing DNA microarray data sets is a great challenge, which faces the bioinformaticians due to the complication of using statistical and machine learning techniques. The challenge will be doubled if the microarray data sets contain missing data, which happens regularly because these techniques cannot deal with missing data. One of the most important data analysis process on the microarray data set is feature selection. This process finds the most important genes that affect certain disease. In this paper, we introduce a technique for imputing the missing data in microarray data sets while performing feature selection.Keywords: DNA microarray, feature selection, missing data, bioinformatics
Procedia PDF Downloads 5721484 The Introduction of Modern Diagnostic Techniques and It Impact on Local Garages
Authors: Mustapha Majid
Abstract:
Gone were the days when technicians/mechanics will have to spend too much time trying to identify a mechanical fault and rectify the problem. Now the emphasis is on the use of Automobile diagnosing Equipment through the use of computers and special software. An investigation conducted at Tamale Metropolis and Accra in the Northern and Greater Accra regions of Ghana, respectively. Methodology for data gathering were; questionnaires, physical observation, interviews, and newspaper. The study revealed that majority of mechanics lack computer skills which can enable them use diagnosis tools such as Exhaust Gas Analyzer, Scan Tools, Electronic Wheel Balancing machine, etc.Keywords: diagnosing, local garages and modern garages, lack of knowledge of diagnosing posing an existential threat, training of local mechanics
Procedia PDF Downloads 1591483 Development of the Accelerator Applied to an Early Stage High-Strength Shotcrete
Authors: Ayanori Sugiyama, Takahisa Hanei, Yasuhide Higo
Abstract:
Domestic demand for the construction of tunnels has been increasing in recent years in Japan. To meet this demand, various construction materials and construction methods have been developed to attain higher strength, reduction of negative impact on the environment and improvement for working conditions. In this report, we would like to introduce the newly developed shotcrete with superior hardening properties which were tested through the actual machine scale and its workability and strength development were evaluated. As a result, this new tunnel construction method was found to achieve higher workability and quicker strength development in only a couple of minutes.Keywords: accelerator, shotcrete, tunnel, high-strength
Procedia PDF Downloads 3171482 Loading Forces following Addition of 5% Cu in Nickel-Titanium Alloy Used for Orthodontics
Authors: Aphinan Phukaoluan, Surachai Dechkunakorn, Niwat Anuwongnukroh, Anak Khantachawana, Pongpan Kaewtathip, Julathep Kajornchaiyakul, Wassana Wichai
Abstract:
Aims: This study aims to address the amount of force delivered by a NiTiCu orthodontic wire with a ternary composition ratio of 46.0 Ni: 49.0 Ti: 5.0 Cu and to compare the results with a commercial NiTiCu 35 °C orthodontic archwire. Materials and Methods: Nickel (purity 99.9%), Titanium (purity 99.9%), and Copper (purity 99.9%) were used in this study with the atomic weight ratio 46.0 Ni: 49.0 Ti: 5.0 Cu. The elements were melted to form an alloy using an electrolytic arc furnace in argon gas atmosphere and homogenized at 800 °C for 1 hr. The alloys were subsequently sliced into thin plates (1.5mm) by EDM wire cutting machine to obtain the specimens and were cold-rolled with 30% followed by heat treatment in a furnace at 400 °C for 1 hour. Then, the three newly fabricated NiTiCu specimens were cut in nearly identical wire sizes of 0.016 inch x0.022 inch. Commercial preformed Ormco NiTiCu35 °C archwire with size 0.016 inch x 0.022 inches were used for comparative purposes. Three-point bending test was performed using a Universal Testing Machine to investigate the force of the load-deflection curve at oral temperature (36 °C+ 1) with deflection points at 0.25, 0.5, 0.75, 1.0. 1.25, and 1.5 mm. Descriptive statistics was used to evaluate each variables and independent t-test was used to analyze the differences between the groups. Results: Both NiTiCu wires presented typical superelastic properties as observed from the load-deflection curve. The average force was 341.70 g for loading, and 264.18 g for unloading for 46.0 Ni: 49.0 Ti: 5.0 Cu wire. Similarly, the values were 299.88 g for loading, and 201.96 g for unloading of Ormco NiTiCu35°C. There were significant differences (p < 0.05) in mean loading and unloading forces between the two NiTiCu wires. The deflection forces in loading and unloading force for Ormco NiTiCu at each point were less than 46.0 Ni: 49.0 Ti: 5.0 Cu wire, except at the deflection point of 0.25mm. Regarding the force difference between each deflection point of loading and unloading force, Ormco NiTiCu35 °C exerted less force than 46.0 Ni: 49.0 Ti: 5.0 Cu wire, except at difference deflection at 1.5-1.25 mm of unloading force. However, there were still within the acceptable limits for orthodontic use. Conclusion: The fabricated ternary alloy of 46.0 Ni: 49.0 Ti: 5.0 Cu (atomic weight) with 30% reduction and heat treatment at 400°C for 1 hr. and Ormco 35 °C NiTiCu presented the characteristics of the shape memory in their wire form. The unloading forces of both NiTiCu wires were in the range of orthodontic use. This should be a good foundation for further studies towards development of new orthodontic NiTiCu archwires.Keywords: loading force, ternary alloy, NiTiCu, shape memory, orthodontic wire
Procedia PDF Downloads 2831481 Smart Irrigation Systems and Website: Based Platform for Farmer Welfare
Authors: Anusha Jain, Santosh Vishwanathan, Praveen K. Gupta, Shwetha S., Kavitha S. N.
Abstract:
Agriculture has a major impact on the Indian economy, with the highest employment ratio than any sector of the country. Currently, most of the traditional agricultural practices and farming methods are manual, which results in farmers not realizing their maximum productivity often due to increasing in labour cost, inefficient use of water sources leading to wastage of water, inadequate soil moisture content, subsequently leading to food insecurity of the country. This research paper aims to solve this problem by developing a full-fledged web application-based platform that has the capacity to associate itself with a Microcontroller-based Automated Irrigation System which schedules the irrigation of crops based on real-time soil moisture content employing soil moisture sensors centric to the crop’s requirements using WSN (Wireless Sensor Networks) and M2M (Machine To Machine Communication) concepts, thus optimizing the use of the available limited water resource, thereby maximizing the crop yield. This robust automated irrigation system provides end-to-end automation of Irrigation of crops at any circumstances such as droughts, irregular rainfall patterns, extreme weather conditions, etc. This platform will also be capable of achieving a nationwide united farming community and ensuring the welfare of farmers. This platform is designed to equip farmers with prerequisite knowledge on tech and the latest farming practices in general. In order to achieve this, the MailChimp mailing service is used through which interested farmers/individuals' email id will be recorded and curated articles on innovations in the world of agriculture will be provided to the farmers via e-mail. In this proposed system, service is enabled on the platform where nearby crop vendors will be able to enter their pickup locations, accepted prices and other relevant information. This will enable farmers to choose their vendors wisely. Along with this, we have created a blogging service that will enable farmers and agricultural enthusiasts to share experiences, helpful knowledge, hardships, etc., with the entire farming community. These are some of the many features that the platform has to offer.Keywords: WSN (wireless sensor networks), M2M (M/C to M/C communication), automation, irrigation system, sustainability, SAAS (software as a service), soil moisture sensor
Procedia PDF Downloads 1281480 Wind Generator Control in Isolated Site
Authors: Glaoui Hachemi
Abstract:
Wind has been proven as a cost effective and reliable energy source. Technological advancements over the last years have placed wind energy in a firm position to compete with conventional power generation technologies. Algeria has a vast uninhabited land area where the south (desert) represents the greatest part with considerable wind regime. In this paper, an analysis of wind energy utilization as a viable energy substitute in six selected sites widely distributed all over the south of Algeria is presented. In this presentation, wind speed frequency distributions data obtained from the Algerian Meteorological Office are used to calculate the average wind speed and the available wind power. The annual energy produced by the Fuhrlander FL 30 wind machine is obtained using two methods. The analysis shows that in the southern Algeria, at 10 m height, the available wind power was found to vary between 160 and 280 W/m2, except for Tamanrasset. The highest potential wind power was found at Adrar, with 88 % of the time the wind speed is above 3 m/s. Besides, it is found that the annual wind energy generated by that machine lie between 33 and 61 MWh, except for Tamanrasset, with only 17 MWh. Since the wind turbines are usually installed at a height greater than 10 m, an increased output of wind energy can be expected. However, the wind resource appears to be suitable for power production on the south and it could provide a viable substitute to diesel oil for irrigation pumps and electricity generation. In this paper, a model of the wind turbine (WT) with permanent magnet generator (PMSG) and its associated controllers is presented. The increase of wind power penetration in power systems has meant that conventional power plants are gradually being replaced by wind farms. In fact, today wind farms are required to actively participate in power system operation in the same way as conventional power plants. In fact, power system operators have revised the grid connection requirements for wind turbines and wind farms, and now demand that these installations be able to carry out more or less the same control tasks as conventional power plants. For dynamic power system simulations, the PMSG wind turbine model includes an aerodynamic rotor model, a lumped mass representation of the drive train system and generator model. In this paper, we propose a model with an implementation in MATLAB / Simulink, each of the system components off-grid small wind turbines.Keywords: windgenerator systems, permanent magnet synchronous generator (PMSG), wind turbine (WT) modeling, MATLAB simulink environment
Procedia PDF Downloads 3361479 Parasitic Capacitance Modeling in Pulse Transformer Using FEA
Authors: D. Habibinia, M. R. Feyzi
Abstract:
Nowadays, specialized software is vastly used to verify the performance of an electric machine prototype by evaluating a model of the system. These models mainly consist of electrical parameters such as inductances and resistances. However, when the operating frequency of the device is above one kHz, the effect of parasitic capacitances grows significantly. In this paper, a software-based procedure is introduced to model these capacitances within the electromagnetic simulation of the device. The case study is a high-frequency high-voltage pulse transformer. The Finite Element Analysis (FEA) software with coupled field analysis is used in this method.Keywords: finite element analysis, parasitic capacitance, pulse transformer, high frequency
Procedia PDF Downloads 5131478 Interpretation of the Russia-Ukraine 2022 War via N-Gram Analysis
Authors: Elcin Timur Cakmak, Ayse Oguzlar
Abstract:
This study presents the results of the tweets sent by Twitter users on social media about the Russia-Ukraine war by bigram and trigram methods. On February 24, 2022, Russian President Vladimir Putin declared a military operation against Ukraine, and all eyes were turned to this war. Many people living in Russia and Ukraine reacted to this war and protested and also expressed their deep concern about this war as they felt the safety of their families and their futures were at stake. Most people, especially those living in Russia and Ukraine, express their views on the war in different ways. The most popular way to do this is through social media. Many people prefer to convey their feelings using Twitter, one of the most frequently used social media tools. Since the beginning of the war, it is seen that there have been thousands of tweets about the war from many countries of the world on Twitter. These tweets accumulated in data sources are extracted using various codes for analysis through Twitter API and analysed by Python programming language. The aim of the study is to find the word sequences in these tweets by the n-gram method, which is known for its widespread use in computational linguistics and natural language processing. The tweet language used in the study is English. The data set consists of the data obtained from Twitter between February 24, 2022, and April 24, 2022. The tweets obtained from Twitter using the #ukraine, #russia, #war, #putin, #zelensky hashtags together were captured as raw data, and the remaining tweets were included in the analysis stage after they were cleaned through the preprocessing stage. In the data analysis part, the sentiments are found to present what people send as a message about the war on Twitter. Regarding this, negative messages make up the majority of all the tweets as a ratio of %63,6. Furthermore, the most frequently used bigram and trigram word groups are found. Regarding the results, the most frequently used word groups are “he, is”, “I, do”, “I, am” for bigrams. Also, the most frequently used word groups are “I, do, not”, “I, am, not”, “I, can, not” for trigrams. In the machine learning phase, the accuracy of classifications is measured by Classification and Regression Trees (CART) and Naïve Bayes (NB) algorithms. The algorithms are used separately for bigrams and trigrams. We gained the highest accuracy and F-measure values by the NB algorithm and the highest precision and recall values by the CART algorithm for bigrams. On the other hand, the highest values for accuracy, precision, and F-measure values are achieved by the CART algorithm, and the highest value for the recall is gained by NB for trigrams.Keywords: classification algorithms, machine learning, sentiment analysis, Twitter
Procedia PDF Downloads 731477 Exploring the Synergistic Effects of Aerobic Exercise and Cinnamon Extract on Metabolic Markers in Insulin-Resistant Rats through Advanced Machine Learning and Deep Learning Techniques
Authors: Masoomeh Alsadat Mirshafaei
Abstract:
The present study aims to explore the effect of an 8-week aerobic training regimen combined with cinnamon extract on serum irisin and leptin levels in insulin-resistant rats. Additionally, this research leverages various machine learning (ML) and deep learning (DL) algorithms to model the complex interdependencies between exercise, nutrition, and metabolic markers, offering a groundbreaking approach to obesity and diabetes research. Forty-eight Wistar rats were selected and randomly divided into four groups: control, training, cinnamon, and training cinnamon. The training protocol was conducted over 8 weeks, with sessions 5 days a week at 75-80% VO2 max. The cinnamon and training-cinnamon groups were injected with 200 ml/kg/day of cinnamon extract. Data analysis included serum data, dietary intake, exercise intensity, and metabolic response variables, with blood samples collected 72 hours after the final training session. The dataset was analyzed using one-way ANOVA (P<0.05) and fed into various ML and DL models, including Support Vector Machines (SVM), Random Forest (RF), and Convolutional Neural Networks (CNN). Traditional statistical methods indicated that aerobic training, with and without cinnamon extract, significantly increased serum irisin and decreased leptin levels. Among the algorithms, the CNN model provided superior performance in identifying specific interactions between cinnamon extract concentration and exercise intensity, optimizing the increase in irisin and the decrease in leptin. The CNN model achieved an accuracy of 92%, outperforming the SVM (85%) and RF (88%) models in predicting the optimal conditions for metabolic marker improvements. The study demonstrated that advanced ML and DL techniques could uncover nuanced relationships and potential cellular responses to exercise and dietary supplements, which is not evident through traditional methods. These findings advocate for the integration of advanced analytical techniques in nutritional science and exercise physiology, paving the way for personalized health interventions in managing obesity and diabetes.Keywords: aerobic training, cinnamon extract, insulin resistance, irisin, leptin, convolutional neural networks, exercise physiology, support vector machines, random forest
Procedia PDF Downloads 361476 On Improving Breast Cancer Prediction Using GRNN-CP
Authors: Kefaya Qaddoum
Abstract:
The aim of this study is to predict breast cancer and to construct a supportive model that will stimulate a more reliable prediction as a factor that is fundamental for public health. In this study, we utilize general regression neural networks (GRNN) to replace the normal predictions with prediction periods to achieve a reasonable percentage of confidence. The mechanism employed here utilises a machine learning system called conformal prediction (CP), in order to assign consistent confidence measures to predictions, which are combined with GRNN. We apply the resulting algorithm to the problem of breast cancer diagnosis. The results show that the prediction constructed by this method is reasonable and could be useful in practice.Keywords: neural network, conformal prediction, cancer classification, regression
Procedia PDF Downloads 2901475 Regional Pole Placement by Saturated Power System Stabilizers
Authors: Hisham M. Soliman, Hassan Yousef
Abstract:
This manuscript presents new results on design saturated power system stabilizers (PSS) to assign system poles within a desired region for achieving good dynamic performance. The regional pole placement is accomplished against model uncertainties caused by different load conditions. The design is based on a sufficient condition in the form of linear matrix inequalities (LMI) which forces the saturated nonlinear controller to lie within the linear zone. The controller effectiveness is demonstrated on a single machine infinite bus system.Keywords: power system stabilizer, saturated control, robust control, regional pole placement, linear matrix inequality (LMI)
Procedia PDF Downloads 5621474 Switching Losses in Power Electronic Converter of Switched Reluctance Motor
Authors: Ali Asghar Memon
Abstract:
A cautious and astute selection of switching devices used in power electronic converters of a switched reluctance (SR) motor is required. It is a matter of choice of best switching devices with respect to their switching ability rather than fulfilling the number of switches. This paper highlights the computational determination of switching losses comprising of switch-on, switch-off and conduction losses respectively by using experimental data in simulation model of a SR machine. The finding of this research is helpful for proper selection of electronic switches and suitable converter topology for switched reluctance motor.Keywords: converter, operating modes, switched reluctance motor, switching losses
Procedia PDF Downloads 5041473 Knitting Stitches’ Manipulation for Catenary Textile Structures
Authors: Virginia Melnyk
Abstract:
This paper explores the design for catenary structure using knitted textiles. Using the advantages of Grasshopper and Kangaroo parametric software to simulate and pre-design an overall form, the design is then translated to a pattern that can be made with hand manipulated stitches on a knitting machine. The textile takes advantage of the structure of knitted materials and the ability for it to stretch. Using different types of stitches to control the amount of stretch that can occur in portions of the textile generates an overall formal design. The textile is then hardened in an upside-down hanging position and then flipped right-side-up. This then becomes a structural catenary form. The resulting design is used as a small Cat House for a cat to sit inside and climb on top of.Keywords: architectural materials, catenary structures, knitting fabrication, textile design
Procedia PDF Downloads 1811472 Awarding Copyright Protection to Artificial Intelligence Technology for its Original Works: The New Way Forward
Authors: Vibhuti Amarnath Madhu Agrawal
Abstract:
Artificial Intelligence (AI) and Intellectual Property are two emerging concepts that are growing at a fast pace and have the potential of having a huge impact on the economy in the coming times. In simple words, AI is nothing but work done by a machine without any human intervention. It is a coded software embedded in a machine, which over a period of time, develops its own intelligence and begins to take its own decisions and judgments by studying various patterns of how people think, react to situations and perform tasks, among others. Intellectual Property, especially Copyright Law, on the other hand, protects the rights of individuals and Companies in content creation that primarily deals with application of intellect, originality and expression of the same in some tangible form. According to some of the reports shared by the media lately, ChatGPT, an AI powered Chatbot, has been involved in the creation of a wide variety of original content, including but not limited to essays, emails, plays and poetry. Besides, there have been instances wherein AI technology has given creative inputs for background, lights and costumes, among others, for films. Copyright Law offers protection to all of these different kinds of content and much more. Considering the two key parameters of Copyright – application of intellect and originality, the question, therefore, arises that will awarding Copyright protection to a person who has not directly invested his / her intellect in the creation of that content go against the basic spirit of Copyright laws? This study aims to analyze the current scenario and provide answers to the following questions: a. If the content generated by AI technology satisfies the basic criteria of originality and expression in a tangible form, why should such content be denied protection in the name of its creator, i.e., the specific AI tool / technology? B. Considering the increasing role and development of AI technology in our lives, should it be given the status of a ‘Legal Person’ in law? C. If yes, what should be the modalities of awarding protection to works of such Legal Person and management of the same? Considering the current trends and the pace at which AI is advancing, it is not very far when AI will start functioning autonomously in the creation of new works. Current data and opinions on this issue globally reflect that they are divided and lack uniformity. In order to fill in the existing gaps, data obtained from Copyright offices from the top economies of the world have been analyzed. The role and functioning of various Copyright Societies in these countries has been studied in detail. This paper provides a roadmap that can be adopted to satisfy various objectives, constraints and dynamic conditions related AI technology and its protection under Copyright Law.Keywords: artificial intelligence technology, copyright law, copyright societies, intellectual property
Procedia PDF Downloads 701471 Depth Estimation in DNN Using Stereo Thermal Image Pairs
Authors: Ahmet Faruk Akyuz, Hasan Sakir Bilge
Abstract:
Depth estimation using stereo images is a challenging problem in computer vision. Many different studies have been carried out to solve this problem. With advancing machine learning, tackling this problem is often done with neural network-based solutions. The images used in these studies are mostly in the visible spectrum. However, the need to use the Infrared (IR) spectrum for depth estimation has emerged because it gives better results than visible spectra in some conditions. At this point, we recommend using thermal-thermal (IR) image pairs for depth estimation. In this study, we used two well-known networks (PSMNet, FADNet) with minor modifications to demonstrate the viability of this idea.Keywords: thermal stereo matching, deep neural networks, CNN, Depth estimation
Procedia PDF Downloads 2781470 Market Index Trend Prediction using Deep Learning and Risk Analysis
Authors: Shervin Alaei, Reza Moradi
Abstract:
Trading in financial markets is subject to risks due to their high volatilities. Here, using an LSTM neural network, and by doing some risk-based feature engineering tasks, we developed a method that can accurately predict trends of the Tehran stock exchange market index from a few days ago. Our test results have shown that the proposed method with an average prediction accuracy of more than 94% is superior to the other common machine learning algorithms. To the best of our knowledge, this is the first work incorporating deep learning and risk factors to accurately predict market trends.Keywords: deep learning, LSTM, trend prediction, risk management, artificial neural networks
Procedia PDF Downloads 1541469 Application of Vector Representation for Revealing the Richness of Meaning of Facial Expressions
Authors: Carmel Sofer, Dan Vilenchik, Ron Dotsch, Galia Avidan
Abstract:
Studies investigating emotional facial expressions typically reveal consensus among observes regarding the meaning of basic expressions, whose number ranges between 6 to 15 emotional states. Given this limited number of discrete expressions, how is it that the human vocabulary of emotional states is so rich? The present study argues that perceivers use sequences of these discrete expressions as the basis for a much richer vocabulary of emotional states. Such mechanisms, in which a relatively small number of basic components is expanded to a much larger number of possible combinations of meanings, exist in other human communications modalities, such as spoken language and music. In these modalities, letters and notes, which serve as basic components of spoken language and music respectively, are temporally linked, resulting in the richness of expressions. In the current study, in each trial participants were presented with sequences of two images containing facial expression in different combinations sampled out of the eight static basic expressions (total 64; 8X8). In each trial, using single word participants were required to judge the 'state of mind' portrayed by the person whose face was presented. Utilizing word embedding methods (Global Vectors for Word Representation), employed in the field of Natural Language Processing, and relying on machine learning computational methods, it was found that the perceived meanings of the sequences of facial expressions were a weighted average of the single expressions comprising them, resulting in 22 new emotional states, in addition to the eight, classic basic expressions. An interaction between the first and the second expression in each sequence indicated that every single facial expression modulated the effect of the other facial expression thus leading to a different interpretation ascribed to the sequence as a whole. These findings suggest that the vocabulary of emotional states conveyed by facial expressions is not restricted to the (small) number of discrete facial expressions. Rather, the vocabulary is rich, as it results from combinations of these expressions. In addition, present research suggests that using word embedding in social perception studies, can be a powerful, accurate and efficient tool, to capture explicit and implicit perceptions and intentions. Acknowledgment: The study was supported by a grant from the Ministry of Defense in Israel to GA and CS. CS is also supported by the ABC initiative in Ben-Gurion University of the Negev.Keywords: Glove, face perception, facial expression perception. , facial expression production, machine learning, word embedding, word2vec
Procedia PDF Downloads 175