Search results for: dimensional model
16748 Model Order Reduction for Frequency Response and Effect of Order of Method for Matching Condition
Authors: Aref Ghafouri, Mohammad javad Mollakazemi, Farhad Asadi
Abstract:
In this paper, model order reduction method is used for approximation in linear and nonlinearity aspects in some experimental data. This method can be used for obtaining offline reduced model for approximation of experimental data and can produce and follow the data and order of system and also it can match to experimental data in some frequency ratios. In this study, the method is compared in different experimental data and influence of choosing of order of the model reduction for obtaining the best and sufficient matching condition for following the data is investigated in format of imaginary and reality part of the frequency response curve and finally the effect and important parameter of number of order reduction in nonlinear experimental data is explained further.Keywords: frequency response, order of model reduction, frequency matching condition, nonlinear experimental data
Procedia PDF Downloads 40416747 Nonlinear Modeling of the PEMFC Based on NNARX Approach
Authors: Shan-Jen Cheng, Te-Jen Chang, Kuang-Hsiung Tan, Shou-Ling Kuo
Abstract:
Polymer Electrolyte Membrane Fuel Cell (PEMFC) is such a time-vary nonlinear dynamic system. The traditional linear modeling approach is hard to estimate structure correctly of PEMFC system. From this reason, this paper presents a nonlinear modeling of the PEMFC using Neural Network Auto-regressive model with eXogenous inputs (NNARX) approach. The multilayer perception (MLP) network is applied to evaluate the structure of the NNARX model of PEMFC. The validity and accuracy of NNARX model are tested by one step ahead relating output voltage to input current from measured experimental of PEMFC. The results show that the obtained nonlinear NNARX model can efficiently approximate the dynamic mode of the PEMFC and model output and system measured output consistently.Keywords: PEMFC, neural network, nonlinear modeling, NNARX
Procedia PDF Downloads 38116746 The Profit Trend of Cosmetics Products Using Bootstrap Edgeworth Approximation
Authors: Edlira Donefski, Lorenc Ekonomi, Tina Donefski
Abstract:
Edgeworth approximation is one of the most important statistical methods that has a considered contribution in the reduction of the sum of standard deviation of the independent variables’ coefficients in a Quantile Regression Model. This model estimates the conditional median or other quantiles. In this paper, we have applied approximating statistical methods in an economical problem. We have created and generated a quantile regression model to see how the profit gained is connected with the realized sales of the cosmetic products in a real data, taken from a local business. The Linear Regression of the generated profit and the realized sales was not free of autocorrelation and heteroscedasticity, so this is the reason that we have used this model instead of Linear Regression. Our aim is to analyze in more details the relation between the variables taken into study: the profit and the finalized sales and how to minimize the standard errors of the independent variable involved in this study, the level of realized sales. The statistical methods that we have applied in our work are Edgeworth Approximation for Independent and Identical distributed (IID) cases, Bootstrap version of the Model and the Edgeworth approximation for Bootstrap Quantile Regression Model. The graphics and the results that we have presented here identify the best approximating model of our study.Keywords: bootstrap, edgeworth approximation, IID, quantile
Procedia PDF Downloads 15916745 A Location-Allocation-Routing Model for a Home Health Care Supply Chain Problem
Authors: Amir Mohammad Fathollahi Fard, Mostafa Hajiaghaei-Keshteli, Mohammad Mahdi Paydar
Abstract:
With increasing life expectancy in developed countries, the role of home care services is highlighted by both academia and industrial contributors in Home Health Care Supply Chain (HHCSC) companies. The main decisions in such supply chain systems are the location of pharmacies, the allocation of patients to these pharmacies and also the routing and scheduling decisions of nurses to visit their patients. In this study, for the first time, an integrated model is proposed to consist of all preliminary and necessary decisions in these companies, namely, location-allocation-routing model. This model is a type of NP-hard one. Therefore, an Imperialist Competitive Algorithm (ICA) is utilized to solve the model, especially in large sizes. Results confirm the efficiency of the developed model for HHCSC companies as well as the performance of employed ICA.Keywords: home health care supply chain, location-allocation-routing problem, imperialist competitive algorithm, optimization
Procedia PDF Downloads 39716744 Teachers Engagement to Teaching: Exploring Australian Teachers’ Attribute Constructs of Resilience, Adaptability, Commitment, Self/Collective Efficacy Beliefs
Authors: Lynn Sheridan, Dennis Alonzo, Hoa Nguyen, Andy Gao, Tracy Durksen
Abstract:
Disruptions to teaching (e.g., COVID-related) have increased work demands for teachers. There is an opportunity for research to explore evidence-informed steps to support teachers. Collective evidence informs data on teachers’ personal attributes (e.g., self-efficacy beliefs) in the workplace are seen to promote success in teaching and support teacher engagement. Teacher engagement plays a role in students’ learning and teachers’ effectiveness. Engaged teachers are better at overcoming work-related stress, burnout and are more likely to take on active roles. Teachers’ commitment is influenced by a host of personal (e.g., teacher well-being) and environmental factors (e.g., job stresses). The job demands-resources model provided a conceptual basis for examining how teachers’ well-being, and is influenced by job demands and job resources. Job demands potentially evoke strain and exceed the employee’s capability to adapt. Job resources entail what the job offers to individual teachers (e.g., organisational support), helping to reduce job demands. The application of the job demands-resources model involves gathering an evidence-base of and connection to personal attributes (job resources). The study explored the association between constructs (resilience, adaptability, commitment, self/collective efficacy) and a teacher’s engagement with the job. The paper sought to elaborate on the model and determine the associations between key constructs of well-being (resilience, adaptability), commitment, and motivation (self and collective-efficacy beliefs) to teachers’ engagement in teaching. Data collection involved online a multi-dimensional instrument using validated items distributed from 2020-2022. The instrument was designed to identify construct relationships. The participant number was 170. Data Analysis: The reliability coefficients, means, standard deviations, skewness, and kurtosis statistics for the six variables were completed. All scales have good reliability coefficients (.72-.96). A confirmatory factor analysis (CFA) and structural equation model (SEM) were performed to provide measurement support and to obtain latent correlations among factors. The final analysis was performed using structural equation modelling. Several fit indices were used to evaluate the model fit, including chi-square statistics and root mean square error of approximation. The CFA and SEM analysis was performed. The correlations of constructs indicated positive correlations exist, with the highest found between teacher engagement and resilience (r=.80) and the lowest between teacher adaptability and collective teacher efficacy (r=.22). Given the associations; we proceeded with CFA. The CFA yielded adequate fit: CFA fit: X (270, 1019) = 1836.79, p < .001, RMSEA = .04, and CFI = .94, TLI = .93 and SRMR = .04. All values were within the threshold values, indicating a good model fit. Results indicate that increasing teacher self-efficacy beliefs will increase a teacher’s level of engagement; that teacher ‘adaptability and resilience are positively associated with self-efficacy beliefs, as are collective teacher efficacy beliefs. Implications for school leaders and school systems: 1. investing in increasing teachers’ sense of efficacy beliefs to manage work demands; 2. leadership approaches can enhance teachers' adaptability and resilience; and 3. a culture of collective efficacy support. Preparing teachers for now and in the future offers an important reminder to policymakers and school leaders on the importance of supporting teachers’ personal attributes when faced with the challenging demands of the job.Keywords: collective teacher efficacy, teacher self-efficacy, job demands, teacher engagement
Procedia PDF Downloads 12816743 Efficient Frequent Itemset Mining Methods over Real-Time Spatial Big Data
Authors: Hamdi Sana, Emna Bouazizi, Sami Faiz
Abstract:
In recent years, there is a huge increase in the use of spatio-temporal applications where data and queries are continuously moving. As a result, the need to process real-time spatio-temporal data seems clear and real-time stream data management becomes a hot topic. Sliding window model and frequent itemset mining over dynamic data are the most important problems in the context of data mining. Thus, sliding window model for frequent itemset mining is a widely used model for data stream mining due to its emphasis on recent data and its bounded memory requirement. These methods use the traditional transaction-based sliding window model where the window size is based on a fixed number of transactions. Actually, this model supposes that all transactions have a constant rate which is not suited for real-time applications. And the use of this model in such applications endangers their performance. Based on these observations, this paper relaxes the notion of window size and proposes the use of a timestamp-based sliding window model. In our proposed frequent itemset mining algorithm, support conditions are used to differentiate frequents and infrequent patterns. Thereafter, a tree is developed to incrementally maintain the essential information. We evaluate our contribution. The preliminary results are quite promising.Keywords: real-time spatial big data, frequent itemset, transaction-based sliding window model, timestamp-based sliding window model, weighted frequent patterns, tree, stream query
Procedia PDF Downloads 16216742 Masked Candlestick Model: A Pre-Trained Model for Trading Prediction
Authors: Ling Qi, Matloob Khushi, Josiah Poon
Abstract:
This paper introduces a pre-trained Masked Candlestick Model (MCM) for trading time-series data. The pre-trained model is based on three core designs. First, we convert trading price data at each data point as a set of normalized elements and produce embeddings of each element. Second, we generate a masked sequence of such embedded elements as inputs for self-supervised learning. Third, we use the encoder mechanism from the transformer to train the inputs. The masked model learns the contextual relations among the sequence of embedded elements, which can aid downstream classification tasks. To evaluate the performance of the pre-trained model, we fine-tune MCM for three different downstream classification tasks to predict future price trends. The fine-tuned models achieved better accuracy rates for all three tasks than the baseline models. To better analyze the effectiveness of MCM, we test the same architecture for three currency pairs, namely EUR/GBP, AUD/USD, and EUR/JPY. The experimentation results demonstrate MCM’s effectiveness on all three currency pairs and indicate the MCM’s capability for signal extraction from trading data.Keywords: masked language model, transformer, time series prediction, trading prediction, embedding, transfer learning, self-supervised learning
Procedia PDF Downloads 12816741 Conditions for Model Matching of Switched Asynchronous Sequential Machines with Output Feedback
Authors: Jung–Min Yang
Abstract:
Solvability of the model matching problem for input/output switched asynchronous sequential machines is discussed in this paper. The control objective is to determine the existence condition and design algorithm for a corrective controller that can match the stable-state behavior of the closed-loop system to that of a reference model. Switching operations and correction procedures are incorporated using output feedback so that the controlled switched machine can show the desired input/output behavior. A matrix expression is presented to address reachability of switched asynchronous sequential machines with output equivalence with respect to a model. The presented reachability condition for the controller design is validated in a simple example.Keywords: asynchronous sequential machines, corrective control, model matching, input/output control
Procedia PDF Downloads 34216740 Defining a Holistic Approach for Model-Based System Engineering: Paradigm and Modeling Requirements
Authors: Hycham Aboutaleb, Bruno Monsuez
Abstract:
Current systems complexity has reached a degree that requires addressing conception and design issues while taking into account all the necessary aspects. Therefore, one of the main challenges is the way complex systems are specified and designed. The exponential growing effort, cost and time investment of complex systems in modeling phase emphasize the need for a paradigm, a framework and a environment to handle the system model complexity. For that, it is necessary to understand the expectations of the human user of the model and his limits. This paper presents a generic framework for designing complex systems, highlights the requirements a system model needs to fulfill to meet human user expectations, and defines the refined functional as well as non functional requirements modeling tools needs to meet to be useful in model-based system engineering.Keywords: system modeling, modeling language, modeling requirements, framework
Procedia PDF Downloads 53216739 Ambiguity Resolution for Ground-based Pulse Doppler Radars Using Multiple Medium Pulse Repetition Frequency
Authors: Khue Nguyen Dinh, Loi Nguyen Van, Thanh Nguyen Nhu
Abstract:
In this paper, we propose an adaptive method to resolve ambiguities and a ghost target removal process to extract targets detected by a ground-based pulse-Doppler radar using medium pulse repetition frequency (PRF) waveforms. The ambiguity resolution method is an adaptive implementation of the coincidence algorithm, which is implemented on a two-dimensional (2D) range-velocity matrix to resolve range and velocity ambiguities simultaneously, with a proposed clustering filter to enhance the anti-error ability of the system. Here we consider the scenario of multiple target environments. The ghost target removal process, which is based on the power after Doppler processing, is proposed to mitigate ghosting detections to enhance the performance of ground-based radars using a short PRF schedule in multiple target environments. Simulation results on a ground-based pulsed Doppler radar model will be presented to show the effectiveness of the proposed approach.Keywords: ambiguity resolution, coincidence algorithm, medium PRF, ghosting removal
Procedia PDF Downloads 15216738 A Stochastic Analytic Hierarchy Process Based Weighting Model for Sustainability Measurement in an Organization
Authors: Faramarz Khosravi, Gokhan Izbirak
Abstract:
A weighted statistical stochastic based Analytical Hierarchy Process (AHP) model for modeling the potential barriers and enablers of sustainability for measuring and assessing the sustainability level is proposed. For context-dependent potential barriers and enablers, the proposed model takes the basis of the properties of the variables describing the sustainability functions and was developed into a realistic analytical model for the sustainable behavior of an organization. This thus serves as a means for measuring the sustainability of the organization. The main focus of this paper was the application of the AHP tool in a statistically-based model for measuring sustainability. Hence a strong weighted stochastic AHP based procedure was achieved. A case study scenario of a widely reported major Canadian electric utility was adopted to demonstrate the applicability of the developed model and comparatively examined its results with those of an equal-weighted model method. Variations in the sustainability of a company, as fluctuations, were figured out during the time. In the results obtained, sustainability index for successive years changed form 73.12%, 79.02%, 74.31%, 76.65%, 80.49%, 79.81%, 79.83% to more exact values 73.32%, 77.72%, 76.76%, 79.41%, 81.93%, 79.72%, and 80,45% according to priorities of factors that have found by expert views, respectively. By obtaining relatively necessary informative measurement indicators, the model can practically and effectively evaluate the sustainability extent of any organization and also to determine fluctuations in the organization over time.Keywords: AHP, sustainability fluctuation, environmental indicators, performance measurement
Procedia PDF Downloads 12116737 A Robust Theoretical Elastoplastic Continuum Damage T-H-M Model for Rock Surrounding a Wellbore
Authors: Nikolaos Reppas, Yilin Gui, Ben Wetenhall, Colin Davie
Abstract:
Injection of CO2 inside wellbore can induce different kind of loadings that can lead to thermal, hydraulic, and mechanical changes on the surrounding rock. A dual-porosity theoretical constitutive model will be presented for the stability analysis of the wellbore during CO2 injection. An elastoplastic damage response will be considered. A bounding yield surface will be presented considering damage effects on sandstone. The main target of the research paper is to present a theoretical constitutive model that can help industries to safely store CO2 in geological rock formations and forecast any changes on the surrounding rock of the wellbore. The fully coupled elasto-plastic damage Thermo-Hydraulic-Mechanical theoretical model will be validated from existing experimental data for sandstone after simulating some scenarios by using FEM on MATLAB software.Keywords: carbon capture and storage, rock mechanics, THM effects on rock, constitutive model
Procedia PDF Downloads 15316736 Hybrid Adaptive Modeling to Enhance Robustness of Real-Time Optimization
Authors: Hussain Syed Asad, Richard Kwok Kit Yuen, Gongsheng Huang
Abstract:
Real-time optimization has been considered an effective approach for improving energy efficient operation of heating, ventilation, and air-conditioning (HVAC) systems. In model-based real-time optimization, model mismatches cannot be avoided. When model mismatches are significant, the performance of the real-time optimization will be impaired and hence the expected energy saving will be reduced. In this paper, the model mismatches for chiller plant on real-time optimization are considered. In the real-time optimization of the chiller plant, simplified semi-physical or grey box model of chiller is always used, which should be identified using available operation data. To overcome the model mismatches associated with the chiller model, hybrid Genetic Algorithms (HGAs) method is used for online real-time training of the chiller model. HGAs combines Genetic Algorithms (GAs) method (for global search) and traditional optimization method (i.e. faster and more efficient for local search) to avoid conventional hit and trial process of GAs. The identification of model parameters is synthesized as an optimization problem; and the objective function is the Least Square Error between the output from the model and the actual output from the chiller plant. A case study is used to illustrate the implementation of the proposed method. It has been shown that the proposed approach is able to provide reliability in decision making, enhance the robustness of the real-time optimization strategy and improve on energy performance.Keywords: energy performance, hybrid adaptive modeling, hybrid genetic algorithms, real-time optimization, heating, ventilation, and air-conditioning
Procedia PDF Downloads 41716735 Project Objective Structure Model: An Integrated, Systematic and Balanced Approach in Order to Achieve Project Objectives
Authors: Mohammad Reza Oftadeh
Abstract:
The purpose of the article is to describe project objective structure (POS) concept that was developed on research activities and experiences about project management, Balanced Scorecard (BSC) and European Foundation Quality Management Excellence Model (EFQM Excellence Model). Furthermore, this paper tries to define a balanced, systematic, and integrated measurement approach to meet project objectives and project strategic goals based on a process-oriented model. In this paper, POS is suggested in order to measure project performance in the project life cycle. After using the POS model, the project manager can ensure in order to achieve the project objectives on the project charter. This concept can help project managers to implement integrated and balanced monitoring and control project work.Keywords: project objectives, project performance management, PMBOK, key performance indicators, integration management
Procedia PDF Downloads 37916734 PH.WQT as a Web Quality Model for Websites of Government Domain
Authors: Rupinder Pal Kaur, Vishal Goyal
Abstract:
In this research, a systematic and quantitative engineering-based approach is followed by applying well-known international standards and guidelines to develop a web quality model (PH.WQT- Punjabi and Hindi Website Quality Tester) to measure external quality for websites of government domain that are developed in Punjabi and Hindi. Correspondingly, the model can be used for websites developed in other languages also. The research is valuable to researchers and practitioners interested in designing, implementing and managing websites of government domain Also, by implementing PH.WQT analysis and comparisons among web sites of government domain can be performed in a consistent way.Keywords: external quality, PH.WQT, indian languages, punjabi and hindi, quality model, websites of government
Procedia PDF Downloads 30716733 A Large-Strain Thermoviscoplastic Damage Model
Authors: João Paulo Pascon
Abstract:
A constitutive model accounting for large strains, thermoviscoplasticity, and ductile damage evolution is proposed in the present work. To this end, a fully Lagrangian framework is employed, considering plane stress conditions and multiplicative split of the deformation gradient. The full model includes Gurson’s void growth, nucleation and coalescence, plastic work heating, strain and strain-rate hardening, thermal softening, and heat conductivity. The contribution of the work is the combination of all the above-mentioned features within the finite-strain setting. The model is implemented in a computer code using triangular finite elements and nonlinear analysis. Two mechanical examples involving ductile damage and finite strain levels are analyzed: an inhomogeneous tension specimen and the necking problem. Results demonstrate the capabilities of the developed formulation regarding ductile fracture and large deformations.Keywords: ductile damage model, finite element method, large strains, thermoviscoplasticity
Procedia PDF Downloads 8616732 Effects of Different Drying Methods on the Properties of Viscose Single Jersey Fabrics
Authors: Merve Kucukali Ozturk, Yesim Beceren, Banu Nergis
Abstract:
The study discussed in this paper was conducted in an attempt to investigate effects of different drying methods (line dry and tumble dry) on viscose single jersey fabrics knitted with ring yarn.Keywords: color change, dimensional properties, drying method, fabric tightness, physical properties
Procedia PDF Downloads 29016731 A Three-Dimensional TLM Simulation Method for Thermal Effect in PV-Solar Cells
Authors: R. Hocine, A. Boudjemai, A. Amrani, K. Belkacemi
Abstract:
Temperature rising is a negative factor in almost all systems. It could cause by self heating or ambient temperature. In solar photovoltaic cells this temperature rising affects on the behavior of cells. The ability of a PV module to withstand the effects of periodic hot-spot heating that occurs when cells are operated under reverse biased conditions is closely related to the properties of the cell semi-conductor material. In addition, the thermal effect also influences the estimation of the maximum power point (MPP) and electrical parameters for the PV modules, such as maximum output power, maximum conversion efficiency, internal efficiency, reliability, and lifetime. The cells junction temperature is a critical parameter that significantly affects the electrical characteristics of PV modules. For practical applications of PV modules, it is very important to accurately estimate the junction temperature of PV modules and analyze the thermal characteristics of the PV modules. Once the temperature variation is taken into account, we can then acquire a more accurate MPP for the PV modules, and the maximum utilization efficiency of the PV modules can also be further achieved. In this paper, the three-Dimensional Transmission Line Matrix (3D-TLM) method was used to map the surface temperature distribution of solar cells while in the reverse bias mode. It was observed that some cells exhibited an inhomogeneity of the surface temperature resulting in localized heating (hot-spot). This hot-spot heating causes irreversible destruction of the solar cell structure. Hot spots can have a deleterious impact on the total solar modules if individual solar cells are heated. So, the results show clearly that the solar cells are capable of self-generating considerable amounts of heat that should be dissipated very quickly to increase PV module's lifetime.Keywords: thermal effect, conduction, heat dissipation, thermal conductivity, solar cell, PV module, nodes, 3D-TLM
Procedia PDF Downloads 38716730 The Logistics Collaboration in Supply Chain of Orchid Industry in Thailand
Authors: Chattrarat Hotrawaisaya
Abstract:
This research aims to formulate the logistics collaborative model which is the management tool for orchid flower exporter. The researchers study logistics activities in orchid supply chain that stakeholders can collaborate and develop, including demand forecasting, inventory management, warehouse and storage, order-processing, and transportation management. The research also explores logistics collaboration implementation into orchid’s stakeholders. The researcher collected data before implementation and after model implementation. Consequently, the costs and efficiency were calculated and compared between pre and post period of implementation. The research found that the results of applying the logistics collaborative model to orchid exporter reduces inventory cost and transport cost. The model also improves forecasting accuracy, and synchronizes supply chain of exporter. This research paper contributes the uniqueness logistics collaborative model which value to orchid industry in Thailand. The orchid exporters may use this model as their management tool which aims in competitive advantage.Keywords: logistics, orchid, supply chain, collaboration
Procedia PDF Downloads 43716729 Hydro-Gravimetric Ann Model for Prediction of Groundwater Level
Authors: Jayanta Kumar Ghosh, Swastik Sunil Goriwale, Himangshu Sarkar
Abstract:
Groundwater is one of the most valuable natural resources that society consumes for its domestic, industrial, and agricultural water supply. Its bulk and indiscriminate consumption affects the groundwater resource. Often, it has been found that the groundwater recharge rate is much lower than its demand. Thus, to maintain water and food security, it is necessary to monitor and management of groundwater storage. However, it is challenging to estimate groundwater storage (GWS) by making use of existing hydrological models. To overcome the difficulties, machine learning (ML) models are being introduced for the evaluation of groundwater level (GWL). Thus, the objective of this research work is to develop an ML-based model for the prediction of GWL. This objective has been realized through the development of an artificial neural network (ANN) model based on hydro-gravimetry. The model has been developed using training samples from field observations spread over 8 months. The developed model has been tested for the prediction of GWL in an observation well. The root means square error (RMSE) for the test samples has been found to be 0.390 meters. Thus, it can be concluded that the hydro-gravimetric-based ANN model can be used for the prediction of GWL. However, to improve the accuracy, more hydro-gravimetric parameter/s may be considered and tested in future.Keywords: machine learning, hydro-gravimetry, ground water level, predictive model
Procedia PDF Downloads 12716728 Pressure Drop Study in Moving and Stationary Beds with Lateral Gas Injection
Authors: Vinci Mojamdar, Govind S. Gupta
Abstract:
Moving beds in the presence of gas flow are widely used in metallurgical and chemical industries like blast furnaces, catalyst reforming, drying, etc. Pressure drop studies in co- and counter – current conditions have been done by a few researchers. However, to the best of authours knowledge, proper pressure drop study with lateral gas injection lacks especially in the presence of cavity and nozzle protrusion inside the packed bed. The latter study is more useful for metallurgical industries for the processes such as blast furnaces, shaft reduction and, COREX. In this experimental work, a two dimensional cold model with slot type nozzle for lateral gas injection along with the plastic beads as packing material and dry air as gas have been used. The variation of pressure drop is recorded at various horizontal and vertical directions in the presence of cavity and nozzle protrusion. The study has been performed in both moving and stationary beds. Also, the experiments have been carried out in both increasing as well as decreasing gas flow conditions. Experiments have been performed at various gas flow rates and packed bed heights. Some interesting results have been reported such as there is no pressure variation in the moving bed for both the increasing and decreasing gas flow condition that is different from the stationary bed. Pressure hysteresis loop has been observed in a stationary bed.Keywords: lateral gas injection, moving bed, pressure drop, pressure hysteresis, stationary bed
Procedia PDF Downloads 31316727 Study and Analysis of a Susceptible Infective Susceptible Mathematical Model with Density Dependent Migration
Authors: Jitendra Singh, Vivek Kumar
Abstract:
In this paper, a susceptible infective susceptible mathematical model is proposed and analyzed where the migration of human population is given by migration function. It is assumed that the disease is transmitted by direct contact of susceptible and infective populations with constant contact rate. The equilibria and their stability are studied by using the stability theory of ordinary differential equations and computer simulation. The model analysis shows that the spread of infectious disease increases when human population immigration increases in the habitat but it decreases if emigration increases.Keywords: SIS (Susceptible Infective Susceptible) model, migration function, susceptible, stability
Procedia PDF Downloads 26116726 Determination of the Axial-Vector from an Extended Linear Sigma Model
Authors: Tarek Sayed Taha Ali
Abstract:
The dependence of the axial-vector coupling constant gA on the quark masses has been investigated in the frame work of the extended linear sigma model. The field equations have been solved in the mean-field approximation. Our study shows a better fitting to the experimental data compared with the existing models.Keywords: extended linear sigma model, nucleon properties, axial coupling constant, physic
Procedia PDF Downloads 44616725 Virtual Experiments on Coarse-Grained Soil Using X-Ray CT and Finite Element Analysis
Authors: Mohamed Ali Abdennadher
Abstract:
Digital rock physics, an emerging field leveraging advanced imaging and numerical techniques, offers a promising approach to investigating the mechanical properties of granular materials without extensive physical experiments. This study focuses on using X-Ray Computed Tomography (CT) to capture the three-dimensional (3D) structure of coarse-grained soil at the particle level, combined with finite element analysis (FEA) to simulate the soil's behavior under compression. The primary goal is to establish a reliable virtual testing framework that can replicate laboratory results and offer deeper insights into soil mechanics. The methodology involves acquiring high-resolution CT scans of coarse-grained soil samples to visualize internal particle morphology. These CT images undergo processing through noise reduction, thresholding, and watershed segmentation techniques to isolate individual particles, preparing the data for subsequent analysis. A custom Python script is employed to extract particle shapes and conduct a statistical analysis of particle size distribution. The processed particle data then serves as the basis for creating a finite element model comprising approximately 500 particles subjected to one-dimensional compression. The FEA simulations explore the effects of mesh refinement and friction coefficient on stress distribution at grain contacts. A multi-layer meshing strategy is applied, featuring finer meshes at inter-particle contacts to accurately capture mechanical interactions and coarser meshes within particle interiors to optimize computational efficiency. Despite the known challenges in parallelizing FEA to high core counts, this study demonstrates that an appropriate domain-level parallelization strategy can achieve significant scalability, allowing simulations to extend to very high core counts. The results show a strong correlation between the finite element simulations and laboratory compression test data, validating the effectiveness of the virtual experiment approach. Detailed stress distribution patterns reveal that soil compression behavior is significantly influenced by frictional interactions, with frictional sliding, rotation, and rolling at inter-particle contacts being the primary deformation modes under low to intermediate confining pressures. These findings highlight that CT data analysis combined with numerical simulations offers a robust method for approximating soil behavior, potentially reducing the need for physical laboratory experiments.Keywords: X-Ray computed tomography, finite element analysis, soil compression behavior, particle morphology
Procedia PDF Downloads 3116724 A Comparison of Smoothing Spline Method and Penalized Spline Regression Method Based on Nonparametric Regression Model
Authors: Autcha Araveeporn
Abstract:
This paper presents a study about a nonparametric regression model consisting of a smoothing spline method and a penalized spline regression method. We also compare the techniques used for estimation and prediction of nonparametric regression model. We tried both methods with crude oil prices in dollars per barrel and the Stock Exchange of Thailand (SET) index. According to the results, it is concluded that smoothing spline method performs better than that of penalized spline regression method.Keywords: nonparametric regression model, penalized spline regression method, smoothing spline method, Stock Exchange of Thailand (SET)
Procedia PDF Downloads 44016723 Topology Optimization of Heat Exchanger Manifolds for Aircraft
Authors: Hanjong Kim, Changwan Han, Seonghun Park
Abstract:
Heat exchanger manifolds in aircraft play an important role in evenly distributing the fluid entering through the inlet to the heat transfer unit. In order to achieve this requirement, the manifold should be designed to have a light weight by withstanding high internal pressure. Therefore, this study aims at minimizing the weight of the heat exchanger manifold through topology optimization. For topology optimization, the initial design space was created with the inner surface extracted from the currently used manifold model and with the outer surface having a dimension of 243.42 mm of X 74.09 mm X 65 mm. This design space solid model was transformed into a finite element model with a maximum tetrahedron mesh size of 2 mm using ANSYS Workbench. Then, topology optimization was performed under the boundary conditions of an internal pressure of 5.5 MPa and the fixed support for rectangular inlet boundaries by SIMULIA TOSCA. This topology optimization produced the minimized finial volume of the manifold (i.e., 7.3% of the initial volume) based on the given constraints (i.e., 6% of the initial volume) and the objective function (i.e., maximizing manifold stiffness). Weight of the optimized model was 6.7% lighter than the currently used manifold, but after smoothing the topology optimized model, this difference would be bigger. The current optimized model has uneven thickness and skeleton-shaped outer surface to reduce stress concentration. We are currently simplifying the optimized model shape with spline interpolations by reflecting the design characteristics in thickness and skeletal structures from the optimized model. This simplified model will be validated again by calculating both stress distributions and weight reduction and then the validated model will be manufactured using 3D printing processes.Keywords: topology optimization, manifold, heat exchanger, 3D printing
Procedia PDF Downloads 24816722 Rheological Modeling for Shape-Memory Thermoplastic Polymers
Authors: H. Hosseini, B. V. Berdyshev, I. Iskopintsev
Abstract:
This paper presents a rheological model for producing shape-memory thermoplastic polymers. Shape-memory occurs as a result of internal rearrangement of the structural elements of a polymer. A non-linear viscoelastic model was developed that allows qualitative and quantitative prediction of the stress-strain behavior of shape-memory polymers during heating. This research was done to develop a technique to determine the maximum possible change in size of heat-shrinkable products during heating. The rheological model used in this work was particularly suitable for defining process parameters and constructive parameters of the processing equipment.Keywords: elastic deformation, heating, shape-memory polymers, stress-strain behavior, viscoelastic model
Procedia PDF Downloads 32316721 Research on the Application of Renewability in the Construction Model of Zhejiang Rural Revitalization
Authors: Zheng Junchao, Wang Zhu
Abstract:
With the advancement of China's urbanization process, the Chinese government has put forward the strategy of rural revitalization which is aiming at realizing the comprehensive integration of urban and rural areas and the comprehensive revitalization of rural areas. The path of rural revitalization in Zhejiang province put forward a typical model from four dimensions: suburban area, plain, island and mountain area. Research methods include on-the-spot investigation, visiting a number of successful demonstration villages in Zhejiang and interviewing village officials. Based on the location conditions, resource endowments, industrial forms and development foundations of Zhejiang Province, this paper introduces in detail the model of rural revitalization in Zhejiang Province and the challenges it encounters, as well as the role of building construction. The rural development model of Zhejiang province makes the rural culture flourish. Taking the construction of rural scenic spots as the carrier, the rural culture, and natural landscape are constantly improved. It provides a model and template for the country's rural revitalization. The promotion of Zhejiang rural revitalization model will improve the current rural landscape, living standard and industrial structure, which will narrow the urban-rural gap greatly.Keywords: comprehensive rural revitalization, Zhejiang model, reproducible, comprehensive integration
Procedia PDF Downloads 19916720 OpenFOAM Based Simulation of High Reynolds Number Separated Flows Using Bridging Method of Turbulence
Authors: Sagar Saroha, Sawan S. Sinha, Sunil Lakshmipathy
Abstract:
Reynolds averaged Navier-Stokes (RANS) model is the popular computational tool for prediction of turbulent flows. Being computationally less expensive as compared to direct numerical simulation (DNS), RANS has received wide acceptance in industry and research community as well. However, for high Reynolds number flows, the traditional RANS approach based on the Boussinesq hypothesis is incapacitated to capture all the essential flow characteristics, and thus, its performance is restricted in high Reynolds number flows of practical interest. RANS performance turns out to be inadequate in regimes like flow over curved surfaces, flows with rapid changes in the mean strain rate, duct flows involving secondary streamlines and three-dimensional separated flows. In the recent decade, partially averaged Navier-Stokes (PANS) methodology has gained acceptability among seamless bridging methods of turbulence- placed between DNS and RANS. PANS methodology, being a scale resolving bridging method, is inherently more suitable than RANS for simulating turbulent flows. The superior ability of PANS method has been demonstrated for some cases like swirling flows, high-speed mixing environment, and high Reynolds number turbulent flows. In our work, we intend to evaluate PANS in case of separated turbulent flows past bluff bodies -which is of broad aerodynamic research and industrial application. PANS equations, being derived from base RANS, continue to inherit the inadequacies from the parent RANS model based on linear eddy-viscosity model (LEVM) closure. To enhance PANS’ capabilities for simulating separated flows, the shortcomings of the LEVM closure need to be addressed. Inabilities of the LEVMs have inspired the development of non-linear eddy viscosity models (NLEVM). To explore the potential improvement in PANS performance, in our study we evaluate the PANS behavior in conjugation with NLEVM. Our work can be categorized into three significant steps: (i) Extraction of PANS version of NLEVM from RANS model, (ii) testing the model in the homogeneous turbulence environment and (iii) application and evaluation of the model in the canonical case of separated non-homogeneous flow field (flow past prismatic bodies and bodies of revolution at high Reynolds number). PANS version of NLEVM shall be derived and implemented in OpenFOAM -an open source solver. Homogeneous flows evaluation will comprise the study of the influence of the PANS’ filter-width control parameter on the turbulent stresses; the homogeneous analysis performed over typical velocity fields and asymptotic analysis of Reynolds stress tensor. Non-homogeneous flow case will include the study of mean integrated quantities and various instantaneous flow field features including wake structures. Performance of PANS + NLEVM shall be compared against the LEVM based PANS and LEVM based RANS. This assessment will contribute to significant improvement of the predictive ability of the computational fluid dynamics (CFD) tools in massively separated turbulent flows past bluff bodies.Keywords: bridging methods of turbulence, high Re-CFD, non-linear PANS, separated turbulent flows
Procedia PDF Downloads 14516719 Optimization Model for Support Decision for Maximizing Production of Mixed Fruit Tree Farms
Authors: Andrés I. Ávila, Patricia Aros, César San Martín, Elizabeth Kehr, Yovana Leal
Abstract:
We consider a linear programming model to help farmers to decide if it is convinient to choose among three kinds of export fruits for their future investment. We consider area, investment, water, productivitiy minimal unit, and harvest restrictions and a monthly based model to compute the average income in five years. Also, conditions on the field as area, water availability and initia investment are required. Using the Chilean costs and dollar-peso exchange rate, we can simulate several scenarios to understand the possible risks associated to this market.Keywords: mixed integer problem, fruit production, support decision model, fruit tree farms
Procedia PDF Downloads 457