Search results for: Competitive Intelligence
1466 A Structural Model to Examine Hotel Image and Overall Satisfaction on Future Behavior of Customers
Authors: Nimit Soonsan
Abstract:
Hotel image is a key business issue in today’s hotel market and has been increasingly been recognized as a valuable and inimitable source of competitive advantage by many hotel. The current study attempted to develop and test a relationship of hotel image, overall satisfaction, and future behavior. Based on the above concepts, this paper hypothesizes the correlations among four constructs, namely, hotel image and overall satisfaction as antecedents of future behavior that positive word-of-mouth and intention to revisit. This study surveyed for a sample of 244 international customers staying budget hotel in Phuket, Thailand and using a structural equation modeling identified relationship between hotel image, overall satisfaction and future behavior. The major finding of structural equation modeling indicates that hotel image directly affects overall satisfaction and indirectly affects future behavior that positive word-of-mouth and intention to revisit. In addition, overall satisfaction had significant influence on future behavior that positive word-of-mouth and intention to revisit, and the mediating role of overall satisfaction is also confirmed in this study. Managerial implications are provided, limitations noted, and future research directions suggested.Keywords: hotel image, satisfaction, word-of-mouth, revisit
Procedia PDF Downloads 2401465 Environmental Sustainability: A Renewable Energy Prospect with a Biofuel Alternative
Authors: Abul Quasem Al-Amin, Md. Hasanuzzaman, Mohammad Nurul Azam, Walter Leal Filho
Abstract:
With regard to the future energy strategy and vision, this study aimed to find the drawbacks of proposed energy diversification policy for 2020. To have a clear picture of the drawback and competitive alternative, this study has explored two scenarios, namely Scenario a and Scenario b. The Scenario a indicates that in the year 2020 the GHG emissions would be 823,498.00 million tons (Mt) with a 2020 final demand and proposed fuel mix such as by the Five-Fuel Diversification Strategy. In contrast, as an alternative, the Scenario b with biofuel potentials indicates that the substitution of coal energy by 5%, 10%, and 15%, respectively, with biofuel, would reduce the GHG emissions from 374,551.00, 405,118.00, and 823,498.00 million tons to 339,964.00, 329,834.00, and 305,288.00 million tons, respectively, by the present fuel mix, business-as-usual fuel mix, and proposed fuel mix up to the year 2020. Therefore, this study has explored a healthy alternative by introducing biofuel renewable energy option instead of conventional energy utilization in the power generation with environmental aspect in minds. This study effort would lessen the gap between GHG mitigation and future sustainable development and would useful to formulate effective renewable energy strategy in Malaysia.Keywords: energy, environmental impacts, renewable energy, biofuel, energy policy
Procedia PDF Downloads 4861464 Value-Based Management Education Need of the Hour
Authors: Surendar Vaddepalli
Abstract:
Management education plays a crucial role to enable industry to cope with emerging challenges. It has spread in the last fifteen-twenty years in India and gained popularity as it was aimed at imbibing versatility and multi-tasking abilities in student community. Several management institutions started looking at upgrading their competencies in terms of faculty, research and industry interaction. The competitive business environment has been one of the drivers that paved the way for growing demand for management graduates in the employment market. Industry expects their executives to be engaged in a constant learning process. The ever-increasing demand for managers has led to establish more management institutions; however, the growth was not in line with the expectations from the industry. While top Business Schools are continuously changing the contents and delivery methodologies, academic standards of most of the other Business Schools are not up to the mark and quality of service provided by these institutes has opened various issues for discussion. On this back ground it is important to address the concerns of Indian management education experiencing with time and we have to rethink about the management education and efforts should be made to create a dynamic environment. This paper ties to study the current trends and tries to find out need for value based management education in India to rejuvenate it.Keywords: management education, management, value based management education, business school, India
Procedia PDF Downloads 3791463 An Application of Lean Thinking at the Cargo Transport Area
Authors: Caroline Demartin, Natalia Camaras, Nelson Maestrelli, Max Filipe Gonçalves
Abstract:
This paper presents a case study of Lean Thinking at the cargo transport area. Lean Office principles are considered the application of Lean Thinking focusing on the service area and it is based on Lean Production concepts. Lean production is a philosophy that was born and gained ground after the Second World War when the Japanese Toyota Company developed a process of identifying and eliminating waste. Many researchers show that most part of the companies decide to adopt the principles created at Toyota especially in the manufacturing sector, but until 90’s, has no major applications for the service sector. Due to increased competition and the need for competitive advantage, many companies began to observe the lean transformation and take it as reference. In this study, a key process at a cargo transport company was analyzed using Lean Office tools and methods: a current state map was developed, main wastes were identified, some metrics were used to evaluate improvements and a priority matrix was used to identify action plans. The obtained results showed that Lean Office has a great potential to be successful applied in cargo air transport companies.Keywords: lean production, lean office, logistic, service sector
Procedia PDF Downloads 1911462 The European Legislation on End-of-Waste
Authors: Claudio D'Alonzo
Abstract:
According to recent tendencies, progress on resource efficiency is possible and it will lead to economic, environmental, and social benefits. The passage to a circular economy system, in which all the materials and energy will maintain their value for as long as possible, waste is reduced and only a few resources are used, is one of the most relevant parts of the European Union's environmental policy to develop a sustainable, competitive and low-carbon economy. A definition of circular economy can be found in Decision 1386/2013/EU of the European Parliament and of the Council on a General Union Environment Action Programme to 2020 named “Living well, within the limits of our planet”. The purpose of renewing waste management systems in the UE and making the European model one of the most effective in the world, a revised waste legislative framework entered into force in July 2018. Regarding the Italian legislation, the laws to be modified are the Legislative Decree 3 April 2006, n. 152 and the laws ruling waste management, end-of-waste, by-products and, the regulatory principles regarding circular economy. European rules on end-of-waste are not fully harmonised and so there are legal challenges. The target to be achieved is full consistency between the laws implementing waste and chemicals policies. Only in this way, materials will be safe, fit-for-purpose and designed for durability; additionally, they will have a low environmental impact.Keywords: circular economy, end-of-waste, legislation, secondary raw materials
Procedia PDF Downloads 831461 Implementation of ANN-Based MPPT for a PV System and Efficiency Improvement of DC-DC Converter by WBG Devices
Authors: Bouchra Nadji, Elaid Bouchetob
Abstract:
PV systems are common in residential and industrial settings because of their low, upfront costs and operating costs throughout their lifetimes. Buck or boost converters are used in photovoltaic systems, regardless of whether the system is autonomous or connected to the grid. These converters became less appealing because of their low efficiency, inadequate power density, and use of silicon for their power components. Traditional devices based on Si are getting close to reaching their theoretical performance limits, which makes it more challenging to improve the performance and efficiency of these devices. GaN and SiC are the two types of WBG semiconductors with the most recent technological advancements and are available. Tolerance to high temperatures and switching frequencies can reduce active and passive component size. Utilizing high-efficiency dc-dc boost converters is the primary emphasis of this work. These converters are for photovoltaic systems that use wave energy.Keywords: component, Artificial intelligence, PV System, ANN MPPT, DC-DC converter
Procedia PDF Downloads 601460 Applying an Application-Based Knowledge Capturing and Reusing for Construction Consultant Organizations Applying
Authors: Phan Nghiem Vu, Le Tuan Vu, Ta Quang Tai
Abstract:
Knowledge Management effectively is critical to the survival and advance of a company, especially in company-based industries such as construction. Knowledge management practice is crucial to the survival and progress of a company, especially company-based knowledge such as construction consultancy. Effective knowledge management practices are very significant to the competitive and development of a consulting organization. Hence, the success of knowledge management implementation depends on knowledge capturing and reusing effectively. In this paper, a survey was carried out of engineers and managers with experience in seven construction consulting organizations that provide services on the north-central coast of Vietnam. The main objectives of the survey to finding out how these organizations capture and reuse knowledge and significant barriers to the implementation of knowledge management. A conceptual framework based-on Trello application is proposed to formalize the knowledge-capturing and reusing process within construction consulting companies. It is showed that the conceptual framework could be used to manage both implicit and explicit knowledge effectively in construction consultant organizations.Keywords: knowledge management, construction consultant organization, knowledge capturing, reusing knowledge, application-based technology
Procedia PDF Downloads 1301459 Customer Relations and Use of Online Shopping Sites
Authors: Bahar Urhan Torun, Havva Nur Tarakcı
Abstract:
At the present time, online marketing has become the common target of small and full-scale organizations. Today’s humanbeing who has to spend most of their time in front of the computer because of his job, prefers to socialize by internet due to the easy access to technology. So online marketing area expands day by day. All business organizations from the smallest to the biggest are in a race in order to get a cut from the virtual market share in an extreme competitive environment. However these organizations which use the internet to reach more consumers cannot determine their target group accurately, so this is the biggest handicap of online marketing sales nowadays. The aim of this study is to determine some significant elements about need for communicating efficiently with the consumer on the internet on online marketing. The strategies that can be used in order to increase sales and the limitations of virtual environment where cannot be communicated with the consumer face to face are argued in this study’s scope. As a consequence it is thought that to study on this subject because of lacking and also being limited efficiency of researches and outputs. Within this scope suggesting some proposals about how to communicate efficiently with the consumer and also offering the consumers’ demands efficiently is the essential objective of this study.Keywords: online marketing, competition, consumer, communication
Procedia PDF Downloads 2681458 Study and Improvement of the Quality of a Production Line
Authors: S. Bouchami, M.N. Lakhoua
Abstract:
The automotive market is a dynamic market that continues to grow. That’s why several companies belonging to this sector adopt a quality improvement approach. Wanting to be competitive and successful in the environment in which they operate, these companies are dedicated to establishing a system of quality management to ensure the achievement of the objective quality, improving the products and process as well as the satisfaction of the customers. In this paper, the management of the quality and the improvement of a production line in an industrial company is presented. In fact, the project is divided into two essential parts: the creation of the technical line documentation and the quality assurance documentation and the resolution of defects at the line, as well as those claimed by the customer. The creation of the documents has required a deep understanding of the manufacturing process. The analysis and problem solving were done through the implementation of PDCA (Plan Do Check Act) and FTA (Fault Tree Analysis). As perspective, in order to better optimize production and improve the efficiency of the production line, a study on the problems associated with the supply of raw materials should be made to solve the problems of stock-outs which cause delays penalizing for the industrial company.Keywords: quality management, documentary system, Plan Do Check Act (PDCA), fault tree analysis (FTA) method
Procedia PDF Downloads 1421457 Democrat Support to Antiterorrism of USA from Hollywood: Homeland Series
Authors: Selman Selim Akyüz, Mete Kazaz
Abstract:
Since The First Gulf War, USA, “Leader of The Free World” has been in trouble with terror. The USA created a complexity in The Middle East and paid the price with terrorist attacks in homeland. USA has made serious mistakes in terms of antiterrorism and fight against its supporters. Democrats have repaired damages caused by the Republican Party's management. Old methods about antiterrorism have been slowly abandoned. Hollywood, too, has played an important part in this war. Sometimes, Hollywood became an unquestioned patriot, sometimes it cried for the death of American Soldiers far away. In this study, messages in The Homeland, broadcast in the USA and a lot of countries around the world, are analyzed in terms of Washington’s foreign policy and position of the CIA in the fight against antiterrorism. The series reflect an orientalist viewpoint and has been criticized for offensive policy against the government. Homeland wanted to offer a perspective for the USA to be the “Leader of The Free World” again but with a liberal-democrat approach, dialogue and rational intelligence methods.Keywords: antiterrorism, CIA, homeland, USA
Procedia PDF Downloads 3611456 Transformation Strategies of the Nigerian Textile and Clothing Industries: The Integration of China Clothing Sector Model
Authors: Adetoun Adedotun Amubode
Abstract:
Nigeria's Textile Industry was the second largest in Africa after Egypt, with above 250 vibrant factories and over 50 percent capacity utilization contributing to foreign exchange earnings and employment generation. Currently, multifaceted challenges such as epileptic power supply, inconsistent government policies, growing digitalization, smuggling of foreign textiles, insecurity and the inability of the local industries to compete with foreign products, especially Chinese textile, has created a hostile environment for the sector. This led to the closure of most of the textile industries. China's textile industry has experienced institutional change and industrial restructuring, having 30% of the world's market share. This paper examined the strategies adopted by China in transforming her textile and clothing industries and designed a model for the integration of these strategies to improve the competitive strength and growth of the Nigerian textile and clothing industries in a dynamic and changing market. The paper concludes that institutional support, regional production, export-oriented policy, value-added and branding cultivation, technological upgrading and enterprise resource planning be integrated into the Nigerian clothing and textile industries.Keywords: clothing, industry, integration, Nigerian, textile, transformation.
Procedia PDF Downloads 1561455 Impact of Extended Enterprise Resource Planning in the Context of Cloud Computing on Industries and Organizations
Authors: Gholamreza Momenzadeh, Forough Nematolahi
Abstract:
The Extended Enterprise Resource Planning (ERPII) system usually requires massive amounts of storage space, powerful servers, and large upfront and ongoing investments to purchase and manage the software and the related hardware which are not affordable for organizations. In recent decades, organizations prefer to adapt their business structures with new technologies for remaining competitive in the world economy. Therefore, cloud computing (which is one of the tools of information technology (IT)) is a modern system that reveals the next-generation application architecture. Also, cloud computing has had some advantages that reduce costs in many ways such as: lower upfront costs for all computing infrastructure and lower cost of maintaining and supporting. On the other hand, traditional ERPII is not responding for huge amounts of data and relations between the organizations. In this study, based on a literature study, ERPII is investigated in the context of cloud computing where the organizations operate more efficiently. Also, ERPII conditions have a response to needs of organizations in large amounts of data and relations between the organizations.Keywords: extended enterprise resource planning, cloud computing, business process, enterprise information integration
Procedia PDF Downloads 2221454 Emotion Recognition with Occlusions Based on Facial Expression Reconstruction and Weber Local Descriptor
Authors: Jadisha Cornejo, Helio Pedrini
Abstract:
Recognition of emotions based on facial expressions has received increasing attention from the scientific community over the last years. Several fields of applications can benefit from facial emotion recognition, such as behavior prediction, interpersonal relations, human-computer interactions, recommendation systems. In this work, we develop and analyze an emotion recognition framework based on facial expressions robust to occlusions through the Weber Local Descriptor (WLD). Initially, the occluded facial expressions are reconstructed following an extension approach of Robust Principal Component Analysis (RPCA). Then, WLD features are extracted from the facial expression representation, as well as Local Binary Patterns (LBP) and Histogram of Oriented Gradients (HOG). The feature vector space is reduced using Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA). Finally, K-Nearest Neighbor (K-NN) and Support Vector Machine (SVM) classifiers are used to recognize the expressions. Experimental results on three public datasets demonstrated that the WLD representation achieved competitive accuracy rates for occluded and non-occluded facial expressions compared to other approaches available in the literature.Keywords: emotion recognition, facial expression, occlusion, fiducial landmarks
Procedia PDF Downloads 1821453 A Conceptual Framework of Digital Twin for Homecare
Authors: Raja Omman Zafar, Yves Rybarczyk, Johan Borg
Abstract:
This article proposes a conceptual framework for the application of digital twin technology in home care. The main goal is to bridge the gap between advanced digital twin concepts and their practical implementation in home care. This study uses a literature review and thematic analysis approach to synthesize existing knowledge and proposes a structured framework suitable for homecare applications. The proposed framework integrates key components such as IoT sensors, data-driven models, cloud computing, and user interface design, highlighting the importance of personalized and predictive homecare solutions. This framework can significantly improve the efficiency, accuracy, and reliability of homecare services. It paves the way for the implementation of digital twins in home care, promoting real-time monitoring, early intervention, and better outcomes.Keywords: digital twin, homecare, older adults, healthcare, IoT, artificial intelligence
Procedia PDF Downloads 711452 Innovative Small and Medium Sized Firms: Intangible Investment and Financial Constraints - a Literature Review.
Authors: Eliane Abdo
Abstract:
Small and medium sized firms “SMEs” play essential role in the countries’ economic development mainly in terms of production, employment and equitable distribution of income. For innovative SMEs, the investment in the human capital and in research and development are crucial to survive in a competitive environment. In this paper we perform a literature review to underline the financing difficulties and constraints which innovative SMEs face while investing in intangible assets: not only when defining amount of the investments but also while choosing its financing methods. Literature review revealed that in order to finance their intangible assets, SMEs rely in first on their internal financing: the availability of internal cash flows can then determine their investment’s decision. Moreover SMEs face difficulties to finance their intangibles by financial debts due to the uncertainty of future cash flow and the absence of physical guarantees; they will therefore go for the issuance of new shares as a second choice, since innovative companies have high opportunity of growth that attract new shareholders.Keywords: small and medium sized firms, capital structure, intangible investment, financial constraints
Procedia PDF Downloads 1231451 A New Method to Winner Determination for Economic Resource Allocation in Cloud Computing Systems
Authors: Ebrahim Behrouzian Nejad, Rezvan Alipoor Sabzevari
Abstract:
Cloud computing systems are large-scale distributed systems, so that they focus more on large scale resource sharing, cooperation of several organizations and their use in new applications. One of the main challenges in this realm is resource allocation. There are many different ways to resource allocation in cloud computing. One of the common methods to resource allocation are economic methods. Among these methods, the auction-based method has greater prominence compared with Fixed-Price method. The double combinatorial auction is one of the proper ways of resource allocation in cloud computing. This method includes two phases: winner determination and resource allocation. In this paper a new method has been presented to determine winner in double combinatorial auction-based resource allocation using Imperialist Competitive Algorithm (ICA). The experimental results show that in our new proposed the number of winner users is higher than genetic algorithm. On other hand, in proposed algorithm, the number of winner providers is higher in genetic algorithm.Keywords: cloud computing, resource allocation, double auction, winner determination
Procedia PDF Downloads 3591450 Exploring the Relationship between Employer Brand and Organizational Attractiveness: The Mediating Role of Employer Image and the Moderating Role of Value Congruence
Authors: Yi Shan Wu, Ting Hsuan Wu, Li Wei Cheng, Pei Yu Guo
Abstract:
Given the fiercely competitive environment, human capital is one of the most valuable assets in a commercial enterprise. Therefore, developing strategies to acquire more talents is crucial. Talents are mainly attracted by both internal and external employer brands as well as by the messages conveyed from the employer image. This not only manifests the importance of a brand and an image of an organization but shows people might be affected by their personal values when assessing an organization as an employer. The goal of the present study is to examine the association between employer brand, employer image, and the likelihood of increasing organizational attractiveness. In addition, we draw from social identity theory to propose value congruence may affect the relationship between employer brand and employer image. Data was collected from those people who only worked less than a year in the industry via an online survey (N=209). The results show that employer image partly mediates the effect of employer brand on organizational attractiveness. In addition, the results also suggest that value congruence does not moderate the relationship between employer brand and employer image. These findings explain why building a good employer brand could enhance organization attractiveness and indicate there should be other factors that may affect employer image building, offering directions for future research.Keywords: organizational attractiveness, employer brand, employer image, value congruence
Procedia PDF Downloads 1361449 Mediation Models in Triadic Relationships: Illness Narratives and Medical Education
Authors: Yoko Yamada, Chizumi Yamada
Abstract:
Narrative psychology is based on the dialogical relationship between self and other. The dialogue can consist of divided, competitive, or opposite communication between self and other. We constructed models of coexistent dialogue in which self and other were positioned side by side and communicated sympathetically. We propose new mediation models for narrative relationships. The mediation models are based on triadic relationships that incorporate a medium or a mediator along with self and other. We constructed three types of mediation model. In the first type, called the “Joint Attention Model”, self and other are positioned side by side and share attention with the medium. In the second type, the “Triangle Model”, an agent mediates between self and other. In the third type, the “Caring Model”, a caregiver stands beside the communication between self and other. We apply the three models to the illness narratives of medical professionals and patients. As these groups have different views and experiences of disease or illness, triadic mediation facilitates the ability to see things from the other person’s perspective and to bridge differences in people’s experiences and feelings. These models would be useful for medical education in various situations, such as in considering the relationships between senior and junior doctors and between old and young patients.Keywords: illness narrative, mediation, psychology, model, medical education
Procedia PDF Downloads 4091448 Artificial Intelligence and the Next Generation Journalistic Practice: Prospects, Issues and Challenges
Authors: Shola Abidemi Olabode
Abstract:
The technological revolution over the years has impacted journalistic practice. As a matter of fact, journalistic practice has evolved alongside technologies of every generation transforming news and reporting, entertainment, and politics. Alongside these developments, the emergence of new kinds of risks and harms associated with generative AI has become rife with implications for media and journalism. Despite their numerous benefits for research and development, generative AI technologies like ChatGPT introduce new practical, ethical, and regulatory complexities in the practice of media and journalism. This paper presents a preliminary overview of the new kinds of challenges and issues for journalism and media practice in the era of generative AI, the implications for Nigeria, and invites a consideration of methods to mitigate the evolving complexity. It draws mainly on desk-based research underscoring the literature in both developed and developing non-western contexts as a contribution to knowledge.Keywords: AI, journalism, media, online harms
Procedia PDF Downloads 801447 Improvement of Process Competitiveness Using Intelligent Reference Models
Authors: Julio Macedo
Abstract:
Several methodologies are now available to conceive the improvements of a process so that it becomes competitive as for example total quality, process reengineering, six sigma, define measure analysis improvement control method. These improvements are of different nature and can be external to the process represented by an optimization model or a discrete simulation model. In addition, the process stakeholders are several and have different desired performances for the process. Hence, the methodologies above do not have a tool to aid in the conception of the required improvements. In order to fill this void we suggest the use of intelligent reference models. A reference model is a set of qualitative differential equations and an objective function that minimizes the gap between the current and the desired performance indexes of the process. The reference models are intelligent so when they receive the current state of the problematic process and the desired performance indexes they generate the required improvements for the problematic process. The reference models are fuzzy cognitive maps added with an objective function and trained using the improvements implemented by the high performance firms. Experiments done in a set of students show the reference models allow them to conceive more improvements than students that do not use these models.Keywords: continuous improvement, fuzzy cognitive maps, process competitiveness, qualitative simulation, system dynamics
Procedia PDF Downloads 871446 Calculating Collision Risk Exposures and Risk Probabilities at Container Terminals
Authors: Mohammad Ali Hasanzadeh, Thierry Vanelslander, Eddy Van De Voorde
Abstract:
Nowadays maritime transport is a key element in international trade and global supply chain. Economies of scale in transporting goods are one of the most attractive elements of using ships. Without maritime transport, almost no globalization of economics can be imagined. Within maritime transport, ports are the interface between lands and see. Even though using ships help cargo owners to have a competitive margin but an accident in port during loading or unloading or even moving cargoes within the terminal can diminish such margin. Statistics shows that due to the high-speed notion of activities within ports, collision accidents are the most common type of accidents. To mitigate such accidents, the appropriate risk exposures have to be defined and calculate, later on risk probabilities can be determined for each type of accident, i.e. fatal, severe, moderate and minor ones. Having such risk probabilities help managers to define the effectiveness of each collision risk control option. This research defined travelled distance as main collision risk exposure in container terminals, taking all the related items into consideration, it was calculated for Shahid Rajae container terminals. Following this finding, collision risk probabilities were computed.Keywords: collision accident, container terminal, maritime transport, risk exposure
Procedia PDF Downloads 3851445 An Artificial Intelligence Framework to Forecast Air Quality
Authors: Richard Ren
Abstract:
Air pollution is a serious danger to international well-being and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Keywords: air quality prediction, air pollution, artificial intelligence, machine learning algorithms
Procedia PDF Downloads 1271444 The Effects of Source and Timing on the Acceptance of New Product Recommendation: A Lab Experiment
Abstract:
A new product is important for companies to extend consumers and manifest competitiveness. New product often involves new features that consumers might not be familiar with while it may also have a competitive advantage to attract consumers compared to established products. However, although most online retailers employ recommendation agents (RA) to influence consumers’ product choice decision, recommended new products are not accepted and chosen as expected. We argue that it might also be caused by providing a new product recommendation in the wrong way at the wrong time. This study seeks to discuss how new product evaluations sourced from third parties could be employed in RAs as evidence of the superiority for the new product and how the new product recommendation could be provided to a consumer at the right time so that it can be accepted and finally chosen during the consumer’s decision-making process. A 2*2 controlled laboratory experiment was conducted to understand the selection of new product recommendation sources and recommendation timing. Human subjects were randomly assigned to one of the four treatments to minimize the effects of individual differences on the results. Participants were told to make purchase choices from our product categories. We find that a new product recommended right after a similar existing product and with the source of the expert review will be more likely to be accepted. Based on this study, both theoretical and practical contributions are provided regarding new product recommendation.Keywords: new product recommendation, recommendation timing, recommendation source, recommendation agents
Procedia PDF Downloads 1541443 The Impact of Online Advertising on Consumer Purchase Behaviour Based on Malaysian Organizations
Authors: Naser Zourikalatehsamad, Seyed Abdorreza Payambarpour, Ibrahim Alwashali, Zahra Abdolkarimi
Abstract:
The paper aims to evaluate the effect of online advertising on consumer purchase behavior in Malaysian organizations. The paper has potential to extend and refine theory. A survey was distributed among Students of UTM university during the winter 2014 and 160 responses were collected. Regression analysis was used to test the hypothesized relationships of the model. Result shows that the predictors (cost saving factor, convenience factor and customized product or services) have positive impact on intention to continue seeking online advertising.Keywords: consumer purchase, convenience, customized product, cost saving, customization, flow theory, mass communication, online advertising ads, online advertising measurement, online advertising mechanism, online intelligence system, self-confidence, willingness to purchase
Procedia PDF Downloads 4811442 ChatGPT Performs at the Level of a Third-Year Orthopaedic Surgery Resident on the Orthopaedic In-training Examination
Authors: Diane Ghanem, Oscar Covarrubias, Michael Raad, Dawn LaPorte, Babar Shafiq
Abstract:
Introduction: Standardized exams have long been considered a cornerstone in measuring cognitive competency and academic achievement. Their fixed nature and predetermined scoring methods offer a consistent yardstick for gauging intellectual acumen across diverse demographics. Consequently, the performance of artificial intelligence (AI) in this context presents a rich, yet unexplored terrain for quantifying AI's understanding of complex cognitive tasks and simulating human-like problem-solving skills. Publicly available AI language models such as ChatGPT have demonstrated utility in text generation and even problem-solving when provided with clear instructions. Amidst this transformative shift, the aim of this study is to assess ChatGPT’s performance on the orthopaedic surgery in-training examination (OITE). Methods: All 213 OITE 2021 web-based questions were retrieved from the AAOS-ResStudy website. Two independent reviewers copied and pasted the questions and response options into ChatGPT Plus (version 4.0) and recorded the generated answers. All media-containing questions were flagged and carefully examined. Twelve OITE media-containing questions that relied purely on images (clinical pictures, radiographs, MRIs, CT scans) and could not be rationalized from the clinical presentation were excluded. Cohen’s Kappa coefficient was used to examine the agreement of ChatGPT-generated responses between reviewers. Descriptive statistics were used to summarize the performance (% correct) of ChatGPT Plus. The 2021 norm table was used to compare ChatGPT Plus’ performance on the OITE to national orthopaedic surgery residents in that same year. Results: A total of 201 were evaluated by ChatGPT Plus. Excellent agreement was observed between raters for the 201 ChatGPT-generated responses, with a Cohen’s Kappa coefficient of 0.947. 45.8% (92/201) were media-containing questions. ChatGPT had an average overall score of 61.2% (123/201). Its score was 64.2% (70/109) on non-media questions. When compared to the performance of all national orthopaedic surgery residents in 2021, ChatGPT Plus performed at the level of an average PGY3. Discussion: ChatGPT Plus is able to pass the OITE with a satisfactory overall score of 61.2%, ranking at the level of third-year orthopaedic surgery residents. More importantly, it provided logical reasoning and justifications that may help residents grasp evidence-based information and improve their understanding of OITE cases and general orthopaedic principles. With further improvements, AI language models, such as ChatGPT, may become valuable interactive learning tools in resident education, although further studies are still needed to examine their efficacy and impact on long-term learning and OITE/ABOS performance.Keywords: artificial intelligence, ChatGPT, orthopaedic in-training examination, OITE, orthopedic surgery, standardized testing
Procedia PDF Downloads 901441 Theory and Practice of Wavelets in Signal Processing
Authors: Jalal Karam
Abstract:
The methods of Fourier, Laplace, and Wavelet Transforms provide transfer functions and relationships between the input and the output signals in linear time invariant systems. This paper shows the equivalence among these three methods and in each case presenting an application of the appropriate (Fourier, Laplace or Wavelet) to the convolution theorem. In addition, it is shown that the same holds for a direct integration method. The Biorthogonal wavelets Bior3.5 and Bior3.9 are examined and the zeros distribution of their polynomials associated filters are located. This paper also presents the significance of utilizing wavelets as effective tools in processing speech signals for common multimedia applications in general, and for recognition and compression in particular. Theoretically and practically, wavelets have proved to be effective and competitive. The practical use of the Continuous Wavelet Transform (CWT) in processing and analysis of speech is then presented along with explanations of how the human ear can be thought of as a natural wavelet transformer of speech. This generates a variety of approaches for applying the (CWT) to many paradigms analysing speech, sound and music. For perception, the flexibility of implementation of this transform allows the construction of numerous scales and we include two of them. Results for speech recognition and speech compression are then included.Keywords: continuous wavelet transform, biorthogonal wavelets, speech perception, recognition and compression
Procedia PDF Downloads 4161440 Analytics Model in a Telehealth Center Based on Cloud Computing and Local Storage
Authors: L. Ramirez, E. Guillén, J. Sánchez
Abstract:
Some of the main goals about telecare such as monitoring, treatment, telediagnostic are deployed with the integration of applications with specific appliances. In order to achieve a coherent model to integrate software, hardware, and healthcare systems, different telehealth models with Internet of Things (IoT), cloud computing, artificial intelligence, etc. have been implemented, and their advantages are still under analysis. In this paper, we propose an integrated model based on IoT architecture and cloud computing telehealth center. Analytics module is presented as a solution to control an ideal diagnostic about some diseases. Specific features are then compared with the recently deployed conventional models in telemedicine. The main advantage of this model is the availability of controlling the security and privacy about patient information and the optimization on processing and acquiring clinical parameters according to technical characteristics.Keywords: analytics, telemedicine, internet of things, cloud computing
Procedia PDF Downloads 3251439 Developing a Shadow Port: A Case Study of Bangkok Port and Laem Chabang Port, Thailand
Authors: C. Bamrungbutr, J. Sillitoe
Abstract:
Maritime transportation has been a crucial part of world economics. Recently, researchers have put effort into studying the mechanisms of how a regional port, in the shadow of a nearby predominant port, can compete and grow. However, limited research has focused on the competition issues for a shadow port which is a capital city port. This study will thus focus on this question of the growth of a capital city port which is under the shadow of the adjacent capital city port by using the two capital city ports of Thailand; Bangkok port (the former main port) and Laem Chabang port (the current main port). For this work, a framework of opportunity capture will be used, and five groups of port development experts (government, council, logistics provider, academia and industry) will be interviewed. The responses will be analysed using the noticing, collecting and thinking model. The resulting analysis will be appropriate for use in developing guidelines for the future management of a range of shadow ports established in a capital city, enabling them to operate in a competitive environment more effectively. The resultant growth of these ports will be a significant factor in increasing the competitiveness of a nation’s maritime transport industry and eventually lead to a boost in the national economy.Keywords: shadow port, Bangkok Port, Laem Chabang Port, port competition
Procedia PDF Downloads 1731438 Consumer Market for Mineral Water and Development Policy in Georgia
Authors: Gulnaz Erkomaishvili
Abstract:
The paper discusses mineral water consumer market and development policy in Georgia, the tools and measures, which will contribute to the production of mineral waters and increase its export. The paper studies and analyses current situation in mineral water production sector as well as the factors affecting increase and reduction of its export. It’s noted that in order to gain and maintain competitive advantage, it’s necessary to provide continuous supply of high-quality goods with modern design, open new distribution channels to enter new markets, carry out broad promotional activities, organize e-commerce. Economic policy plays an important role in protecting markets from counterfeit goods. The state also plays an important role in attracting foreign direct investments. Stable business environment and export-oriented strategy is the basis for the country’s economic growth. Based on the research, the paper suggests the strategy for improving the competitiveness of Georgian mineral waters, relevant conclusions and recommendations are provided.Keywords: mineral waters, consumer market for mineral waters, export of mineral waters, mineral water development policy in Georgia
Procedia PDF Downloads 4291437 Expanding Chance of Palm Oil Market into ASEAN Community: Case Study of Choomporn Palm Oil Cooperative
Authors: Pichamon Chansuchai
Abstract:
This paper studied the expanding market opportunity palm oil ASEAN community: case study of Choomporn Palm Oil Cooperative as qualitative research. The purpose is to study and analyze expanding and linking the liberalization of trade in palm oil products under the terms of cooperation and ASEAN countries. Collection data were collected using participatory observation, in-depth interviews, focus groups, government officials, palm oil cooperative, entrepreneurs and farmers to exchange opinions. The study found that of major competitors is Indonesia and Malaysia which as ASEAM members countries has the potential to produce over Thailand. Thailand government must have a policy to increase the competitiveness of the palm oil Thailand. Using grants from the Free Trade Area fund should add value to agricultural products, palm oil and the development of standard products to meet the needs of the member countries. And creating a learning center of the palm oil sector can transfer knowledge, development of palm species, solution process from planting to harvest care privatization process. And the development of palm oil in order to expand market opportunities for Thailand's palm oil has the potential to be competitive in the neighboring countries and the region.Keywords: palm oil, market, cooperative, ASEAN
Procedia PDF Downloads 500