Search results for: practice performance
3243 Resilience-Based Emergency Bridge Inspection Routing and Repair Scheduling under Uncertainty
Authors: Zhenyu Zhang, Hsi-Hsien Wei
Abstract:
Highway network systems play a vital role in disaster response for disaster-damaged areas. Damaged bridges in such network systems can impede disaster response by disrupting transportation of rescue teams or humanitarian supplies. Therefore, emergency inspection and repair of bridges to quickly collect damage information of bridges and recover the functionality of highway networks is of paramount importance to disaster response. A widely used measure of a network’s capability to recover from disasters is resilience. To enhance highway network resilience, plenty of studies have developed various repair scheduling methods for the prioritization of bridge-repair tasks. These methods assume that repair activities are performed after the damage to a highway network is fully understood via inspection, although inspecting all bridges in a regional highway network may take days, leading to the significant delay in repairing bridges. In reality, emergency repair activities can be commenced as soon as the damage data of some bridges that are crucial to emergency response are obtained. Given that emergency bridge inspection and repair (EBIR) activities are executed simultaneously in the response phase, the real-time interactions between these activities can occur – the blockage of highways due to repair activities can affect inspection routes which in turn have an impact on emergency repair scheduling by providing real-time information on bridge damages. However, the impact of such interactions on the optimal emergency inspection routes (EIR) and emergency repair schedules (ERS) has not been discussed in prior studies. To overcome the aforementioned deficiencies, this study develops a routing and scheduling model for EBIR while accounting for real-time inspection-repair interactions to maximize highway network resilience. A stochastic, time-dependent integer program is proposed for the complex and real-time interacting EBIR problem given multiple inspection and repair teams at locations as set post-disaster. A hybrid genetic algorithm that integrates a heuristic approach into a traditional genetic algorithm to accelerate the evolution process is developed. Computational tests are performed using data from the 2008 Wenchuan earthquake, based on a regional highway network in Sichuan, China, consisting of 168 highway bridges on 36 highways connecting 25 cities/towns. The results show that the simultaneous implementation of bridge inspection and repair activities can significantly improve the highway network resilience. Moreover, the deployment of inspection and repair teams should match each other, and the network resilience will not be improved once the unilateral increase in inspection teams or repair teams exceeds a certain level. This study contributes to both knowledge and practice. First, the developed mathematical model makes it possible for capturing the impact of real-time inspection-repair interactions on inspection routing and repair scheduling and efficiently deriving optimal EIR and ERS on a large and complex highway network. Moreover, this study contributes to the organizational dimension of highway network resilience by providing optimal strategies for highway bridge management. With the decision support tool, disaster managers are able to identify the most critical bridges for disaster management and make decisions on proper inspection and repair strategies to improve highway network resilience.Keywords: disaster management, emergency bridge inspection and repair, highway network, resilience, uncertainty
Procedia PDF Downloads 1133242 A Real-Time Snore Detector Using Neural Networks and Selected Sound Features
Authors: Stelios A. Mitilineos, Nicolas-Alexander Tatlas, Georgia Korompili, Lampros Kokkalas, Stelios M. Potirakis
Abstract:
Obstructive Sleep Apnea Hypopnea Syndrome (OSAHS) is a widespread chronic disease that mostly remains undetected, mainly due to the fact that it is diagnosed via polysomnography which is a time and resource-intensive procedure. Screening the disease’s symptoms at home could be used as an alternative approach in order to alert individuals that potentially suffer from OSAHS without compromising their everyday routine. Since snoring is usually linked to OSAHS, developing a snore detector is appealing as an enabling technology for screening OSAHS at home using ubiquitous equipment like commodity microphones (included in, e.g., smartphones). In this context, this study developed a snore detection tool and herein present the approach and selection of specific sound features that discriminate snoring vs. environmental sounds, as well as the performance of the proposed tool. Furthermore, a Real-Time Snore Detector (RTSD) is built upon the snore detection tool and employed in whole-night sleep sound recordings resulting to a large dataset of snoring sound excerpts that are made freely available to the public. The RTSD may be used either as a stand-alone tool that offers insight to an individual’s sleep quality or as an independent component of OSAHS screening applications in future developments.Keywords: obstructive sleep apnea hypopnea syndrome, apnea screening, snoring detection, machine learning, neural networks
Procedia PDF Downloads 2113241 The Implementation of the Lean Six Sigma Production Process in a Telecommunications Company in Brazil
Authors: Carlos Fontanillas
Abstract:
The implementation of the lean six sigma methodology aims to implement practices to systematically improve processes by eliminating defects, making them cheaper. The implementation of projects with the methodology uses a division into five phases: definition, measurement, analysis, implementation, and control. In this process, it is understood that the implementation of said methodology generates benefits to organizations that adhere through the improvement of their processes. In the case of a telecommunications company, it was realized that the implementation of a lean six sigma project contributed to the improvement of the presented process, generating a financial return with the avoided cost. However, such study has limitations such as a specific segment of performance and procedure, i.e., it can not be defined that return under other circumstances will be the same. It is also concluded that lean six sigma projects tend to contribute to improved processes evaluated due to their methodology that is based on statistical analysis and quality management tools and can generate a financial return. It is hoped that the present study can be used to provide a clearer view of the methodology for entrepreneurs who wish to implement process improvement actions in their companies, as well as to provide a foundation for professionals working with lean six sigma projects. After the review of the processes, the completion of the project stages and the monitoring for three months in partnership with the owner of the process to ensure the effectiveness of the actions, the project was completed with the objective reached. There was an average of 60% reduction with the issuance of undue invoices generated after the deactivation and it was possible to extend the project to other companies, which allowed a reduction well above the initially stipulated target.Keywords: quality, process, lean six sigma, organization
Procedia PDF Downloads 1353240 Novel Aspects of Merger Control Pertaining to Nascent Acquisition: An Analytical Legal Research
Authors: Bhargavi G. Iyer, Ojaswi Bhagat
Abstract:
It is often noted that the value of a novel idea lies in its successful implementation. However, successful implementation requires the nurturing and encouragement of innovation. Nascent competitors are a true representation of innovation in any given industry. A nascent competitor is an entity whose prospective innovation poses a future threat to an incumbent dominant competitor. While a nascent competitor benefits in several ways, it is also exposed significantly and is at greater risk of facing the brunt of exclusionary practises and abusive conduct by dominant incumbent competitors in the industry. This research paper aims to explore the risks and threats faced by nascent competitors and analyse the benefits they accrue as well as the advantages they proffer to the economy; through an analytical, critical study. In such competitive market environments, a rise of the acquisitions of nascent competitors by the incumbent dominants is observed. Therefore, this paper will examine the dynamics of nascent acquisition. Further, this paper hopes to specifically delve into the role of antitrust bodies in regulating nascent acquisition. This paper also aspires to deal with the question how to distinguish harmful from harmless acquisitions in order to facilitate ideal enforcement practice. This paper proposes mechanisms of scrutiny in order to ensure healthy market practises and efficient merger control in the context of nascent acquisitions. Taking into account the scope and nature of the topic, as well as the resources available and accessible, a combination of the methods of doctrinal research and analytical research were employed, utilising secondary sources in order to assess and analyse the subject of research. While legally evaluating the Killer Acquisition theory and the Nascent Potential Acquisition theory, this paper seeks to critically survey the precedents and instances of nascent acquisitions. In addition to affording a compendious account of the legislative framework and regulatory mechanisms in the United States, the United Kingdom, and the European Union; it hopes to suggest an internationally practicable legal foundation for domestic legislation and enforcement to adopt. This paper hopes to appreciate the complexities and uncertainties with respect to nascent acquisitions and attempts to suggest viable and plausible policy measures in antitrust law. It additionally attempts to examine the effects of such nascent acquisitions upon the consumer and the market economy. This paper weighs the argument of shifting the evidentiary burden on to the merging parties in order to improve merger control and regulation and expounds on its discovery of the strengths and weaknesses of the approach. It is posited that an effective combination of factual, legal, and economic analysis of both the acquired and acquiring companies possesses the potential to improve ex post and ex ante merger review outcomes involving nascent companies; thus, preventing anti-competitive practises. This paper concludes with an analysis of the possibility and feasibility of industry-specific identification of anti-competitive nascent acquisitions and implementation of measures accordingly.Keywords: acquisition, antitrust law, exclusionary practises merger control, nascent competitor
Procedia PDF Downloads 1683239 Improved Embroidery Based Textile Electrodes for Sustainability of Impedance Measurement Characteristics
Authors: Bulcha Belay Etana
Abstract:
Research shows that several challenges are to be resolved for textile sensors and wearable smart textiles systems to make it accurate and reproducible minimizing variability issues when tested. To achieve this, we developed stimulating embroidery electrode with three different filling textiles such as 3Dknit, microfiber, and nonwoven fabric, and tested with FTT for high recoverability on compression. Hence The impedance characteristics of wetted electrodes were caried out after 1hr of wetting under normal environmental conditions. The wetted 3D knit (W-3D knit), Wetted nonwoven (W-nonwoven), and wetted microfiber (W-microfiber) developed using Satin stitch performed better than a dry standard stitch or dry Satin stitch electrodes. Its performance was almost the same as that of the gel electrode (Ag/AgCl) as shown by the impedance result in figure 2 .The impedance characteristics of Dry and wetted 3D knit based Embroidered electrodes are better than that of the microfiber, and nonwoven filling textile. This is due to the fact that 3D knit fabric has high recoverability on compression to retain electrolyte gel than microfiber, and nonwoven. However,The non-woven fabric held the electrolyte for longer time without releasing it to the skin when needed, thus making its impedance characteristics poor as observed from the results. Whereas the dry Satin stitch performs better than the standard stitch based developed electrode. The inter electrode distance of all types of the electrode was 25mm, with the area of the electrode being 20mm by 20mm. Detail evaluation and further analysis is in progress for EMG monitoring applicationKeywords: impedance, moisture retention, 3D knit fabric, microfiber, nonwoven
Procedia PDF Downloads 1443238 Problem-Based Learning for Hospitality Students. The Case of Madrid Luxury Hotels and the Recovery after the Covid Pandemic
Authors: Caridad Maylin-Aguilar, Beatriz Duarte-Monedero
Abstract:
Problem-based learning (PBL) is a useful tool for adult and practice oriented audiences, as University students. As a consequence of the huge disruption caused by the COVID pandemic in the hospitality industry, hotels of all categories closed down in Spain from March 2020. Since that moment, the luxury segment was blooming with optimistic prospects for new openings. Hence, Hospitality students were expecting a positive situation in terms of employment and career development. By the beginning of the 2020-21 academic year, these expectations were seriously harmed. By October 2020, only 9 of the 32 hotels in the luxury segment were opened with an occupation rate of 9%. Shortly after, the evidence of a second wave affecting especially Spain and the homelands of incoming visitors bitterly smashed all forecasts. In accordance with the situation, a team of four professors and practitioners, from four different subject areas, developed a real case, inspired in one of these hotels, the 5-stars Emperatriz by Barceló. Students in their 2nd course were provided with real information as marketing plans, profit and losses and operational accounts, employees profiles and employment costs. The challenge for them was to act as consultants, identifying potential courses of action, related to best, base and worst case. In order to do that, they were organized in teams and supported by 4th course students. Each professor deployed the problem in their subject; thus, research on the customers behavior and feelings were necessary to review, as part of the marketing plan, if the current offering of the hotel was clear enough to guarantee and to communicate a safe environment, as well as the ranking of other basic, supporting and facilitating services. Also, continuous monitoring of competitors’ activity was necessary to understand what was the behavior of the open outlets. The actions designed after the diagnose were ranked in accordance with their impact and feasibility in terms of time and resources. Also they must be actionable by the current staff of the hotel and their managers and a vision of internal marketing was appreciated. After a process of refinement, seven teams presented their conclusions to Emperatriz general manager and the rest of professors. Four main ideas were chosen, and all the teams, irrespectively of authorship, were asked to develop them to the state of a minimum viable product, with estimations of impacts and costs. As the process continues, students are nowadays accompanying the hotel and their staff in the prudent reopening of facilities, almost one year after the closure. From a professor’s point of view, key learnings were 1.- When facing a real problem, a holistic view is needed. Therefore, the vision of subjects as silos collapses, 2- When educating new professionals, providing them with the resilience and resistance necessaries to deal with a problem is always mandatory, but now seems more relevant and 3.- collaborative work and contact with real practitioners in such an uncertain and changing environment is a challenge, but it is worth when considering the learning result and its potential.Keywords: problem-based learning, hospitality recovery, collaborative learning, resilience
Procedia PDF Downloads 1873237 Implementation of Nutrition Sensitive Agriculture in the Central Province of Zambia
Authors: G. Chipili, J. Msuya
Abstract:
The Central Province of Zambia contains the majority of the nation’s malnourished children, despite being the most productive province in terms of Agriculture. Most studies in the province have not paid attention to the linkages between agriculture performance and nutrition outcomes of the population. In light of this knowledge gap, this study focused on the linkage between nutrition and agriculture. In 2010 the Ministry of Agriculture in the Central Province while working with Non-Governmental Organizations (NGOs), the Ministry of Health and the Ministry of Education started a pilot project in Kapiri-Mponshi on Orange-fleshed Sweet Potatoes and Orange Maize and educating farmers on the importance of crop diversity. The study assessed the extent to which the small scale farmers are implementing the best practices of nutrition-sensitive agriculture in the Central Province. This study sought to determine the association of crop diversity and nutritional status of children aged 6-59 months in Kapiri-Mposhi district in the Central Province of Zambia. A cross-sectional descriptive study was conducted using a structured questionnaire. A total of 365 households were randomly sampled and the nutritional status of one child from each household assessed using anthropometric measurements. A total of 100 children were included in the study. Up to 21% of the children were stunted; 2% were wasted; and 9% underweight. There was a significant relationship between crops grown in households (ground nuts, maize and mangoes) and Z-scores for stunting (HAZ) and underweight (WAZ) (p< 0.05). This study has established that farmers may not diversify if they have high market demands on the staple.Keywords: agriculture, crop diversity, children, nutrition
Procedia PDF Downloads 3103236 Hybrid GNN Based Machine Learning Forecasting Model For Industrial IoT Applications
Authors: Atish Bagchi, Siva Chandrasekaran
Abstract:
Background: According to World Bank national accounts data, the estimated global manufacturing value-added output in 2020 was 13.74 trillion USD. These manufacturing processes are monitored, modelled, and controlled by advanced, real-time, computer-based systems, e.g., Industrial IoT, PLC, SCADA, etc. These systems measure and manipulate a set of physical variables, e.g., temperature, pressure, etc. Despite the use of IoT, SCADA etc., in manufacturing, studies suggest that unplanned downtime leads to economic losses of approximately 864 billion USD each year. Therefore, real-time, accurate detection, classification and prediction of machine behaviour are needed to minimise financial losses. Although vast literature exists on time-series data processing using machine learning, the challenges faced by the industries that lead to unplanned downtimes are: The current algorithms do not efficiently handle the high-volume streaming data from industrial IoTsensors and were tested on static and simulated datasets. While the existing algorithms can detect significant 'point' outliers, most do not handle contextual outliers (e.g., values within normal range but happening at an unexpected time of day) or subtle changes in machine behaviour. Machines are revamped periodically as part of planned maintenance programmes, which change the assumptions on which original AI models were created and trained. Aim: This research study aims to deliver a Graph Neural Network(GNN)based hybrid forecasting model that interfaces with the real-time machine control systemand can detect, predict machine behaviour and behavioural changes (anomalies) in real-time. This research will help manufacturing industries and utilities, e.g., water, electricity etc., reduce unplanned downtimes and consequential financial losses. Method: The data stored within a process control system, e.g., Industrial-IoT, Data Historian, is generally sampled during data acquisition from the sensor (source) and whenpersistingin the Data Historian to optimise storage and query performance. The sampling may inadvertently discard values that might contain subtle aspects of behavioural changes in machines. This research proposed a hybrid forecasting and classification model which combines the expressive and extrapolation capability of GNN enhanced with the estimates of entropy and spectral changes in the sampled data and additional temporal contexts to reconstruct the likely temporal trajectory of machine behavioural changes. The proposed real-time model belongs to the Deep Learning category of machine learning and interfaces with the sensors directly or through 'Process Data Historian', SCADA etc., to perform forecasting and classification tasks. Results: The model was interfaced with a Data Historianholding time-series data from 4flow sensors within a water treatment plantfor45 days. The recorded sampling interval for a sensor varied from 10 sec to 30 min. Approximately 65% of the available data was used for training the model, 20% for validation, and the rest for testing. The model identified the anomalies within the water treatment plant and predicted the plant's performance. These results were compared with the data reported by the plant SCADA-Historian system and the official data reported by the plant authorities. The model's accuracy was much higher (20%) than that reported by the SCADA-Historian system and matched the validated results declared by the plant auditors. Conclusions: The research demonstrates that a hybrid GNN based approach enhanced with entropy calculation and spectral information can effectively detect and predict a machine's behavioural changes. The model can interface with a plant's 'process control system' in real-time to perform forecasting and classification tasks to aid the asset management engineers to operate their machines more efficiently and reduce unplanned downtimes. A series of trialsare planned for this model in the future in other manufacturing industries.Keywords: GNN, Entropy, anomaly detection, industrial time-series, AI, IoT, Industry 4.0, Machine Learning
Procedia PDF Downloads 1523235 Livable City as a New Approach for Sustainable Urban Planning
Authors: Nora Mohammed Rehan Hussien
Abstract:
Cities all over the world face daunting urban challenges that have increased in scope in recent years. The biggest challenge includes issues of urban planning, housing, safety aspects, scarcity of land for development and traffic congestion. So every city in the world aspires to adopt the strategy of ‘Livable City’ which guarantees the cities urbanization manner that preserves the environment, and achieve the greatest benefit from the resources and achieve a good standard of living. Essentially, a livable city should possess basic yet unique attributes to welcome people from all strata of society without marginalizing any particular group. Most of these cities began to move towards sustainability and livability to enhance quality and performance of urban services, to reduce costs and resources consumption, to engage more affectivity and actively with its citizens, and to describe the quality of life and the characteristics of cities that make them livable. From here came the idea of the research which is creating ‘A framework of livable and sustainable city’ as a sustainable approach that must follow to achieve the principle of sustainable livability. From this point of view the research deals with one of the most successful case studies all over the world in’ livable cities system’ (Vienna) to know how to explore and understand the issues and challenges in becoming a full- livable and creative city through analyzing the criteria, principles and strategy of livable city then deducing the framework towards this concept. Finally, it suggests a set of recommendations help for applying the concept of livable city.Keywords: quality of life, livability & livable city, sustainability, sustainable city
Procedia PDF Downloads 2863234 Development of a Double Coating Technique for Recycled Concrete Aggregates Used in Hot-mix Asphalt
Authors: Abbaas I. Kareem, H. Nikraz
Abstract:
The use of recycled concrete aggregates (RCAs) in hot-mix asphalt (HMA) production could ease natural aggregate shortage and maintain sustainability in modern societies. However, it was the attached cement mortar and other impurities that make the RCAs behave differently than high-quality aggregates. Therefore, different upgrading treatments were suggested to enhance its properties before being used in HMA production. Disappointedly, some of these treatments had caused degradation to some RCA properties. In order to avoid degradation, a coating technique is developed. This technique is based on combining of two main treatments, so it is named as double coating technique (DCT). Dosages of 0%, 20%, 40% and 60% uncoated RCA, RCA coated with Cement Slag Paste (CSP), and Double Coated Recycled Concrete Aggregates (DCRCAs) in place of granite aggregates were evaluated. The results indicated that the DCT improves strength and reduces water absorption of the DCRCAs compared with uncoated RCAs and RCA coated with CSP. In addition, the DCRCA asphalt mixtures exhibit stability values higher than those obtained for mixes made with granite aggregates, uncoated RCAs and RCAs coated with CSP. Also, the DCRCA asphalt mixtures require less bitumen to achieve the optimum bitumen content (OBC) than those manufactured with uncoated RCA and RCA-coated with CSP. Although the results obtained were encouraging, more testing is required in order to examine the effect of the DCT on performance properties of DCRCA- asphalt mixtures such as rutting and fatigue.Keywords: aggregate crashed value, double coating technique, hot mix asphalt, Marshall parameters, recycled concrete aggregates
Procedia PDF Downloads 2903233 Geo-spatial Analysis: The Impact of Drought and Productivity to the Poverty in East Java, Indonesia
Authors: Yessi Rahmawati, Andiga Kusuma Nur Ichsan, Fitria Nur Anggraeni
Abstract:
Climate change is one of the focus studies that many researchers focus on in the present world, either in the emerging countries or developed countries which is one of the main pillars on Sustainable Development Goals (SDGs). There is on-going discussion that climate change can affect natural disaster, namely drought, storm, flood, and many others; and also the impact on human life. East Java is the best performances and has economic potential that should be utilized. Despite the economic performance and high agriculture productivity, East Java has the highest number of people under the poverty line. The present study is to measuring the contribution of drought and productivity of agriculture to the poverty in East Java, Indonesia, using spatial econometrics analysis. The authors collect data from 2008 – 2015 from Indonesia’s Ministry of Agriculture, Natural Disaster Management Agency (BNPB), and Official Statistic (BPS). First, the result shows the existence of spatial autocorrelation between drought and poverty. Second, the present research confirms that there is strong relationship between drought and poverty. the majority of farmer in East Java are still relies on the rainfall and traditional irrigation system. When the drought strikes, mostly the farmer will lose their income; make them become more vulnerable household, and trap them into poverty line. The present research will give empirical studies regarding drought and poverty in the academics world.Keywords: SDGs, drought, poverty, Indonesia, spatial econometrics, spatial autocorrelation
Procedia PDF Downloads 1573232 Simulation of Nonlinear Behavior of Reinforced Concrete Slabs Using Rigid Body-Spring Discrete Element Method
Authors: Felix Jr. Garde, Eric Augustus Tingatinga
Abstract:
Most analysis procedures of reinforced concrete (RC) slabs are based on elastic theory. When subjected to large forces, however, slabs deform beyond elastic range and the study of their behavior and performance require nonlinear analysis. This paper presents a numerical model to simulate nonlinear behavior of RC slabs using rigid body-spring discrete element method. The proposed slab model composed of rigid plate elements and nonlinear springs is based on the yield line theory which assumes that the nonlinear behavior of the RC slab subjected to transverse loads is contained in plastic or yield-lines. In this model, the displacement of the slab is completely described by the rigid elements and the deformation energy is concentrated in the flexural springs uniformly distributed at the potential yield lines. The spring parameters are determined from comparison of transverse displacements and stresses developed in the slab obtained using FEM and the proposed model with assumed homogeneous material. Numerical models of typical RC slabs with varying geometry, reinforcement, support conditions, and loading conditions, show reasonable agreement with available experimental data. The model was also shown to be useful in investigating dynamic behavior of slabs.Keywords: RC slab, nonlinear behavior, yield line theory, rigid body-spring discrete element method
Procedia PDF Downloads 3273231 Determining Water Quantity from Sprayer Nozzle Using Particle Image Velocimetry (PIV) and Image Processing Techniques
Authors: M. Nadeem, Y. K. Chang, C. Diallo, U. Venkatadri, P. Havard, T. Nguyen-Quang
Abstract:
Uniform distribution of agro-chemicals is highly important because there is a significant loss of agro-chemicals, for example from pesticide, during spraying due to non-uniformity of droplet and off-target drift. Improving the efficiency of spray pattern for different cropping systems would reduce energy, costs and to minimize environmental pollution. In this paper, we examine the water jet patterns in order to study the performance and uniformity of water distribution during the spraying process. We present a method to quantify the water amount from a sprayer jet by using the Particle Image Velocimetry (PIV) system. The results of the study will be used to optimize sprayer or nozzles design for chemical application. For this study, ten sets of images were acquired by using the following PIV system settings: double frame mode, trigger rate is 4 Hz, and time between pulsed signals is 500 µs. Each set of images contained different numbers of double-framed images: 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100 at eight different pressures 25, 50, 75, 100, 125, 150, 175 and 200 kPa. The PIV images obtained were analysed using custom-made image processing software for droplets and volume calculations. The results showed good agreement of both manual and PIV measurements and suggested that the PIV technique coupled with image processing can be used for a precise quantification of flow through nozzles. The results also revealed that the method of measuring fluid flow through PIV is reliable and accurate for sprayer patterns.Keywords: image processing, PIV, quantifying the water volume from nozzle, spraying pattern
Procedia PDF Downloads 2423230 There Is a Reversal Effect of Relative Age in Elite Senior Athletics: Successful Young Men Are «Early-Born Athletes», While in Adults There Are More «Late-Born» Athletes
Authors: Bezuglov Eduard, Achkasov Evgeniy, Emanov Anton, Shagiakhmetova Larisa, Pirmakhanov Bekzhan, Morgans Ryland
Abstract:
Background: Previous studies have found that there is a wide range of the relative age effect (RAE) in young athletes, which is dependent on age and gender. However, there is currently scant data comparing the prevalence of the RAE in successful athletes across different age groups from the same sport during the same time period. We aimed to compare the prevalence of the RAE in different age groups of successful athletes. Materials and methods: The date of birth of all youth (under 18 years old) and senior (20 years and above) male and female track and field athletes were analyzed. All athletes had entered the World Top 20 rankings in disciplines where performance rules were the same at youth and adult levels. Data were collected from the website www. tilostopaja.eu between 1999 and 2006. Results: A significant prevalence of RAE in successful youth track and field athletes were reported. Early-born (61,1%) and late-born (38,9%) athletes were represented respectively (χ2 = 131,1, p < 0,001, ϖ = 0,24). The RAE is not significant in successful senior track and field athletes. Athletes born in the first half of the year are only 0.4% more prevalent than athletes born in the second half of the year (50,2% and 49,8%, respectively). Olympic Games and World Championship medalists are more often late-born athletes (44,1% and 55,9%, respectively) (p = 0,014, χ2 = 6,1, ϖ = 0,20). Conclusion: The RAE is only prevalent in successful young track and field athletes. The RAE was not observed in successful senior track and field athletes, regardless of gender, in any of the analyzed discipline groups. The RAE reverse was observed in successful senior track and field athletes.Keywords: relative age effect, track, and field, talent identification, underdog effect
Procedia PDF Downloads 1583229 Efficient Credit Card Fraud Detection Based on Multiple ML Algorithms
Authors: Neha Ahirwar
Abstract:
In the contemporary digital era, the rise of credit card fraud poses a significant threat to both financial institutions and consumers. As fraudulent activities become more sophisticated, there is an escalating demand for robust and effective fraud detection mechanisms. Advanced machine learning algorithms have become crucial tools in addressing this challenge. This paper conducts a thorough examination of the design and evaluation of a credit card fraud detection system, utilizing four prominent machine learning algorithms: random forest, logistic regression, decision tree, and XGBoost. The surge in digital transactions has opened avenues for fraudsters to exploit vulnerabilities within payment systems. Consequently, there is an urgent need for proactive and adaptable fraud detection systems. This study addresses this imperative by exploring the efficacy of machine learning algorithms in identifying fraudulent credit card transactions. The selection of random forest, logistic regression, decision tree, and XGBoost for scrutiny in this study is based on their documented effectiveness in diverse domains, particularly in credit card fraud detection. These algorithms are renowned for their capability to model intricate patterns and provide accurate predictions. Each algorithm is implemented and evaluated for its performance in a controlled environment, utilizing a diverse dataset comprising both genuine and fraudulent credit card transactions.Keywords: efficient credit card fraud detection, random forest, logistic regression, XGBoost, decision tree
Procedia PDF Downloads 723228 Evaluating Gender Sensitivity and Policy: Case Study of an EFL Textbook in Armenia
Authors: Ani Kojoyan
Abstract:
Linguistic studies have been investigating a connection between gender and linguistic development since 1970s. Scholars claim that gender differences in first and second language learning are socially constructed. Recent studies to language learning and gender reveal that second language acquisition is also a social phenomenon directly influencing one’s gender identity. Those responsible for designing language learning-teaching materials should be encouraged to understand the importance of and address the gender sensitivity accurately in textbooks. Writing or compiling a textbook is not an easy task; it requires strong academic abilities, patience, and experience. For a long period of time Armenia has been involved in the compilation process of a number of foreign language textbooks. However, there have been very few discussions or evaluations of those textbooks which will allow specialists to theorize that practice. The present paper focuses on the analysis of gender sensitivity issues and policy aspects involved in an EFL textbook. For the research the following material has been considered – “A Basic English Grammar: Morphology”, first printed in 2011. The selection of the material is not accidental. First, the mentioned textbook has been widely used in university teaching over years. Secondly, in Armenia “A Basic English Grammar: Morphology” has considered one of the most successful English grammar textbooks in a university teaching environment and served a source-book for other authors to compile and design their textbooks. The present paper aims to find out whether an EFL textbook is gendered in the Armenian teaching environment, and whether the textbook compilers are aware of gendered messages while compiling educational materials. It also aims at investigating students’ attitude toward the gendered messages in those materials. And finally, it also aims at increasing the gender sensitivity among book compilers and educators in various educational settings. For this study qualitative and quantitative research methods of analyses have been applied, the quantitative – in terms of carrying out surveys among students (45 university students, 18-25 age group), and the qualitative one – by discourse analysis of the material and conducting in-depth and semi-structured interviews with the Armenian compilers of the textbook (interviews with 3 authors). The study is based on passive and active observations and teaching experience done in a university classroom environment in 2014-2015, 2015-2016. The findings suggest that the discussed and analyzed teaching materials (145 extracts and examples) include traditional examples of intensive use of language and role-modelling, particularly, men are mostly portrayed as active, progressive, aggressive, whereas women are often depicted as passive and weak. These modeled often serve as a ‘reliable basis’ for reinforcing the traditional roles that have been projected on female and male students. The survey results also show that such materials contribute directly to shaping learners’ social attitudes and expectations around issues of gender. The applied techniques and discussed issues can be generalized and applied to other foreign language textbook compilation processes, since those principles, regardless of a language, are mostly the same.Keywords: EFL textbooks, gender policy, gender sensitivity, qualitative and quantitative research methods
Procedia PDF Downloads 1983227 An Assessment of Bathymetric Changes in the Lower Usuma Reservoir, Abuja, Nigera
Authors: Rayleigh Dada Abu, Halilu Ahmad Shaba
Abstract:
Siltation is a serious problem that affects public water supply infrastructures such as dams and reservoirs. It is a major problem which threatens the performance and sustainability of dams and reservoirs. It reduces the dam capacity for flood control, potable water supply, changes water stage, reduces water quality and recreational benefits. The focus of this study is the Lower Usuma reservoir. At completion the reservoir had a gross storage capacity of 100 × 106 m3 (100 million cubic metres), a maximum operational level of 587.440 m a.s.l., with a maximum depth of 49 m and a catchment area of 241 km2 at dam site with a daily designed production capacity of 10,000 cubic metres per hour. The reservoir is 1,300 m long and feeds the treatment plant mainly by gravity. The reservoir became operational in 1986 and no survey has been conducted to determine its current storage capacity and rate of siltation. Hydrographic survey of the reservoir by integrated acoustic echo-sounding technique was conducted in November 2012 to determine the level and rate of siltation. The result obtained shows that the reservoir has lost 12.0 meters depth to siltation in 26 years of its operation; indicating 24.5% loss in installed storage capacity. The present bathymetric survey provides baseline information for future work on siltation depth and annual rates of storage capacity loss for the Lower Usuma reservoir.Keywords: sedimentation, lower Usuma reservoir, acoustic echo sounder, bathymetric survey
Procedia PDF Downloads 5193226 Development of a Semiconductor Material Based on Functionalized Graphene: Application to the Detection of Nitrogen Oxides (NOₓ)
Authors: Djamil Guettiche, Ahmed Mekki, Tighilt Fatma-Zohra, Rachid Mahmoud
Abstract:
The aim of this study was to synthesize and characterize conducting polymer composites of polypyrrole and graphene, including pristine and surface-treated graphene (PPy/GO, PPy/rGO, and PPy/rGO-ArCOOH), for use as sensitive elements in a homemade chemiresistive module for on-line detection of nitrogen oxides vapors. The chemiresistive module was prepared, characterized, and evaluated for performance. Structural and morphological characterizations of the composite were carried out using FTIR, Raman spectroscopy, and XRD analyses. After exposure to NO and NO₂ gases in both static and dynamic modes, the sensitivity, selectivity, limit of detection, and response time of the sensor were determined at ambient temperature. The resulting sensor showed high sensitivity, selectivity, and reversibility, with a low limit of detection of 1 ppm. A composite of polypyrrole and graphene functionalized with aryl 4-carboxy benzene diazonium salt was synthesized and characterized using FTIR, scanning electron microscopy, transmission electron microscopy, UV-visible, and X-ray diffraction. The PPy-rGOArCOOH composite exhibited a good electrical resistance response to NO₂ at room temperature and showed enhanced NO₂-sensing properties compared to PPy-rGO thin films. The selectivity and stability of the NO₂ sensor based on the PPy/rGO-ArCOOH nanocomposite were also investigated.Keywords: conducting polymers, surface treated graphene, diazonium salt, polypyrrole, Nitrogen oxide sensing
Procedia PDF Downloads 833225 Comparative Analysis of Motor Insurance Claims using Machine Learning
Authors: Francis Kwame Bukari, Maclean Acheampong Yeboah
Abstract:
From collective hunting to contemporary financial markets, the concept of risk sharing in insurance has evolved significantly. In today's insurance landscape, statistical analysis plays a pivotal role in determining premiums and assessing the likelihood of insurance claims. Accurately estimating motor insurance claims remains a challenge, allowing insurance companies to pull much of their money to cover claims, which in the long run will affect their reserves and impact their profitability. Advanced machine learning algorithms can enhance accuracy and profitability. The primary objectives of this study encompassed the prediction of motor insurance claims through the utilization of Artificial Neural Networks (ANN) and Random Forest (RF). Additionally, a comparative analysis was conducted to assess the performance of these two models in the domain of claim prediction. The study drew upon secondary data derived from motor insurance claims, employing a range of techniques, including data preprocessing, model training, and model evaluation. To mitigate potential biases, a random over-sampler was used to balance the target variable within the preprocessed dataset. The Random Forest model outperformed the ANN model, achieving an accuracy rate of 90.33% compared to the ANN model's accuracy of 86.33%. This study highlights the importance of modern data-driven approaches in enhancing accuracy and profitability in the insurance industry.Keywords: risk, insurance claims, artificial neural network, random forest, over-sampler, profitability
Procedia PDF Downloads 93224 New Analytical Current-Voltage Model for GaN-based Resonant Tunneling Diodes
Authors: Zhuang Guo
Abstract:
In the field of GaN-based resonant tunneling diodes (RTDs) simulations, the traditional Tsu-Esaki formalism failed to predict the values of peak currents and peak voltages in the simulated current-voltage(J-V) characteristics. The main reason is that due to the strong internal polarization fields, two-dimensional electron gas(2DEG) accumulates at emitters, resulting in 2D-2D resonant tunneling currents, which become the dominant parts of the total J-V characteristics. By comparison, based on the 3D-2D resonant tunneling mechanism, the traditional Tsu-Esaki formalism cannot predict the J-V characteristics correctly. To overcome this shortcoming, we develop a new analytical model for the 2D-2D resonant tunneling currents generated in GaN-based RTDs. Compared with Tsu-Esaki formalism, the new model has made the following modifications: Firstly, considering the Heisenberg uncertainty, the new model corrects the expression of the density of states around the 2DEG eigenenergy levels at emitters so that it could predict the half width at half-maximum(HWHM) of resonant tunneling currents; Secondly, taking into account the effect of bias on wave vectors on the collectors, the new model modifies the expression of the transmission coefficients which could help to get the values of peak currents closer to the experiment data compared with Tsu-Esaki formalism. The new analytical model successfully predicts the J-V characteristics of GaN-based RTDs, and it also reveals more detailed mechanisms of resonant tunneling happened in GaN-based RTDs, which helps to design and fabricate high-performance GaN RTDs.Keywords: GaN-based resonant tunneling diodes, tsu-esaki formalism, 2D-2D resonant tunneling, heisenberg uncertainty
Procedia PDF Downloads 793223 The Impact of Combined Loading on Lateral Capacity and Group Efficiency of Helical Piles
Authors: Hesham Hamdy Abdulmohsen, Ahmed Shawky Abdel Aziz, Mona Fawzy Aldaghma
Abstract:
Helical piles have gained significant attention as efficient alternatives for deep foundations due to their rapid installation process and dual functionality in compression and tension. They experience various combinations of axial and lateral loads. While extensive research has explored helical pile behavior under individual axial or lateral loads, the effects of combined axial compression and lateral loads still need further study. This paper compares experimental and numerical (PLAXIS-3D) results for vertical helical-pile groups under combined loads. The study aims to clarify the impact of key factors, including helix location and lateral load direction, on the lateral capacity of helical-pile groups and, consequently, their overall efficiency. The study concludes that the lateral capacity of the helical-pile group significantly depends on the helix location within the pile shaft length. Optimal lateral performance occurs when helices are positioned at a depth ratio of H/L = 0.4. Furthermore, rectangular plan distribution groups exhibit greater lateral capacity when subjected to lateral loads aligned with their long axis. The presence of vertical compression loading enhances the lateral capacity of the group, with the specific enhancement depending on the value of the vertical compression load, lateral load direction, and helix location.Keywords: experimental, numerical model, lateral loading, group efficiency, helical piles
Procedia PDF Downloads 513222 Mindfulness as a Predictor of School Results and Well-Being in Adolescence: The Mediating Role of Emotional Intelligence
Authors: Ines Vieira, Luisa Faria
Abstract:
Globally, half of all mental disorders begin by age 14 and the current gap of poorly addressed adolescent mental health has future consequences in adulthood. Schoolwork pressure to achieve good performance in secondary education might lead to lower levels of life satisfaction in youth and individual emotional competencies are crucial in this life stage. The present study aimed to determine how mindfulness relates to school achievements and well-being in adolescence and whether such a relationship might be mediated by emotional intelligence. We also studied the moderation interaction effects of gender and the involvement in non-curricular activities. A sample of 597 Portuguese adolescents aged 15 to 17 years old (N=597; 292 girls; 298 boys), enrolled in secondary education completed self-report measures of mindfulness (CAMM), emotional intelligence (TEIQue-ASF) and well-being (SWLS) in their Portuguese versions. Using SPSS and AMOS, the results were obtained through path analyses and multiple linear regression. A Confirmatory Factor Analysis was also conducted. The correlation coefficients reported a positive and statistically significant relationship between mindfulness, emotional intelligence and well-being. Regression analysis indicated that mindfulness reduced its influence on well-being and on school results when emotional intelligence was added to the model. Overall, our results provided further evidence supporting the development of robust hypotheses by perceiving the relevance of mindfulness and individual emotional competencies to school achievements and well-being in a way of improving adolescents’ health, wellness, and school success.Keywords: mindfulness, emotional intelligence, well-being, adolescence, school
Procedia PDF Downloads 863221 Optimized Real Ground Motion Scaling for Vulnerability Assessment of Building Considering the Spectral Uncertainty and Shape
Authors: Chen Bo, Wen Zengping
Abstract:
Based on the results of previous studies, we focus on the research of real ground motion selection and scaling method for structural performance-based seismic evaluation using nonlinear dynamic analysis. The input of earthquake ground motion should be determined appropriately to make them compatible with the site-specific hazard level considered. Thus, an optimized selection and scaling method are established including the use of not only Monte Carlo simulation method to create the stochastic simulation spectrum considering the multivariate lognormal distribution of target spectrum, but also a spectral shape parameter. Its applications in structural fragility analysis are demonstrated through case studies. Compared to the previous scheme with no consideration of the uncertainty of target spectrum, the method shown here can make sure that the selected records are in good agreement with the median value, standard deviation and spectral correction of the target spectrum, and greatly reveal the uncertainty feature of site-specific hazard level. Meanwhile, it can help improve computational efficiency and matching accuracy. Given the important infection of target spectrum’s uncertainty on structural seismic fragility analysis, this work can provide the reasonable and reliable basis for structural seismic evaluation under scenario earthquake environment.Keywords: ground motion selection, scaling method, seismic fragility analysis, spectral shape
Procedia PDF Downloads 2983220 Effect of Formative Evaluation with Feedback on Students Economics Achievement in Secondary Education
Authors: Salihu Abdullahi Galle
Abstract:
Students' performance in Economics in schools and on standardized exams in Nigeria has been worrying throughout the years, owing to some teachers' use of conventional and lecture teaching methods. Other obstacles include a lack of training, standardized testing pressure, and aversion to change, all of which can have an impact on students' cognitive ability in Economics and future careers. The researchers employed formative evaluation with feedback (FEFB) to support the teaching and learning process by providing constant feedback to both teachers and students. The researchers employed a quasi-experimental research design to examine two teaching methods (FEFB and traditional). The pre-test and post-test interaction effects were evaluated between students in the experimental group (FEFB) and those in the conventional group. The interaction effects of pre-test and post-test on male and female in the two groups were also examined, with 90 participants. The findings show that students exposed to a FEFB-based teaching approach outperform pupils taught in a traditional classroom setting, and there is no gender interaction effect between the two groups. In light of these findings, the researchers urge that Economics teachers employ FEFB during teaching and learning to ensure timely feedback, and that policymakers ensure that Economics teachers receive training and re-training on FEFB approaches.Keywords: formative evaluation with feedback (FEFB), students, economics achievement, secondary education
Procedia PDF Downloads 573219 Physical Fitness Evaluation of MARA Junior Science Collage Rugby Player
Authors: Mohamad Nizam Asmuni, Ahmad Naszeri Salleh, Yunus Adam, Azhar Yaacob, Mohd Hafiz Rosli, Muhamad Nazrul Hakim Abdullah
Abstract:
Athletes at the school should have good physical fitness to participate in tournament. Currently, there are no standards for the level of physical fitness for MARA Junior Science Collage (MJSC). Therefore, this research is to determine the level of physical fitness of rugby player at MJSC. A total of 62 samples (age 16.4 ± 0.75) among rugby players at MJSC were randomly selected to participate in this study. Height, weight, body fat percentage, body mass index (BMI) and other physical testing are measured and recorded. The results showed that the average of body mass index (BMI) for rugby players is 23.4 ± 4:51. Body mass index (BMI) of rugby players can be categorized as pre-obese based on World Health Organization (WHO) guidelines. BMI for rugby players was categorized as healthy based on body fat ranges for standard adults at NY Obesity Research Center. Bleep test results show that the average Bleep test is level 7 and shuttle 5; average VO2max was 37.94 L/min. Physical fitness and performance of rugby players at MJSC is lower compared to the rugby junior athletes in University Putra Malaysia (UPM). Therefore, physical fitness of rugby players must be improved to ensure the rugby players at MJSC could be performs better in the tournament.Keywords: physical fitness, MARA junior science collage (MJSC), body mass index (BMI), bleep test
Procedia PDF Downloads 4853218 Numerical Analysis of the Aging Effects of RC Shear Walls Repaired by CFRP Sheets: Application of CEB-FIP MC 90 Model
Authors: Yeghnem Redha, Guerroudj Hicham Zakaria, Hanifi Hachemi Amar Lemiya, Meftah Sid Ahmed, Tounsi Abdelouahed, Adda Bedia El Abbas
Abstract:
Creep deformation of concrete is often responsible for excessive deflection at service loads which can compromise the performance of elements within a structure. Although laboratory test may be undertaken to determine the deformation properties of concrete, these are time-consuming, often expensive and generally not a practical option. Therefore, relatively simple empirically design code models are relied to predict the creep strain. This paper reviews the accuracy of creep and shrinkage predictions of reinforced concrete (RC) shear walls structures strengthened with carbon fibre reinforced polymer (CFRP) sheets, which is characterized by a widthwise varying fibre volume fraction. This review is yielded by CEB-FIB MC90 model. The time-dependent behavior was investigated to analyze their static behavior. In the numerical formulation, the adherents and the adhesives are all modelled as shear wall elements, using the mixed finite element method. Several tests were used to dem¬onstrate the accuracy and effectiveness of the proposed method. Numerical results from the present analysis are presented to illustrate the significance of the time-dependency of the lateral displacements.Keywords: RC shear walls strengthened, CFRP sheets, creep and shrinkage, CEB-FIP MC90 model, finite element method, static behavior
Procedia PDF Downloads 3143217 The Lessons Learned from Managing Malignant Melanoma During COVID-19 in a Plastic Surgery Unit in Ireland
Authors: Amenah Dhannoon, Ciaran Martin Hurley, Laura Wrafter, Podraic J. Regan
Abstract:
Introduction: The COVID-19 pandemic continues to present unprecedented challenges for healthcare systems. This has resulted in the pragmatic shift in the practice of plastic surgery units worldwide. During this period, many units reported a significant fall in urgent melanoma referrals, leading to patients presenting with advanced disease requiring more extensive surgery and inferior outcomes. Our objective was to evaluate our unit's experience with both non-invasive and invasive melanoma during the COVID-19 pandemic and characterize our experience and contrast it to that experienced by our neighbors in the UK, mainland Europe and North America. Methods: a retrospective chart review was performed on all patients diagnosed with invasive and non-invasive cutaneous melanoma between March to December of 2019 (control) compared to 2020 (COVID-19 pandemic) in a single plastic surgery unit in Ireland. Patient demographics, referral source, surgical procedures, tumour characteristics, radiological findings, oncological therapies and follow-up were recorded. All data were anonymized and stored in Microsoft Excel. Results: A total of 589 patients were included in the study. Of these, 314 (53%) with invasive melanoma, compared to 275 (47%) with the non-invasive disease. Overall, more patients were diagnosed with both invasive and non-invasive melanoma in 2020 than in 2019 (p<0.05). However, significantly longer waiting times in 2020 (64 days) compared to 2019 (28 days) (p<0.05), with the majority of the referral being from GP in 2019 (83%) compared to 61% in 2020. Positive sentinel lymph node were higher in 2019 at 56% (n=28) compared to 24% (n=22) in 2020. There was no statistically significant difference in the tutor characteristics or metastasis status. Discussion: While other countries have noticed a fall in the melanoma diagnosis. Our units experienced a higher number of disease diagnoses. This can be due to multiple reasons. In Ireland, the government reached an early agreement with the private sector to continue elective surgery on an urgent basis in private hospitals. This allowed access to local anesthetic procedures and local skin cancer cases were triaged to non-COVID-19 provider centers. Our unit also adapted a fast, effective and minimal patient contact strategy for triaging skin cancer based on telemedicine. Thirdly, a skin cancer nurse specialist maintained patient follow-ups and triaging a dedicated email service. Finally, our plastic surgery service continued to maintain a virtual complex skin cancer multidisciplinary team meeting during the pandemic, ensuring local clinical governance has adhered to each clinical case. Conclusion: Our study highlights that with the prompt efficient restructuring of services, we could reserve successful management of skin cancer even in the most devastating times. It is important to reflect on the success during the pandemic and emphasize the importance of preparation for a potentially difficult futureKeywords: malignant melanoma, skin cancer, COVID-19, triage
Procedia PDF Downloads 1753216 Synthesis and Modification of Azardirachta indica (Neem Leaf) with Nimibidin: Bioadsorptive Remediation
Authors: Nene Pearl Eluchie
Abstract:
Globally, metal ion, particularly those generated from oil and gas effluents, form environmental pollution, particularly in developing regions like Nigeria, where water borne disease is fatal. This is clear evidence for metal ion contamination within the environment. Ecofriendly and cost effective biomaterials are the best ways of reducing metal ion contamination, thus reducing the need for chemical treatment of oil and gas effluent. Despite this, research efforts to understand the mechanism of adsorption and possible bio-adsorptive remediation interventions are limited. The study combined biomaterial and adsorption techniques: A. Indica, UV-Visible spectroscopy, SEM, FTIR in a progressive manner to provide insight. The biosorption efficiency of Azadirachta Indica silver nanoparticle AI-AgNPs was within the range of 63-95%. The study demonstrates that AI-AgNPs can be a promising agent, cheap, efficient, and biodegradable bio-sorbent for lowering oil and gas effluents. This is one of the studies to show that Azadirachta Indica is just one of the many biomaterials to synthesize silver nanoparticles through the reduction of active constituents (Nimbidin) present in them to ensure stability and surface properties, which are critical for their performance in effluent treatment. Therefore, leveraging the knowledge from this study to raise awareness through public health initiatives and community engagement will help. The prevalence of metal ions observed in the visible region in the study indicates the need for bio-adsorptive remediation interventions, not only in social settings but also in the immediate environment. There is, thus, an urgent need for targeted interventions in vulnerable communities.Keywords: Azadirachta indica, bioadsorption, biosynthesis, effluent, nimbidin, silver nanoparticle
Procedia PDF Downloads 373215 Health and Safety Risk Assesment with Electromagnetic Field Exposure for Call Center Workers
Authors: Dilsad Akal
Abstract:
Aim: Companies communicate with each other and with their costumers via call centers. Call centers are defined as stressful because of their uncertain working hours, inadequate relief time, performance based system and heavy workload. In literature, this sector is defined as risky as mining sector by means of health and safety. The aim of this research is to enlight the relatively dark area. Subject and Methods: The collection of data for this study completed during April-May 2015 for the two selected call centers in different parts of Turkey. The applied question mostly investigated the health conditions of call center workers. Electromagnetic field measurements were completed at the same time with applying the question poll. The ratio of employee accessibility noted as 73% for the first call center and 87% for the second. Results: The results of electromagnetic field measurements were as between 371 V/m-32 V/m for the first location and between 370 V/m-61 V/m for the second. The general complaints of the employees for both workplaces can be counted as; inadequate relief time, inadequate air conditioning, disturbance, poor thermal conditions, inadequate or extreme lighting. Furthermore, musculoskeletal discomfort, stress, ear and eye discomfort are main health problems of employees. Conclusion: The measured values and the responses to the question poll were found parallel with the other similar research results in literature. At the end of this survey, a risk map of workplace was prepared in terms of safety and health at work in general and some suggestions for resolution were provided.Keywords: call center, health and safety, electromagnetic field, risk map
Procedia PDF Downloads 1833214 Characterization of Agroforestry Systems in Burkina Faso Using an Earth Observation Data Cube
Authors: Dan Kanmegne
Abstract:
Africa will become the most populated continent by the end of the century, with around 4 billion inhabitants. Food security and climate changes will become continental issues since agricultural practices depend on climate but also contribute to global emissions and land degradation. Agroforestry has been identified as a cost-efficient and reliable strategy to address these two issues. It is defined as the integrated management of trees and crops/animals in the same land unit. Agroforestry provides benefits in terms of goods (fruits, medicine, wood, etc.) and services (windbreaks, fertility, etc.), and is acknowledged to have a great potential for carbon sequestration; therefore it can be integrated into reduction mechanisms of carbon emissions. Particularly in sub-Saharan Africa, the constraint stands in the lack of information about both areas under agroforestry and the characterization (composition, structure, and management) of each agroforestry system at the country level. This study describes and quantifies “what is where?”, earliest to the quantification of carbon stock in different systems. Remote sensing (RS) is the most efficient approach to map such a dynamic technology as agroforestry since it gives relatively adequate and consistent information over a large area at nearly no cost. RS data fulfill the good practice guidelines of the Intergovernmental Panel On Climate Change (IPCC) that is to be used in carbon estimation. Satellite data are getting more and more accessible, and the archives are growing exponentially. To retrieve useful information to support decision-making out of this large amount of data, satellite data needs to be organized so to ensure fast processing, quick accessibility, and ease of use. A new solution is a data cube, which can be understood as a multi-dimensional stack (space, time, data type) of spatially aligned pixels and used for efficient access and analysis. A data cube for Burkina Faso has been set up from the cooperation project between the international service provider WASCAL and Germany, which provides an accessible exploitation architecture of multi-temporal satellite data. The aim of this study is to map and characterize agroforestry systems using the Burkina Faso earth observation data cube. The approach in its initial stage is based on an unsupervised image classification of a normalized difference vegetation index (NDVI) time series from 2010 to 2018, to stratify the country based on the vegetation. Fifteen strata were identified, and four samples per location were randomly assigned to define the sampling units. For safety reasons, the northern part will not be part of the fieldwork. A total of 52 locations will be visited by the end of the dry season in February-March 2020. The field campaigns will consist of identifying and describing different agroforestry systems and qualitative interviews. A multi-temporal supervised image classification will be done with a random forest algorithm, and the field data will be used for both training the algorithm and accuracy assessment. The expected outputs are (i) map(s) of agroforestry dynamics, (ii) characteristics of different systems (main species, management, area, etc.); (iii) assessment report of Burkina Faso data cube.Keywords: agroforestry systems, Burkina Faso, earth observation data cube, multi-temporal image classification
Procedia PDF Downloads 152