Search results for: waste load allocation (WLA)
4571 The Impact of Internet Use on Farmers’ Resource Utilization of Livestock and Poultry Waste in China
Authors: Xiaoyan Tan, Jin Zhang, Zeyu Zhang, Shengze Qin
Abstract:
Maximizing the utilization of livestock and poultry waste (LPW) is of crucial importance to the effective supply of livestock products and the improvement of rural residents' living environment. This study used an endogenous switching probit model to investigate the effects of Internet use on farmers’ resource utilization of LPW based on survey data from 583 Chinese farmers. Results indicate that Internet use significantly improves farmers’ resource utilization of LPW. Under the counterfactual scenario, for farmers using the Internet, the probability of choosing resource utilization of LPW would decrease by 23.6% if the Internet is not used. Conversely, for farmers not using the Internet, the probability of choosing resource utilization of LPW would increase by 32.2% if the Internet is used. The robustness check using the conditional mixed process model reconfirms that Internet use can improve farmers’ resource utilization of LPW. Heterogeneity analysis reveals that women and older farmers benefit more from the use of the Internet. Furthermore, Internet use promotes farmers’ utilization of LPW by increasing individual environmental awareness and technical cognition. Our findings advocate for policies that improve livestock and poultry manure management, promote public environmental and technical cognition, and strengthen the construction of rural Internet infrastructure.Keywords: livestock and poultry waste, Internet use, endogenous switching probit model, China
Procedia PDF Downloads 34570 Microbial Fuel Cells in Waste Water Treatment and Electricity Generation
Authors: Rajalaxmi N., Padma Bhat, Pooja Garag, Pooja N. M., V. S. Hombalimath
Abstract:
Microbial fuel cell (MFC) is the advancement of science that aims at utilizing the oxidizing potential of bacteria for wastewater treatment and production of bio-hydrogen and bio-electricity. Salt-bridge is the economic alternative to highly priced proton-exchange membrane in the construction of a microbial fuel cell. This paper studies the electricity generating capacity of E.coli and Clostridium sporogenes in microbial fuel cells (MFCs). Unlike most of MFC research, this targets the long term goals of renewable energy production and wastewater treatment. In present study the feasibility and potential of bioelectricity production from different wastewater was observed. Different wastewater was primarily treated which were confirmed by the COD tests which showed reduction of COD. We observe that the electricity production of MFCs decreases almost linearly after 120 hrs. The sewage wastewater containing Clostridium sporogenes showed bioelectricity production up to 188mV with COD removal of 60.52%. Sewage wastewater efficiently produces bioelectricity and this also helpful to reduce wastewater pollution load.Keywords: microbial fuel cell, bioelectricity, wastewater, salt bridge, COD
Procedia PDF Downloads 5344569 Automation of Process Waste-Free Air Filtration in Production of Concrete, Reinforced with Basalt Fiber
Authors: Stanislav Perepechko
Abstract:
Industrial companies - one of the major sources of harmful substances to the atmosphere. The main cause of pollution on the concrete plants are cement dust emissions. All the cement silos, pneumatic transport, and ventilation systems equipped with filters, to avoid this. Today, many Russian companies have to decide on replacement morally and physically outdated filters and guided back to the electrostatic filters as usual equipment. The offered way of a cleaning of waste-free filtering of air differs in the fact that a filtering medium of the filter is used in concrete manufacture. Basalt is widespread and pollution-free material. In the course of cleaning, one part of basalt fiber and cement immediately goes to the mixer through flow-control units of initial basalt fiber and cement. Another part of basalt fiber goes to filters for purification of the air used in systems of an air lift, and ventilating emissions passes through them, and with trapped particles also goes to the mixer through flow-control units of the basalt fiber fulfilled in filters. At the same time, regulators are adjusted in such a way that total supply of basalt fiber and cement into the mixer remains invariable and corresponds to a given technological mode.Keywords: waste-free air filtration, concrete, basalt fiber, building automation
Procedia PDF Downloads 4274568 Household Wealth and Portfolio Choice When Tail Events Are Salient
Authors: Carlson Murray, Ali Lazrak
Abstract:
Robust experimental evidence of systematic violations of expected utility (EU) establishes that individuals facing risk overweight utility from low probability gains and losses when making choices. These findings motivated development of models of preferences with probability weighting functions, such as rank dependent utility (RDU). We solve for the optimal investing strategy of an RDU investor in a dynamic binomial setting from which we derive implications for investing behavior. We show that relative to EU investors with constant relative risk aversion, commonly measured probability weighting functions produce optimal RDU terminal wealth with significant downside protection and upside exposure. We additionally find that in contrast to EU investors, RDU investors optimally choose a portfolio that contains fair bets that provide payo↵s that can be interpreted as lottery outcomes or exposure to idiosyncratic returns. In a calibrated version of the model, we calculate that RDU investors would be willing to pay 5% of their initial wealth for the freedom to trade away from an optimal EU wealth allocation. The dynamic trading strategy that supports the optimal wealth allocation implies portfolio weights that are independent of initial wealth but requires higher risky share after good stock return histories. Optimal trading also implies the possibility of non-participation when historical returns are poor. Our model fills a gap in the literature by providing new quantitative and qualitative predictions that can be tested experimentally or using data on household wealth and portfolio choice.Keywords: behavioral finance, probability weighting, portfolio choice
Procedia PDF Downloads 4194567 Fuzzy Adaptive Control of an Intelligent Hybrid HPS (Pvwindbat), Grid Power System Applied to a Dwelling
Authors: A. Derrouazin, N. Mekkakia-M, R. Taleb, M. Helaimi, A. Benbouali
Abstract:
Nowadays the use of different sources of renewable energy for the production of electricity is the concern of everyone, as, even impersonal domestic use of the electricity in isolated sites or in town. As the conventional sources of energy are shrinking, a need has arisen to look for alternative sources of energy with more emphasis on its optimal use. This paper presents design of a sustainable Hybrid Power System (PV-Wind-Storage) assisted by grid as supplementary sources applied to case study residential house, to meet its entire energy demand. A Fuzzy control system model has been developed to optimize and control flow of power from these sources. This energy requirement is mainly fulfilled from PV and Wind energy stored in batteries module for critical load of a residential house and supplemented by grid for base and peak load. The system has been developed for maximum daily households load energy of 3kWh and can be scaled to any higher value as per requirement of individual /community house ranging from 3kWh/day to 10kWh/day, as per the requirement. The simulation work, using intelligent energy management, has resulted in an optimal yield leading to average reduction in cost of electricity by 50% per day.Keywords: photovoltaic (PV), wind turbine, battery, microcontroller, fuzzy control (FC), Matlab
Procedia PDF Downloads 6484566 Free Shape Optimisation of Cold Formed Steel Sections
Authors: Mina Mortazavi, Pezhman Sharafi
Abstract:
Cold-formed steel sections are popular construction materials as structural or non-structural elements. The objective of this paper is to propose an optimisation method for open cross sections targeting the maximum nominal axial strength. The cross sections considered in the optimisation process should all meet a determined critical global buckling load to be considered as a candidate for optimisation process. The maximum dimensions of the cross section are fixed and limited into a predefined rectangular area. The optimisation process is repeated for different available coil thicknesses of 1 mm, 2.5 mm and 3 mm to determine the optimum thickness according to the cross section buckling behaviour. A simple-simple boundary is assumed as end conditions. The number of folds is limited to 20 folds to prevent extra complicated sections. The global buckling load is considered as Euler load and is determined according to the moment of inertia of the cross-section with a constant length. The critical buckling loads are obtained using Finite Strip Method. The results of the optimisation analysis are provided, and the optimum cross-section within the considered range is determined.Keywords: shape optimisation, buckling, cold formed steel, finite strip method
Procedia PDF Downloads 3984565 The Influence of Cognitive Load in the Acquisition of Words through Sentence or Essay Writing
Authors: Breno Barrreto Silva, Agnieszka Otwinowska, Katarzyna Kutylowska
Abstract:
Research comparing lexical learning following the writing of sentences and longer texts with keywords is limited and contradictory. One possibility is that the recursivity of writing may enhance processing and increase lexical learning; another possibility is that the higher cognitive load of complex-text writing (e.g., essays), at least when timed, may hinder the learning of words. In our study, we selected 2 sets of 10 academic keywords matched for part of speech, length (number of characters), frequency (SUBTLEXus), and concreteness, and we asked 90 L1-Polish advanced-level English majors to use the keywords when writing sentences, timed (60 minutes) or untimed essays. First, all participants wrote a timed Control essay (60 minutes) without keywords. Then different groups produced Timed essays (60 minutes; n=33), Untimed essays (n=24), or Sentences (n=33) using the two sets of glossed keywords (counterbalanced). The comparability of the participants in the three groups was ensured by matching them for proficiency in English (LexTALE), and for few measures derived from the control essay: VocD (assessing productive lexical diversity), normed errors (assessing productive accuracy), words per minute (assessing productive written fluency), and holistic scores (assessing overall quality of production). We measured lexical learning (depth and breadth) via an adapted Vocabulary Knowledge Scale (VKS) and a free association test. Cognitive load was measured in the three essays (Control, Timed, Untimed) using normed number of errors and holistic scores (TOEFL criteria). The number of errors and essay scores were obtained from two raters (interrater reliability Pearson’s r=.78-91). Generalized linear mixed models showed no difference in the breadth and depth of keyword knowledge after writing Sentences, Timed essays, and Untimed essays. The task-based measurements found that Control and Timed essays had similar holistic scores, but that Untimed essay had better quality than Timed essay. Also, Untimed essay was the most accurate, and Timed essay the most error prone. Concluding, using keywords in Timed, but not Untimed, essays increased cognitive load, leading to more errors and lower quality. Still, writing sentences and essays yielded similar lexical learning, and differences in the cognitive load between Timed and Untimed essays did not affect lexical acquisition.Keywords: learning academic words, writing essays, cognitive load, english as an L2
Procedia PDF Downloads 724564 Development and Nutritional Evaluation of Sorghum Flour-Based Crackers Enriched with Bioactive Tomato Processing Residue
Authors: Liana Claudia Salanță, Anca Corina Fărcaș
Abstract:
Valorization of agro-industrial by-products offers significant economic and environmental advantages. This study investigates the transformation of tomato processing residues into value-added products, contributing to waste reduction and promoting a circular, sustainable economy. Specifically, the development of sorghum flour-based crackers enriched with tomato waste powder targets the dietary requirements of individuals with celiac disease and diabetes, evaluating their nutritional and sensory properties. Tomato residues were obtained from Roma-Spania tomatoes and processed into powder through drying and grinding. The bioactive compounds, including carotenoids, lycopene, and polyphenols, were quantified using established analytical methods. Formulation of the crackers involved optimizing the incorporation of tomato powder into sorghum flour. Subsequently, their nutritional and sensory attributes were assessed. The tomato waste powder demonstrated considerable bioactive potential, with total carotenoid content measured at 66 mg/100g, lycopene at 52.61 mg/100g, and total polyphenols at 463.60 mg GAE/100g. Additionally, the crackers with a 30% powder addition exhibited the highest concentration of polyphenols. Consequently, this sample also demonstrated a high antioxidant activity of 15.04% inhibition of DPPH radicals. Nutritionally, the crackers showed a 30% increase in fiber content and a 25% increase in protein content compared to standard gluten-free products. Sensory evaluation indicated positive consumer acceptance, with an average score of 8 out of 10 for taste and 7.5 out of 10 for color, attributed to the natural pigments from tomato waste. This innovative approach highlights the potential of tomato by-products in creating nutritionally enhanced gluten-free foods. Future research should explore the long-term stability of these bioactive compounds in finished products and evaluate the scalability of this process for industrial applications. Integrating such sustainable practices can significantly contribute to waste reduction and the development of functional foods.Keywords: tomato waste, circular economy, bioactive compounds, sustainability, health benefits
Procedia PDF Downloads 334563 Application of Simulation of Discrete Events in Resource Management of Massive Concreting
Authors: Mohammad Amin Hamedirad, Seyed Javad Vaziri Kang Olyaei
Abstract:
Project planning and control are one of the most critical issues in the management of construction projects. Traditional methods of project planning and control, such as the critical path method or Gantt chart, are not widely used for planning projects with discrete and repetitive activities, and one of the problems of project managers is planning the implementation process and optimal allocation of its resources. Massive concreting projects is also a project with discrete and repetitive activities. This study uses the concept of simulating discrete events to manage resources, which includes finding the optimal number of resources considering various limitations such as limitations of machinery, equipment, human resources and even technical, time and implementation limitations using analysis of resource consumption rate, project completion time and critical points analysis of the implementation process. For this purpose, the concept of discrete-event simulation has been used to model different stages of implementation. After reviewing the various scenarios, the optimal number of allocations for each resource is finally determined to reach the maximum utilization rate and also to reduce the project completion time or reduce its cost according to the existing constraints. The results showed that with the optimal allocation of resources, the project completion time could be reduced by 90%, and the resulting costs can be reduced by up to 49%. Thus, allocating the optimal number of project resources using this method will reduce its time and cost.Keywords: simulation, massive concreting, discrete event simulation, resource management
Procedia PDF Downloads 1474562 Industrial and Technological Applications of Brewer’s Spent Malt
Authors: Francielo Vendruscolo
Abstract:
During industrial processing of raw materials of animal and vegetable origin, large amounts of solid, liquid and gaseous wastes are generated. Solid residues are usually materials rich in carbohydrates, protein, fiber and minerals. Brewer’s spent grain (BSG) is the main waste generated in the brewing industry, representing 85% of the waste generated in this industry. It is estimated that world’s BSG generation is approximately 38.6 x 106 t per year and represents 20-30% (w/w) of the initial mass of added malt, resulting in low commercial value by-product, however, does not have economic value, but it must be removed from the brewery, as its spontaneous fermentation can attract insects and rodents. For every 100 grams in dry basis, BSG has approximately 68 g total fiber, being divided into 3.5 g of soluble fiber and 64.3 g of insoluble fiber (cellulose, hemicellulose and lignin). In addition to dietary fibers, depending on the efficiency of the grinding process and mashing, BSG may also have starch, reducing sugars, lipids, phenolics and antioxidants, emphasizing that its composition will depend on the barley variety and cultivation conditions, malting and technology involved in the production of beer. BSG demands space for storage, but studies have proposed alternatives such as the use of drying, extrusion, pressing with superheated steam, and grinding to facilitate storage. Other important characteristics that enhance its applicability in bioremediation, effluent treatment and biotechnology, is the surface area (SBET) of 1.748 m2 g-1, total pore volume of 0.0053 cm3 g-1 and mean pore diameter of 121.784 Å, characterized as a macroporous and possess fewer adsorption properties but have great ability to trap suspended solids for separation from liquid solutions. It has low economic value; however, it has enormous potential for technological applications that can improve or add value to this agro-industrial waste. Due to its composition, this material has been used in several industrial applications such as in the production of food ingredients, fiber enrichment by its addition in foods such as breads and cookies in bioremediation processes, substrate for microorganism and production of biomolecules, bioenergy generation, and civil construction, among others. Therefore, the use of this waste or by-product becomes essential and aimed at reducing the amount of organic waste in different industrial processes, especially in breweries.Keywords: brewer’s spent malt, agro-industrial residue, lignocellulosic material, waste generation
Procedia PDF Downloads 2074561 Landfill Site Selection Using Multi-Criteria Decision Analysis A Case Study for Gulshan-e-Iqbal Town, Karachi
Authors: Javeria Arain, Saad Malik
Abstract:
The management of solid waste is a crucial and essential aspect of urban environmental management especially in a city with an ever increasing population such as Karachi. The total amount of municipal solid waste generated from Gulshan e Iqbal town on average is 444.48 tons per day and landfill sites are a widely accepted solution for final disposal of this waste. However, an improperly selected site can have immense environmental, economical and ecological impacts. To select an appropriate landfill site a number of factors should be kept into consideration to minimize the potential hazards of solid waste. The purpose of this research is to analyse the study area for the construction of an appropriate landfill site for disposal of municipal solid waste generated from Gulshan e-Iqbal Town by using geospatial techniques considering hydrological, geological, social and geomorphological factors. This was achieved using analytical hierarchy process and fuzzy analysis as a decision support tool with integration of geographic information sciences techniques. Eight most critical parameters, relevant to the study area, were selected. After generation of thematic layers for each parameter, overlay analysis was performed in ArcGIS 10.0 software. The results produced by both methods were then compared with each other and the final suitability map using AHP shows that 19% of the total area is Least Suitable, 6% is Suitable but avoided, 46% is Moderately Suitable, 26% is Suitable, 2% is Most Suitable and 1% is Restricted. In comparison the output map of fuzzy set theory is not in crisp logic rather it provides an output map with a range of 0-1, where 0 indicates least suitable and 1 indicates most suitable site. Considering the results it is deduced that the northern part of the city is appropriate for constructing the landfill site though a final decision for an optimal site could be made after field survey and considering economical and political factors.Keywords: Analytical Hierarchy Process (AHP), fuzzy set theory, Geographic Information Sciences (GIS), Multi-Criteria Decision Analysis (MCDA)
Procedia PDF Downloads 5044560 Design Evaluation Tool for Small Wind Turbine Systems Based on the Simple Load Model
Authors: Jihane Bouabid
Abstract:
The urgency to transition towards sustainable energy sources has revealed itself imperative. Today, in the 21st Century, the intellectual society have imposed technological advancements and improvements, and anticipates expeditious outcomes as an integral component of its relentless pursuit of an elevated standard of living. As a part of empowering human development, driving economic growth and meeting social needs, the access to energy services has become a necessity. As a part of these improvements, we are introducing the project "Mywindturbine" - an interactive web user interface for design and analysis in the field of wind energy, with a particular adherence to the IEC (International Electrotechnical Commission) standard 61400-2 "Wind turbines – Part 2: Design requirements for small wind turbines". Wind turbines play a pivotal role in Morocco's renewable energy strategy, leveraging the nation's abundant wind resources. The IEC 61400-2 standard ensures the safety and design integrity of small wind turbines deployed in Morocco, providing guidelines for performance and safety protocols. The conformity with this standard ensures turbine reliability, facilitates standards alignment, and accelerates the integration of wind energy into Morocco's energy landscape. The aim of the GUI (Graphical User Interface) for engineers and professionals from the field of wind energy systems who would like to design a small wind turbine system following the safety requirements of the international standards IEC 61400-2. The interface provides an easy way to analyze the structure of the turbine machine under normal and extreme load conditions based on the specific inputs provided by the user. The platform introduces an overview to sustainability and renewable energy, with a focus on wind turbines. It features a cross-examination of the input parameters provided from the user for the SLM (Simple Load Model) of small wind turbines, and results in an analysis according to the IEC 61400-2 standard. The analysis of the simple load model encompasses calculations for fatigue loads on blades and rotor shaft, yaw error load on blades, etc. for the small wind turbine performance. Through its structured framework and adherence to the IEC standard, "Mywindturbine" aims to empower professionals, engineers, and intellectuals with the knowledge and tools necessary to contribute towards a sustainable energy future.Keywords: small wind turbine, IEC 61400-2 standard, user interface., simple load model
Procedia PDF Downloads 614559 Impact of Calcium Carbide Waste Dumpsites on Soil Chemical and Microbial Characteristics
Authors: C. E. Ihejirika, M. I. Nwachukwu, R. F. Njoku-Tony, O. C. Ihejirika, U. O. Enwereuzoh, E. O. Imo, D. C. Ashiegbu
Abstract:
Disposal of industrial solid wastes in the environment is a major environmental challenge. This study investigated the effects of calcium carbide waste dumpsites on soil quality. Soil samples were collected with hand auger from three different dumpsites at varying depths and made into composite samples. Samples were subjected to standard analytical procedures. pH varied from 10.38 to 8.28, nitrate from 5.6mg/kg to 9.3mg/kg, phosphate from 8.8mg/kg to 12.3mg/kg, calcium carbide reduced from 10% to to 3%. Calcium carbide was absent in control soil samples. Bacterial counts from dumpsites ranged from 1.8 x 105cfu/g - 2.5 x 105cfu/g while fungal ranged from 0.8 x 103cfu/g - 1.4 x 103cfu/g. Bacterial isolates included Pseudomonas spp, Flavobacterium spp, and Achromobacter spp, while fungal isolates include Penicillium notatum, Aspergillus niger, and Rhizopus stolonifer. No organism was isolated from the dumpsites at soil depth of 0-15 cm, while there were isolates from other soil depths. Toxicity might be due to alkaline condition of the dumpsite. Calcium carbide might be bactericidal and fungicidal leading to cellular physiology, growth retardation, death, general loss of biodiversity and reduction of ecosystem processes. Detoxification of calcium carbide waste before disposal on soil might be the best option in management.Keywords: biodiversity, calcium-carbide, denitrification, toxicity
Procedia PDF Downloads 5444558 Modelling of Reactive Methodologies in Auto-Scaling Time-Sensitive Services With a MAPE-K Architecture
Authors: Óscar Muñoz Garrigós, José Manuel Bernabeu Aubán
Abstract:
Time-sensitive services are the base of the cloud services industry. Keeping low service saturation is essential for controlling response time. All auto-scalable services make use of reactive auto-scaling. However, reactive auto-scaling has few in-depth studies. This presentation shows a model for reactive auto-scaling methodologies with a MAPE-k architecture. Queuing theory can compute different properties of static services but lacks some parameters related to the transition between models. Our model uses queuing theory parameters to relate the transition between models. It associates MAPE-k related times, the sampling frequency, the cooldown period, the number of requests that an instance can handle per unit of time, the number of incoming requests at a time instant, and a function that describes the acceleration in the service's ability to handle more requests. This model is later used as a solution to horizontally auto-scale time-sensitive services composed of microservices, reevaluating the model’s parameters periodically to allocate resources. The solution requires limiting the acceleration of the growth in the number of incoming requests to keep a constrained response time. Business benefits determine such limits. The solution can add a dynamic number of instances and remains valid under different system sizes. The study includes performance recommendations to improve results according to the incoming load shape and business benefits. The exposed methodology is tested in a simulation. The simulator contains a load generator and a service composed of two microservices, where the frontend microservice depends on a backend microservice with a 1:1 request relation ratio. A common request takes 2.3 seconds to be computed by the service and is discarded if it takes more than 7 seconds. Both microservices contain a load balancer that assigns requests to the less loaded instance and preemptively discards requests if they are not finished in time to prevent resource saturation. When load decreases, instances with lower load are kept in the backlog where no more requests are assigned. If the load grows and an instance in the backlog is required, it returns to the running state, but if it finishes the computation of all requests and is no longer required, it is permanently deallocated. A few load patterns are required to represent the worst-case scenario for reactive systems: the following scenarios test response times, resource consumption and business costs. The first scenario is a burst-load scenario. All methodologies will discard requests if the rapidness of the burst is high enough. This scenario focuses on the number of discarded requests and the variance of the response time. The second scenario contains sudden load drops followed by bursts to observe how the methodology behaves when releasing resources that are lately required. The third scenario contains diverse growth accelerations in the number of incoming requests to observe how approaches that add a different number of instances can handle the load with less business cost. The exposed methodology is compared against a multiple threshold CPU methodology allocating/deallocating 10 or 20 instances, outperforming the competitor in all studied metrics.Keywords: reactive auto-scaling, auto-scaling, microservices, cloud computing
Procedia PDF Downloads 934557 Integration of Load Introduction Elements into Fabrics
Authors: Jan Schwennen, Harlad Schmid, Juergen Fleischer
Abstract:
Lightweight design plays an important role in the automotive industry. Especially the combination of metal and CFRP shows great potential for future vehicle concepts. This requires joining technologies that are cost-efficient and appropriate for the materials involved. Previous investigations show that integrating load introduction elements during CFRP part manufacturing offers great advantages in mechanical performance. However, it is not yet clear how to integrate the elements in an automated process without harming the fiber structure. In this paper, a test rig is build up to investigate the effect of different parameters during insert integration experimentally. After a short description of the experimental equipment, preliminary tests are performed to determine a set of important process parameters. Based on that, the planning of design of experiments is given. The interpretation and evaluation of the test results show that with a minimization of the insert diameter and the peak angle less harm on the fiber structure can be achieved. Furthermore, a maximization of the die diameter above the insert shows a positive effect on the fiber structure. At the end of this paper, a theoretical description of alternative peak shaping is given and then the results get validated on the basis of an industrial reference part.Keywords: CFRP, fabrics, insert, load introduction element, integration
Procedia PDF Downloads 2414556 Circular Economy: An Overview of Principles, Strategies, and Case Studies
Authors: Dina Mohamed Ahmed Mahmoud Bakr
Abstract:
The concept of a circular economy is gaining increasing attention as a way to promote sustainable economic growth and reduce the environmental impact of human activities. The circular economy is a systemic approach that aims to keep materials and resources in use for as long as possible, minimize waste and pollution, and regenerate natural systems. The purpose of this article is to present a summary of the principles and tactics employed in the circular economy, along with examples of prosperous circular economy projects implemented in different sectors across Japan, Austria, the Netherlands, South Africa, Germany, and the United States. The paper concludes with a discussion of the challenges and opportunities associated with the transition to a circular economy and the policy interventions that can support this transition.Keywords: circular economy, waste reduction, sustainable development, recycling
Procedia PDF Downloads 1014555 Challenges for Municipal Solid Waste Management in India: A Case Study of Eluru, Andhra Pradesh
Authors: V. V. Prasada Rao P., K. Venkata Subbaiah, J. Sudhir Kumar
Abstract:
Most Indian cities or townships are facing greater challenges in proper disposal of their municipal solid wastes, which are growing exponentially with the rising urban population and improvement in the living standards. As per the provisional figures, 377 million people live in the urban areas accounting for 31.16 % of the Country’s total population, and expected to grow by 3.74% every year. In India, the municipal authority is liable for the safe management & disposal of Municipal Solid Wastes. However, even with the current levels of MSW generation, a majority of the local governments are unable to comply with their constitutional responsibility due to reasons ranging from cultural aspects to technological and financial constraints. In contrast, it is expected that the MSW generation in India is likely to increase from 68.8 MTD in 2011 to 160.5 MTD by 2041. Thus, the immediate challenge before the urban local bodies in India is to evolve suitable strategies not only to cope up with the current levels, but also to address the anticipated generation levels of MSW. This paper discusses the reasons for the low levels of enforcement of MSW Rules and suggests effective management strategies for the safe disposal of MSW.Keywords: biodegradable waste, dumping sites, management strategy, municipal solid waste (MSW), MSW rules, vermicompost
Procedia PDF Downloads 3044554 Use of Recycled PVB as a Protection against Carbonation
Authors: Michael Tupý, Vít Petránek
Abstract:
The paper is focused on testing of the poly(vinyl butyral) (PVB) layer which had the function of a CO2 insulating protection against concrete and mortar carbonation. The barrier efficiency of PVB was verified by the measurement of diffusion characteristics. Two different types of PVB were tested; original extruded PVB sheet and PVB sheet made from PVB dispersion which was obtained from recycled windshields. The work deals with the testing CO2 diffusion when polymer sheets were exposed to a CO2 atmosphere (10% v/v CO2) with 0% RH. The excellent barrier capability against CO2 permeability of original and also recycled types of PVB layers was observed. This application of PVB waste can bring advantageous use in civil engineering and significant environmental contribution.Keywords: windshield, poly(vinyl butyral), mortar, diffusion, carbonatation, polymer waste
Procedia PDF Downloads 4224553 Sustainable Urban Landscape Practices: A New Concept to Reduce Ecological Degradation
Authors: Manjari Rai
Abstract:
Urbanization is an inevitable process of development of human society and an outcome of economic development and scientific and technological progress. While urbanization process in promoting the development of human civilization, also no doubt, urban landscape has been a corresponding impact. Urban environment has suffered unprecedented damage majorly due to the increase in urban population density and heavy migration rate, traffic congestion, and environmental pollution. All this have however led to a major ecological degradation and imbalance. As lands are used for the rapid and unplanned urbanization, the green lands are diminished, and severe pollution is created by waste products. Plastic, the most alarming waste at landfill sites, is yet uncontrolled. Therefore, initiatives must be taken to reduce plastic mediated pollution and increase green application. However, increasing green land is not possible due to the landfill by urban structures. In order to create a harmonious environment, sustainable development in the urban landscape becomes a matter of prime focus. This paper thus discusses the concept of ecological design combined with the urban landscape design, green landscape design on urban structures and sustainable development through the use of recyclable waste materials which is also a low costing approach of urban landscape design.Keywords: ecological, degradation sustainable, landscape, urban
Procedia PDF Downloads 4214552 Three-Stage Anaerobic Co-digestion of High-Solids Food Waste and Horse Manure
Authors: Kai-Chee Loh, Jingxin Zhang, Yen-Wah Tong
Abstract:
Hydrolysis and acidogenesis are the rate-controlling steps in an anaerobic digestion (AD) process. Considering that the optimum conditions for each stage can be diverse diverse, the development of a multi-stage AD system is likely to the AD efficiency through individual optimization. In this research, we developed a highly integrate three-stage anaerobic digester (HM3) to combine the advantages of dry AD and wet AD for anaerobic co-digestion of food waste and horse manure. The digester design comprised mainly of three chambers - high-solids hydrolysis, high-solids acidogenesis and wet methanogensis. Through comparing the treatment performance with other two control digesters, HM3 presented 11.2 ~22.7% higher methane yield. The improved methane yield was mainly attributed to the functionalized partitioning in the integrated digester, which significantly accelerated the solubilization of solid organic matters and the formation of organic acids, as well as ammonia in the high-solids hydrolytic and acidogenic stage respectively. Additionally, HM3 also showed the highest volatile solids reduction rate among the three digesters. Real-time PCR and pyrosequencing analysis indicated that the abundance and biodiversity of microorganisms including bacteria and archaea in HM3 was much higher than that in the control reactors.Keywords: anaerobic digestion, high-solids, food waste and horse manure, microbial community
Procedia PDF Downloads 4124551 A Systematic Review: Prevalence and Risk Factors of Low Back Pain among Waste Collection Workers
Authors: Benedicta Asante, Brenna Bath, Olugbenga Adebayo, Catherine Trask
Abstract:
Background: Waste Collection Workers’ (WCWs) activities contribute greatly to the recycling sector and are an important component of the waste management industry. As the recycling sector evolves, reports of injuries and fatal accidents in the industry demand notice particularly common and debilitating musculoskeletal disorders such as low back pain (LBP). WCWs are likely exposed to diverse work-related hazards that could contribute to LBP. However, to our knowledge there has never been a systematic review or other synthesis of LBP findings within this workforce. The aim of this systematic review was to determine the prevalence and risk factors of LBP among WCWs. Method: A comprehensive search was conducted in Ovid Medline, EMBASE, and Global Health e-publications with search term categories ‘low back pain’ and ‘waste collection workers’. Articles were screened at title, abstract, and full-text stages by two reviewers. Data were extracted on study design, sampling strategy, socio-demographic, geographical region, and exposure definition, definition of LBP, risk factors, response rate, statistical techniques, and LBP prevalence. Risk of bias (ROB) was assessed based on Hoy Damien’s ROB scale. Results: The search of three databases generated 79 studies. Thirty-two studies met the study inclusion criteria for both title and abstract; thirteen full-text articles met the study criteria at the full-text stage. Seven articles (54%) reported prevalence within 12 months of LBP between 42-82% among WCW. The major risk factors for LBP among WCW included: awkward posture; lifting; pulling; pushing; repetitive motions; work duration; and physical loads. Summary data and syntheses of findings was presented in trend-lines and tables to establish the several prevalence periods based on age and region distribution. Public health implications: LBP is a major occupational hazard among WCWs. In light of these risks and future growth in this industry, further research should focus on more detail ergonomic exposure assessment and LBP prevention efforts.Keywords: low back pain, scavenger, waste collection workers, waste pickers
Procedia PDF Downloads 3264550 Mathematical Modelling of Different Types of Body Support Surface for Pressure Ulcer Prevention
Authors: Mahbub C. Mishu, Venktesh N. Dubey, Tamas Hickish, Jonathan Cole
Abstract:
Pressure ulcer is a common problem for today's healthcare industry. It occurs due to external load applied to the skin. Also when the subject is immobile for a longer period of time and there is continuous load applied to a particular area of human body,blood flow gets reduced and as a result pressure ulcer develops. Body support surface has a significant role in preventing ulceration so it is important to know the characteristics of support surface under loading conditions. In this paper we have presented mathematical models of different types of viscoelastic materials and also we have shown the validation of our simulation results with experiments.Keywords: pressure ulcer, viscoelastic material, mathematical model, experimental validation
Procedia PDF Downloads 3094549 The Optimization of the Parameters for Eco-Friendly Leaching of Precious Metals from Waste Catalyst
Authors: Silindile Gumede, Amir Hossein Mohammadi, Mbuyu Germain Ntunka
Abstract:
Goal 12 of the 17 Sustainable Development Goals (SDGs) encourages sustainable consumption and production patterns. This necessitates achieving the environmentally safe management of chemicals and all wastes throughout their life cycle and the proper disposal of pollutants and toxic waste. Fluid catalytic cracking (FCC) catalysts are widely used in the refinery to convert heavy feedstocks to lighter ones. During the refining processes, the catalysts are deactivated and discarded as hazardous toxic solid waste. Spent catalysts (SC) contain high-cost metal, and the recovery of metals from SCs is a tactical plan for supplying part of the demand for these substances and minimizing the environmental impacts. Leaching followed by solvent extraction, has been found to be the most efficient method to recover valuable metals with high purity from spent catalysts. However, the use of inorganic acids during the leaching process causes a secondary environmental issue. Therefore, it is necessary to explore other alternative efficient leaching agents that are economical and environmentally friendly. In this study, the waste catalyst was collected from a domestic refinery and was characterised using XRD, ICP, XRF, and SEM. Response surface methodology (RSM) and Box Behnken design were used to model and optimize the influence of some parameters affecting the acidic leaching process. The parameters selected in this investigation were the acid concentration, temperature, and leaching time. From the characterisation results, it was found that the spent catalyst consists of high concentrations of Vanadium (V) and Nickel (Ni); hence this study focuses on the leaching of Ni and V using a biodegradable acid to eliminate the formation of the secondary pollution.Keywords: eco-friendly leaching, optimization, metal recovery, leaching
Procedia PDF Downloads 664548 Evaluation of Stone Column Behavior Strengthened Circular Raft Footing under Static Load
Authors: R. Ziaie Moayed, B. Mohammadi-Haji
Abstract:
Stone columns have been widely employing to improve the load-settlement characteristics of soft soils. The results of two small scale displacement control loading tests on stone columns were used in order to validate numerical finite element simulations. Additionally, a series of numerical calculations of static loading have been performed on strengthened raft footing to investigate the effects of using stone columns on bearing capacity of footings. The bearing capacity of single and group of stone columns under static loading compares with unimproved ground.Keywords: circular raft footing, numerical analysis, validation, vertically encased stone column
Procedia PDF Downloads 2884547 Contribution of Intermediate Diaphragms on LDFs of Straight and Skew Concrete Multicell Box-Girder Bridges
Authors: Iman Mohseni
Abstract:
Current studies indicate that neglecting the effect of intermediate diaphragms might lead to highly conservative values for bending moment distribution factors and result in non-economic designs for skew bridges. This paper reports on a parametric study performed on 160 prototypes of straight and skew concrete multicell box-girder bridges. The obtained results were used to develop practical expressions to account for the diaphragm effects on American Association of State Highway and Transportation Officials formulas for live load distribution factors. It was observed that decks with internal transverse diaphragms perpendicular to the longitudinal webs are the best arrangement for load distribution in skew bridges.Keywords: box bridges, truck, distribution factor, diaphragm
Procedia PDF Downloads 3784546 Pull-Out Analysis of Composite Loops Embedded in Steel Reinforced Concrete Retaining Wall Panels
Authors: Pierre van Tonder, Christoff Kruger
Abstract:
Modular concrete elements are used for retaining walls to provide lateral support. Depending on the retaining wall layout, these precast panels may be interlocking and may be tied into the soil backfill via geosynthetic strips. This study investigates the ultimate pull-out load increase, which is possible by adding varied diameter supplementary reinforcement through embedded anchor loops within concrete retaining wall panels. Full-scale panels used in practice have four embedded anchor points. However, only one anchor loop was embedded in the center of the experimental panels. The experimental panels had the same thickness but a smaller footprint (600mm x 600mm x 140mm) area than the full-sized panels to accommodate the space limitations of the laboratory and experimental setup. The experimental panels were also cast without any bending reinforcement as would typically be obtained in the full-scale panels. The exclusion of these reinforcements was purposefully neglected to evaluate the impact of a single bar reinforcement through the center of the anchor loops. The reinforcement bars had of 8 mm, 10 mm, 12 mm, and 12 mm. 30 samples of concrete panels with embedded anchor loops were tested. The panels were supported on the edges and the anchor loops were subjected to an increasing tensile force using an Instron piston. Failures that occurred were loop failures and panel failures and a mixture thereof. There was an increase in ultimate load vs. increasing diameter as expected, but this relationship persisted until the reinforcement diameter exceeded 10 mm. For diameters larger than 10 mm, the ultimate failure load starts to decrease due to the dependency of the reinforcement bond strength to the concrete matrix. Overall, the reinforced panels showed a 14 to 23% increase in the factor of safety. Using anchor loops of 66kN ultimate load together with Y10 steel reinforcement with bent ends had shown the most promising results in reducing concrete panel pull-out failure. The Y10 reinforcement had shown, on average, a 24% increase in ultimate load achieved. Previous research has investigated supplementary reinforcement around the anchor loops. This paper extends this investigation by evaluating supplementary reinforcement placed through the panel anchor loops.Keywords: supplementary reinforcement, anchor loops, retaining panels, reinforced concrete, pull-out failure
Procedia PDF Downloads 1944545 A Systematic Review on the Effect of Climate Change on Rice Farming in Nepal
Authors: Tulsi Ram Bhusal
Abstract:
Global climate change is known to have a huge impact on agriculture due to changing in rainfall pattern and elevated air temperature that lead to drought and/or flooding. This systematic study has focused on agriculture in Nepal. The study has shown that the trend of current climatic change is affecting rice production, while the farmers with technological access have tried to adapt to the changing conditions at their level. There is insufficient intervention from the government side in terms of policies and schemes. The lack of sufficient funds is one of the significant reasons in terms of governance. The climatic trends and the way it is affecting the annual riceyieldinNepal has been discussed in this study thoroughly. This study has reviewed published studies and ferred important points regarding the Nepal’s status on rice production. Mainly due to the increasing graph of average temperature and other physical conditions needed for the proper cultivation of ricearechanging due to which there is significant dropofannual rice production. Although from corners of the country, many farmers have attempted to adapt the methods of cultivation to the changing climatic conditions, lack of access to technologies, and fund allocation from the governmental level, it is difficult for the mtobringchanges in rice production by the crown without any institutional help. This systematic study effectively presents the magnitude of the impact on rice cultivation due to climatic changes inrecenttimesinNepal. This review aims to bring the current scenarioofNepal’sricefarming, and it impacts due to changing climate, which can subsequently contribute in devising plans for proper governance, formulating policies, and allocation of funds for the betterment.Keywords: rice, climate change, rice production, nepal, agriculture
Procedia PDF Downloads 914544 Flowback Fluids Treatment Technology with Water Recycling and Valuable Metals Recovery
Authors: Monika Konieczyńska, Joanna Fajfer, Olga Lipińska
Abstract:
In Poland works related to the exploration and prospection of unconventional hydrocarbons (natural gas accumulated in the Silurian shale formations) started in 2007, based on the experience of the other countries that have created new possibilities for the use of existing hydrocarbons resources. The highly water-consuming process of hydraulic fracturing is required for the exploitation of shale gas which implies a need to ensure large volume of water available. As a result considerable amount of mining waste is generated, particularly liquid waste, i.e. flowback fluid with variable chemical composition. The chemical composition of the flowback fluid depends on the composition of the fracturing fluid and the chemistry of the fractured geological formations. Typically, flowback fluid is highly salinated, can be enriched in heavy metals, including rare earth elements, naturally occurring radioactive materials and organic compounds. The generated fluids considered as the extractive waste should be properly managed in the recovery or disposal facility. Problematic issue is both high hydration of waste as well as their variable chemical composition. Also the limited capacity of currently operating facilities is a growing problem. Based on the estimates, currently operating facilities will not be sufficient for the need of waste disposal when extraction of unconventional hydrocarbons starts. Further more, the content of metals in flowback fluids including rare earth elements is a considerable incentive to develop technology of metals recovery. Also recycling is a key factor in terms of selection of treatment process, which should provide that the thresholds required for reuse are met. The paper will present the study of the flowback fluids chemical composition, based on samples from hydraulic fracturing processes performed in Poland. The scheme of flowback fluid cleaning and recovering technology will be reviewed along with a discussion of the results and an assessment of environmental impact, including all generated by-products. The presented technology is innovative due to the metal recovery, as well as purified water supply for hydraulic fracturing process, which is significant contribution to reducing water consumption.Keywords: environmental impact, flowback fluid, management of special waste streams, metals recovery, shale gas
Procedia PDF Downloads 2604543 Managing Cognitive Load in Accounting: An Analysis of Three Instructional Designs in Financial Accounting
Authors: Seedwell Sithole
Abstract:
One of the persistent problems in accounting education is how to effectively support students’ learning. A promising technique to this issue is to investigate the extent that learning is determined by the design of instructional material. This study examines the academic performance of students using three instructional designs in financial accounting. Student’s performance scores and reported mental effort ratings were used to determine the instructional effectiveness. The findings of this study show that accounting students prefer graph and text designs that are integrated. The results suggest that spatially separated graph and text presentations in accounting should be reorganized to align with the requirements of human cognitive architecture.Keywords: accounting, cognitive load, education, instructional preferences, students
Procedia PDF Downloads 1494542 A Numerical Study on the Seismic Performance of Built-Up Battened Columns
Authors: Sophia C. Alih, Mohammadreza Vafaei, Farnoud Rahimi Mansour, Nur Hajarul Falahi Abdul Halim
Abstract:
Built-up columns have been widely employed by practice engineers in the design and construction of buildings and bridges. However, failures have been observed in this type of columns in previous seismic events. This study analyses the performance of built-up columns with different configurations of battens when it is subjected to seismic loads. Four columns with different size of battens were simulated and subjected to three different intensities of axial load along with a lateral cyclic load. Results indicate that the size of battens influences significantly the seismic behavior of columns. Lower shear capacity of battens results in higher ultimate strength and ductility for built-up columns. It is observed that intensity of axial load has a significant effect on the ultimate strength of columns, but it is less influential on the yield strength. For a given drift value, the stress level in the centroid of smaller size battens is significantly more than that of larger size battens signifying damage concentration in battens rather than chords. It is concluded that design of battens for shear demand lower than code specified values only slightly reduces initial stiffness of columns; however, it improves seismic performance of battened columns.Keywords: battened column, built-up column, cyclic behavior, seismic design, steel column
Procedia PDF Downloads 253