Search results for: tyre dynamics
1592 Modelling Magnetohydrodynamics to Investigate Variation of Shielding Gases on Arc Characteristics in the GTAW Process
Authors: Stuart W. Campbell, Alexander M. Galloway, Norman A. McPherson, Duncan Camilleri, Daniel Micallef
Abstract:
Gas tungsten arc welding requires a gas shield to be present in order to protect the arc area from contamination by atmospheric gases. As a result of each gas having its own unique thermophysical properties, the shielding gas selected can have a major influence on the arc stability, welding speed, weld appearance and geometry, mechanical properties and fume generation. Alternating shielding gases is a relatively new method of discreetly supplying two different shielding gases to the welding region in order to take advantage of the beneficial properties of each gas, as well as the inherent pulsing effects generated. As part of an ongoing process to fully evaluate the effects of this novel supply method, a computational fluid dynamics model has been generated to include the gas dependent thermodynamic and transport properties in order to evaluate the effects that an alternating gas supply has on the arc plasma. Experimental trials have also been conducted to validate the model arc profile predictions.Keywords: Alternating shielding gases, ANSYS CFX, Gas tungsten arc welding(GTAW), magnetohydrodynamics(MHD)
Procedia PDF Downloads 4361591 New Insight into Fluid Mechanics of Lorenz Equations
Authors: Yu-Kai Ting, Jia-Ying Tu, Chung-Chun Hsiao
Abstract:
New physical insights into the nonlinear Lorenz equations related to flow resistance is discussed in this work. The chaotic dynamics related to Lorenz equations has been studied in many papers, which is due to the sensitivity of Lorenz equations to initial conditions and parameter uncertainties. However, the physical implication arising from Lorenz equations about convectional motion attracts little attention in the relevant literature. Therefore, as a first step to understand the related fluid mechanics of convectional motion, this paper derives the Lorenz equations again with different forced conditions in the model. Simulation work of the modified Lorenz equations without the viscosity or buoyancy force is discussed. The time-domain simulation results may imply that the states of the Lorenz equations are related to certain flow speed and flow resistance. The flow speed of the underlying fluid system increases as the flow resistance reduces. This observation would be helpful to analyze the coupling effects of different fluid parameters in a convectional model in future work.Keywords: Galerkin method, Lorenz equations, Navier-Stokes equations, convectional motion
Procedia PDF Downloads 3921590 Towards an Enhanced Compartmental Model for Profiling Malware Dynamics
Authors: Jessemyn Modiini, Timothy Lynar, Elena Sitnikova
Abstract:
We present a novel enhanced compartmental model for malware spread analysis in cyber security. This paper applies cyber security data features to epidemiological compartmental models to model the infectious potential of malware. Compartmental models are most efficient for calculating the infectious potential of a disease. In this paper, we discuss and profile epidemiologically relevant data features from a Domain Name System (DNS) dataset. We then apply these features to epidemiological compartmental models to network traffic features. This paper demonstrates how epidemiological principles can be applied to the novel analysis of key cybersecurity behaviours and trends and provides insight into threat modelling above that of kill-chain analysis. In applying deterministic compartmental models to a cyber security use case, the authors analyse the deficiencies and provide an enhanced stochastic model for cyber epidemiology. This enhanced compartmental model (SUEICRN model) is contrasted with the traditional SEIR model to demonstrate its efficacy.Keywords: cybersecurity, epidemiology, cyber epidemiology, malware
Procedia PDF Downloads 1071589 Heat and Mass Transfer in MHD Flow of Nanofluids through a Porous Media Due to a Permeable Stretching Sheet with Viscous Dissipation and Chemical Reaction Effects
Authors: Yohannes Yirga, Daniel Tesfay
Abstract:
The convective heat and mass transfer in nanofluid flow through a porous media due to a permeable stretching sheet with magnetic field, viscous dissipation, and chemical reaction and Soret effects are numerically investigated. Two types of nanofluids, namely Cu-water and Ag-water were studied. The governing boundary layer equations are formulated and reduced to a set of ordinary differential equations using similarity transformations and then solved numerically using the Keller box method. Numerical results are obtained for the skin friction coefficient, Nusselt number and Sherwood number as well as for the velocity, temperature and concentration profiles for selected values of the governing parameters. Excellent validation of the present numerical results has been achieved with the earlier linearly stretching sheet problems in the literature.Keywords: heat and mass transfer, magnetohydrodynamics, nanofluid, fluid dynamics
Procedia PDF Downloads 2911588 Analysis of Population and Growth Rate Methanotof Bateria as Reducers Methane Gases Emission in Rice Field
Authors: Maimuna Nontji
Abstract:
The life cycle of rice plant has three phases of growth; they are the vegetative, reproductive and maturation phase. They greatly affect the life of dynamics metanotrof bacterial as reducer methane emissions in the rice field, both of population and on the rate of growth. The aim of this study was to analyze the population and growth rate of methanotrof isolates which has been isolated in previous studies. Isolates were taken at all the life cycle of rice plant. Population of analysis was conducted by standard plate count method and growth rate was analysed by logarithmic calculation. The results showed that each isolate varied in population and growth rate. The highest population was obtained in the isolates Gowa Methanotrof Reproductive (GMR 8) about 7.06 x 10 11 cfu / ml on 3 days of incubation and the lowest population was obtained in the Gowa Methanotrof Maturation (GMP 5) about 0.27 x 10 11 cfu / ml on 7 day of incubation. Some isolate were demonstrated in long growth rate about 5 days of incubation and another are 3 days.Keywords: emission, methanotrof, methane, population
Procedia PDF Downloads 4501587 In-Silico Investigation of Phytochemicals from Ocimum Sanctum as Plausible Antiviral Agent in COVID-19
Authors: Dileep Kumar, Janhavi Ramchandra Rao Kumar, Rao
Abstract:
COVID-19 has ravaged the globe, and it is spreading its Spectre day by day. In the absence of established drugs, this disease has created havoc. Some of the infected persons are symptomatic or asymptomatic. The respiratory system, cardiac system, digestive system, etc. in human beings are affected by this virus. In our present investigation, we have undertaken a study of the Indian Ayurvedic herb, Ocimum sanctum against SARS-CoV-2 using molecular docking and dynamics studies. The docking analysis was performed on the Glide module of Schrödinger suite on two different proteins from SARS-CoV-2 viz. NSP15 Endoribonuclease and spike receptor-binding domain. MM-GBSA based binding free energy calculations also suggest the most favorable binding affinities of carvacrol, β elemene, and β caryophyllene with binding energies of −61.61, 58.23, and −54.19 Kcal/mol respectively with spike receptor-binding domain and NSP15 Endoribonuclease. It rekindles our hope for the design and development of new drug candidates for the treatment of COVID19.Keywords: molecular docking, COVID-19, ocimum sanctum, binding energy
Procedia PDF Downloads 1871586 Assessing Effectiveness of Outrigger and Belt Truss System for Tall Buildings under Wind Loadings
Authors: Nirand Anunthanakul
Abstract:
This paper is to investigate a 54-story reinforced concrete residential tall building structures—238.8 meters high. Shear walls, core walls, and columns are the primary vertical components. Other special lateral components—core-outrigger and belt trusses—are studied and combined with the structural system in order to increase the structural stability during severe lateral load events, particularly, wind loads. The wind tunnel tests are conducted using the force balance technique. The overall wind loads and dynamics response of the building are also measured for 360 degrees of azimuth—basis for 10-degree intervals. The results from numerical analysis indicate that an outrigger and belt truss system clearly engages perimeter columns to efficiently reduce acceleration index and lateral deformations at the top level so that the building structures achieve lateral stability, and meet standard provision values.Keywords: outrigger, belt truss, tall buildings, wind loadings
Procedia PDF Downloads 5691585 Developing Heat-Power Efficiency Criteria for Characterization of Technosphere Structural Elements
Authors: Victoria Y. Garnova, Vladimir G. Merzlikin, Sergey V. Khudyakov, Aleksandr A. Gajour, Andrei P. Garnov
Abstract:
This paper refers to the analysis of the characteristics of industrial and lifestyle facilities heat- energy objects as a part of the thermal envelope of Earth's surface for inclusion in any database of economic forecasting. The idealized model of the Earth's surface is discussed. This model gives the opportunity to obtain the energy equivalent for each element of terrain and world ocean. Energy efficiency criterion of comfortable human existence is introduced. Dynamics of changes of this criterion offers the possibility to simulate the possible technogenic catastrophes with a spontaneous industrial development of the certain Earth areas. Calculated model with the confirmed forecast of the Gulf Stream freezing in the Polar Regions in 2011 due to the heat-energy balance disturbance for the oceanic subsurface oil polluted layer is given. Two opposing trends of human development under the limited and unlimited amount of heat-energy resources are analyzed.Keywords: Earth's surface, heat-energy consumption, energy criteria, technogenic catastrophes
Procedia PDF Downloads 3221584 Optimization of Perfusion Distribution in Custom Vascular Stent-Grafts Through Patient-Specific CFD Models
Authors: Scott M. Black, Craig Maclean, Pauline Hall Barrientos, Konstantinos Ritos, Asimina Kazakidi
Abstract:
Aortic aneurysms and dissections are leading causes of death in cardiovascular disease. Both inevitably lead to hemodynamic instability without surgical intervention in the form of vascular stent-graft deployment. An accurate description of the aortic geometry and blood flow in patient-specific cases is vital for treatment planning and long-term success of such grafts, as they must generate physiological branch perfusion and in-stent hemodynamics. The aim of this study was to create patient-specific computational fluid dynamics (CFD) models through a multi-modality, multi-dimensional approach with boundary condition optimization to predict branch flow rates and in-stent hemodynamics in custom stent-graft configurations. Three-dimensional (3D) thoracoabdominal aortae were reconstructed from four-dimensional flow-magnetic resonance imaging (4D Flow-MRI) and computed tomography (CT) medical images. The former employed a novel approach to generate and enhance vessel lumen contrast via through-plane velocity at discrete, user defined cardiac time steps post-hoc. To produce patient-specific boundary conditions (BCs), the aortic geometry was reduced to a one-dimensional (1D) model. Thereafter, a zero-dimensional (0D) 3-Element Windkessel model (3EWM) was coupled to each terminal branch to represent the distal vasculature. In this coupled 0D-1D model, the 3EWM parameters were optimized to yield branch flow waveforms which are representative of the 4D Flow-MRI-derived in-vivo data. Thereafter, a 0D-3D CFD model was created, utilizing the optimized 3EWM BCs and a 4D Flow-MRI-obtained inlet velocity profile. A sensitivity analysis on the effects of stent-graft configuration and BC parameters was then undertaken using multiple stent-graft configurations and a range of distal vasculature conditions. 4D Flow-MRI granted unparalleled visualization of blood flow throughout the cardiac cycle in both the pre- and postsurgical states. Segmentation and reconstruction of healthy and stented regions from retrospective 4D Flow-MRI images also generated 3D models with geometries which were successfully validated against their CT-derived counterparts. 0D-1D coupling efficiently captured branch flow and pressure waveforms, while 0D-3D models also enabled 3D flow visualization and quantification of clinically relevant hemodynamic parameters for in-stent thrombosis and graft limb occlusion. It was apparent that changes in 3EWM BC parameters had a pronounced effect on perfusion distribution and near-wall hemodynamics. Results show that the 3EWM parameters could be iteratively changed to simulate a range of graft limb diameters and distal vasculature conditions for a given stent-graft to determine the optimal configuration prior to surgery. To conclude, this study outlined a methodology to aid in the prediction post-surgical branch perfusion and in-stent hemodynamics in patient specific cases for the implementation of custom stent-grafts.Keywords: 4D flow-MRI, computational fluid dynamics, vascular stent-grafts, windkessel
Procedia PDF Downloads 1811583 Modal Dynamic Analysis of a Mechanism with Deformable Elements from an Oil Pump Unit Structure
Authors: N. Dumitru, S. Dumitru, C. Copilusi, N. Ploscaru
Abstract:
On this research, experimental analyses have been performed in order to determine the oil pump mechanism dynamics and stability from an oil unit mechanical structure. The experimental tests were focused on the vibrations which occur inside of the rod element during functionality of the oil pump unit. The oil pump mechanism dynamic parameters were measured and also determined through numerical computations. Entire research is based on the oil pump unit mechanical system virtual prototyping. For a complete analysis of the mechanism, the frequency dynamic response was identified, mainly for the mechanism driven element, based on two methods: processing and virtual simulations with MSC Adams aid and experimental analysis. In fact, through this research, a complete methodology is presented where numerical simulations of a mechanism with deformed elements are developed on a dynamic mode and these can be correlated with experimental tests.Keywords: modal dynamic analysis, oil pump, vibrations, flexible elements, frequency response
Procedia PDF Downloads 3191582 Comparison of the Logistic and the Gompertz Growth Functions Considering a Periodic Perturbation in the Model Parameters
Authors: Avan Al-Saffar, Eun-Jin Kim
Abstract:
Both the logistic growth model and the gompertz growth model are used to describe growth processes. Both models driven by perturbations in different cases are investigated using information theory as a useful measure of sustainability and the variability. Specifically, we study the effect of different oscillatory modulations in the system's parameters on the evolution of the system and Probability Density Function (PDF). We show the maintenance of the initial conditions for a long time. We offer Fisher information analysis in positive and/or negative feedback and explain its implications for the sustainability of population dynamics. We also display a finite amplitude solution due to the purely fluctuating growth rate whereas the periodic fluctuations in negative feedback can lead to break down the system's self-regulation with an exponentially growing solution. In the cases tested, the gompertz and logistic systems show similar behaviour in terms of information and sustainability although they develop differently in time.Keywords: dynamical systems, fisher information, probability density function (pdf), sustainability
Procedia PDF Downloads 4311581 Evaluation of Alternative Approaches for Additional Damping in Dynamic Calculations of Railway Bridges under High-Speed Traffic
Authors: Lara Bettinelli, Bernhard Glatz, Josef Fink
Abstract:
Planning engineers and researchers use various calculation models with different levels of complexity, calculation efficiency and accuracy in dynamic calculations of railway bridges under high-speed traffic. When choosing a vehicle model to depict the dynamic loading on the bridge structure caused by passing high-speed trains, different goals are pursued: On the one hand, the selected vehicle models should allow the calculation of a bridge’s vibrations as realistic as possible. On the other hand, the computational efficiency and manageability of the models should be preferably high to enable a wide range of applications. The commonly adopted and straightforward vehicle model is the moving load model (MLM), which simplifies the train to a sequence of static axle loads moving at a constant speed over the structure. However, the MLM can significantly overestimate the structure vibrations, especially when resonance events occur. More complex vehicle models, which depict the train as a system of oscillating and coupled masses, can reproduce the interaction dynamics between the vehicle and the bridge superstructure to some extent and enable the calculation of more realistic bridge accelerations. At the same time, such multi-body models require significantly greater processing capacities and precise knowledge of various vehicle properties. The European standards allow for applying the so-called additional damping method when simple load models, such as the MLM, are used in dynamic calculations. An additional damping factor depending on the bridge span, which should take into account the vibration-reducing benefits of the vehicle-bridge interaction, is assigned to the supporting structure in the calculations. However, numerous studies show that when the current standard specifications are applied, the calculation results for the bridge accelerations are in many cases still too high compared to the measured bridge accelerations, while in other cases, they are not on the safe side. A proposal to calculate the additional damping based on extensive dynamic calculations for a parametric field of simply supported bridges with a ballasted track was developed to address this issue. In this contribution, several different approaches to determine the additional damping of the supporting structure considering the vehicle-bridge interaction when using the MLM are compared with one another. Besides the standard specifications, this includes the approach mentioned above and two additional recently published alternative formulations derived from analytical approaches. For a bridge catalogue of 65 existing bridges in Austria in steel, concrete or composite construction, calculations are carried out with the MLM for two different high-speed trains and the different approaches for additional damping. The results are compared with the calculation results obtained by applying a more sophisticated multi-body model of the trains used. The evaluation and comparison of the results allow assessing the benefits of different calculation concepts for the additional damping regarding their accuracy and possible applications. The evaluation shows that by applying one of the recently published redesigned additional damping methods, the calculation results can reflect the influence of the vehicle-bridge interaction on the design-relevant structural accelerations considerably more reliable than by using normative specifications.Keywords: Additional Damping Method, Bridge Dynamics, High-Speed Railway Traffic, Vehicle-Bridge-Interaction
Procedia PDF Downloads 1611580 Psychosocial Risk Factors among Women: A Case-Study of the Nigerian Female Worker
Authors: Bassey Odiong Akan
Abstract:
In recent decades potentially significant changes have taken place in the world of work and these have led to the emergence of new challenges in occupational safety and health. The working environment is now not only wroth with concerns about physical, biological and chemical risks but also emerging risks which are completely new risks that have never been seen before or previously known risks that are evolving in unexpected ways with unanticipated consequences. Psychosocial risk factors and its attendant hazards happen to be one of them and can impact health directly or indirectly, mediated by work-related stress. These risks are related to the way work is designed, organised and managed, as well as the economic and social contexts of work. It has become necessary to identify, explore and anticipate the dynamics of these risks factors and hazards with regards to how it affects women. This presentation is a review of information gathered from books of distinguished authors, research work and scientific/professional journals on the psychosocial work environment intended as a guide to stimulate discussion, raise awareness and encourage research and action at different levels.Keywords: emerging risks, psychosocial hazards, psychosocial risk factors, work related stress
Procedia PDF Downloads 2771579 Lifting Body Concepts for Unmanned Fixed-Wing Transport Aircrafts
Authors: Anand R. Nair, Markus Trenker
Abstract:
Lifting body concepts were conceived as early as 1917 and patented by Roy Scroggs. It was an idea of using the fuselage as a lift producing body with no or small wings. Many of these designs were developed and even flight tested between 1920’s to 1970’s, but it was not pursued further for commercial flight as at lower airspeeds, such a configuration was incapable to produce sufficient lift for the entire aircraft. The concept presented in this contribution is combining the lifting body design along with a fixed wing to maximise the lift produced by the aircraft. Conventional aircraft fuselages are designed to be aerodynamically efficient, which is to minimise the drag; however, these fuselages produce very minimal or negligible lift. For the design of an unmanned fixed wing transport aircraft, many of the restrictions which are present for commercial aircraft in terms of fuselage design can be excluded, such as windows for the passengers/pilots, cabin-environment systems, emergency exits, and pressurization systems. This gives new flexibility to design fuselages which are unconventionally shaped to contribute to the lift of the aircraft. The two lifting body concepts presented in this contribution are targeting different applications: For a fast cargo delivery drone, the fuselage is based on a scaled airfoil shape with a cargo capacity of 500 kg for euro pallets. The aircraft has a span of 14 m and reaches 1500 km at a cruising speed of 90 m/s. The aircraft could also easily be adapted to accommodate pilot and passengers with modifications to the internal structures, but pressurization is not included as the service ceiling envisioned for this type of aircraft is limited to 10,000 ft. The next concept to be investigated is called a multi-purpose drone, which incorporates a different type of lifting body and is a much more versatile aircraft as it will have a VTOL capability. The aircraft will have a wingspan of approximately 6 m and flight speeds of 60 m/s within the same service ceiling as the fast cargo delivery drone. The multi-purpose drone can be easily adapted for various applications such as firefighting, agricultural purposes, surveillance, and even passenger transport. Lifting body designs are not a new concept, but their effectiveness in terms of cargo transportation has not been widely investigated. Due to their enhanced lift producing capability, lifting body designs enable the reduction of the wing area and the overall weight of the aircraft. This will, in turn, reduce the thrust requirement and ultimately the fuel consumption. The various designs proposed in this contribution will be based on the general aviation category of aircrafts and will be focussed on unmanned methods of operation. These unmanned fixed-wing transport drones will feature appropriate cargo loading/unloading concepts which can accommodate large size cargo for efficient time management and ease of operation. The various designs will be compared in performance to their conventional counterpart to understand their benefits/shortcomings in terms of design, performance, complexity, and ease of operation. The majority of the performance analysis will be carried out using industry relevant standards in computational fluid dynamics software packages.Keywords: lifting body concept, computational fluid dynamics, unmanned fixed-wing aircraft, cargo drone
Procedia PDF Downloads 2461578 Modelling and Technical Assessment of Multi-Motor for Electric Vehicle Drivetrains by Using Electric Differential
Authors: Mohamed Abdel-Monem, Gamal Sowilam, Omar Hegazy
Abstract:
This paper presents a technical assessment of an electric vehicle with two independent rear-wheel motor and an improved traction control system. The electric differential and the control strategy have been implemented to assure that in a straight trajectory, the two rear-wheels run exactly at the same speed, considering the same/different road conditions under the left and right side of the wheels. In case of turning to right/left, the difference between the two rear-wheels speeds assures a vehicle trajectory without sliding, thanks to a harmony between the electric differential and the control strategy. The present article demonstrates a complete model and analysis of a traction control system, considering four different traction scenarios, for two independent rear-wheels motors for electric vehicles. Furthermore, the vehicle model, including wheel dynamics, load forces, electric differential, and control strategy, is designed and verified by using MATLAB/Simulink environment.Keywords: electric vehicle, energy saving, multi-motor, electric differential, simulation and control
Procedia PDF Downloads 3511577 Sensor Fault-Tolerant Model Predictive Control for Linear Parameter Varying Systems
Authors: Yushuai Wang, Feng Xu, Junbo Tan, Xueqian Wang, Bin Liang
Abstract:
In this paper, a sensor fault-tolerant control (FTC) scheme using robust model predictive control (RMPC) and set theoretic fault detection and isolation (FDI) is extended to linear parameter varying (LPV) systems. First, a group of set-valued observers are designed for passive fault detection (FD) and the observer gains are obtained through minimizing the size of invariant set of state estimation-error dynamics. Second, an input set for fault isolation (FI) is designed offline through set theory for actively isolating faults after FD. Third, an RMPC controller based on state estimation for LPV systems is designed to control the system in the presence of disturbance and measurement noise and tolerate faults. Besides, an FTC algorithm is proposed to maintain the plant operate in the corresponding mode when the fault occurs. Finally, a numerical example is used to show the effectiveness of the proposed results.Keywords: fault detection, linear parameter varying, model predictive control, set theory
Procedia PDF Downloads 2521576 The School Threshold's Identity as a Place for Interaction: Research Project with the Participation of Elementary-School Children
Authors: Natalia Bazaiou
Abstract:
The school entrance is one of the most important places in the everyday lives of children. As an intersection between school and public realm of the city, it is characterized by gradations of porous and rigid boundaries. Depending on its function, it can serve as a threshold or as a boundary. Additionally, it is a spatial condition that facilitates a dialogue between the school and the city and draws content from both. School thresholds are important in supporting the role of the school as an important node in the city and a bridge between children's various everyday life dynamics by demonstrating prominent usage and meaning as a place that is open to the community as well as to possibilities and physical interaction. In this research, we examine the role of the "realm of the in-between" between school and city through the architecture workshops for children at Hill Memorial School in Athens, in which we explore children's perceptions, wishes, and ideas related to their familiar everyday places of transition from school to city and vice versa. Also discussed in the presentation are the writings of Herman Hertzberger, Aldo Van Eyck, Jaap Bakema and others.Keywords: threshold, city, play, identity, cinematic tools, children, school architecture
Procedia PDF Downloads 811575 Surviral: An Agent-Based Simulation Framework for Sars-Cov-2 Outcome Prediction
Authors: Sabrina Neururer, Marco Schweitzer, Werner Hackl, Bernhard Tilg, Patrick Raudaschl, Andreas Huber, Bernhard Pfeifer
Abstract:
History and the current outbreak of Covid-19 have shown the deadly potential of infectious diseases. However, infectious diseases also have a serious impact on areas other than health and healthcare, such as the economy or social life. These areas are strongly codependent. Therefore, disease control measures, such as social distancing, quarantines, curfews, or lockdowns, have to be adopted in a very considerate manner. Infectious disease modeling can support policy and decision-makers with adequate information regarding the dynamics of the pandemic and therefore assist in planning and enforcing appropriate measures that will prevent the healthcare system from collapsing. In this work, an agent-based simulation package named “survival” for simulating infectious diseases is presented. A special focus is put on SARS-Cov-2. The presented simulation package was used in Austria to model the SARS-Cov-2 outbreak from the beginning of 2020. Agent-based modeling is a relatively recent modeling approach. Since our world is getting more and more complex, the complexity of the underlying systems is also increasing. The development of tools and frameworks and increasing computational power advance the application of agent-based models. For parametrizing the presented model, different data sources, such as known infections, wastewater virus load, blood donor antibodies, circulating virus variants and the used capacity for hospitalization, as well as the availability of medical materials like ventilators, were integrated with a database system and used. The simulation result of the model was used for predicting the dynamics and the possible outcomes and was used by the health authorities to decide on the measures to be taken in order to control the pandemic situation. The survival package was implemented in the programming language Java and the analytics were performed with R Studio. During the first run in March 2020, the simulation showed that without measures other than individual personal behavior and appropriate medication, the death toll would have been about 27 million people worldwide within the first year. The model predicted the hospitalization rates (standard and intensive care) for Tyrol and South Tyrol with an accuracy of about 1.5% average error. They were calculated to provide 10-days forecasts. The state government and the hospitals were provided with the 10-days models to support their decision-making. This ensured that standard care was maintained for as long as possible without restrictions. Furthermore, various measures were estimated and thereafter enforced. Among other things, communities were quarantined based on the calculations while, in accordance with the calculations, the curfews for the entire population were reduced. With this framework, which is used in the national crisis team of the Austrian province of Tyrol, a very accurate model could be created on the federal state level as well as on the district and municipal level, which was able to provide decision-makers with a solid information basis. This framework can be transferred to various infectious diseases and thus can be used as a basis for future monitoring.Keywords: modelling, simulation, agent-based, SARS-Cov-2, COVID-19
Procedia PDF Downloads 1741574 A Comparison of Computational and Experimental Data to Investigate the Influence of the Tangential Velocity of Inner Rotating Wall on Axial Velocity Profile of Flow through Vertical Annular Pipe with Rotating Inner Surface
Authors: Abdusalam Sharf
Abstract:
In the oil and gas industries, one of the most important issues in drilling wells is understanding the behavior of a flow through an annulus gap in a vertical position, whose outer wall is stationary whilst the inner wall rotates. The main emphasis is placed on a comparison of experimental and computational investigations into the effects of the rotation speed of the inner pipe on the axial velocity profiles. The computational investigations were carried out by employing CFD software, and Gambit and Fluent. Three turbulence models were used: standard, RNG with enhanced wall treatment, and SST model. The profiles of the axial velocity had investigated at different rotation speeds of the inner pipe with three different volumetric flow rates. The comparison results showed that the calculations satisfactorily predict the qualitative features of the axial and swirl velocity profiles and the RNG model performs the best results.Keywords: computational fluid dynamics (CFD), SST k−ω shear-stress transport (k−ω mode variant), RNG k–ε renormalisation group (k−ε mode variant), y+ dimensionless distance from wall
Procedia PDF Downloads 3761573 Computational Analysis of Potential Inhibitors Selected Based on Structural Similarity for the Src SH2 Domain
Authors: W. P. Hu, J. V. Kumar, Jeffrey J. P. Tsai
Abstract:
The inhibition of SH2 domain regulated protein-protein interactions is an attractive target for developing an effective chemotherapeutic approach in the treatment of disease. Molecular simulation is a useful tool for developing new drugs and for studying molecular recognition. In this study, we searched potential drug compounds for the inhibition of SH2 domain by performing structural similarity search in PubChem Compound Database. A total of 37 compounds were screened from the database, and then we used the LibDock docking program to evaluate the inhibition effect. The best three compounds (AP22408, CID 71463546 and CID 9917321) were chosen for MD simulations after the LibDock docking. Our results show that the compound CID 9917321 can produce a more stable protein-ligand complex compared to other two currently known inhibitors of Src SH2 domain. The compound CID 9917321 may be useful for the inhibition of SH2 domain based on these computational results. Subsequently experiments are needed to verify the effect of compound CID 9917321 on the SH2 domain in the future studies.Keywords: nonpeptide inhibitor, Src SH2 domain, LibDock, molecular dynamics simulation
Procedia PDF Downloads 2691572 On the Evaluation of Different Turbulence Models through the Displacement of Oil-Water Flow in Porous Media
Authors: Sidique Gawusu, Xiaobing Zhang
Abstract:
Turbulence models play a significant role in all computational fluid dynamics based modelling approaches. There is, however, no general turbulence model suitable for all flow scenarios. Therefore, a successful numerical modelling approach is only achievable if a more appropriate closure model is used. This paper evaluates different turbulence models in numerical modelling of oil-water flow within the Eulerian-Eulerian approach. A comparison among the obtained numerical results and published benchmark data showed reasonable agreement. The domain was meshed using structured mesh, and grid test was performed to ascertain grid independence. The evaluation of the models was made through analysis of velocity and pressure profiles across the domain. The models were tested for their suitability to accurately obtain a scalable and precise numerical experience. As a result, it is found that all the models except Standard-ω provide comparable results. The study also revealed new insights on flow in porous media, specifically oil reservoirs.Keywords: turbulence modelling, simulation, multi-phase flows, water-flooding, heavy oil
Procedia PDF Downloads 2791571 Apple in the Big Tech Oligopoly: An Analysis of Disruptive Innovation Trends and Their Influence on the Capacity of Conserving a Positive Social Impact as Primary Purpose
Authors: E. Loffi Borghese
Abstract:
In this comprehensive study, we delve into the intricate dynamics of the big tech oligopoly, focusing particularly on Apple as a case study. The core objective is to scrutinize the evolving relationship between a firm's commitment to positive social impact as its primary purpose and its resilience in the face of disruptive innovations within the big tech market. Our exploration begins with a theoretical framework, emphasizing the significance of distinguishing between corporate social responsibility and social impact as a primary purpose. Drawing on insights from Drumwright and Bartkus and Glassman, we underscore the transformative potential when a firm aligns its core business with a social mission, transcending mere side activities. Examining successful firms, such as Apple, we adopt Sinek's perspective on inspirational leadership and the "golden circle." This framework sheds light on why some organizations, like Apple, succeed in making positive social impact their primary purpose. Apple's early-stage life cycle is dissected, revealing a profound commitment to challenging the status quo and promoting simpler alternatives that resonate with its users' lives. The study then navigates through industry life cycles, drawing on Klepper's stages and Christensen's disruptive innovations. Apple's dominance in the big tech oligopoly is contrasted with companies like Harley Davidson and Polaroid, illustrating the consequences of failing to adapt to disruptive innovations. The data and methods employed encompass a qualitative approach, leveraging sources like ECB, Forbes, World in Data, and scientific articles. A secondary data analysis probes Apple's market evolution within the big tech oligopoly, emphasizing the shifts in market context and innovation trends that demand strategic adaptations. The subsequent sections scrutinize Apple's present innovation strategies, highlighting its diversified product portfolio and intensified focus on big data. We examine the implications of these shifts on Apple's capacity to maintain positive social impact as its primary purpose, pondering potential consequences on its brand perception. The study culminates in a reflection on the broader implications of the big tech oligopoly's dominance. It contemplates the diminishing competitiveness in the market and the potential sidelining of positive social impact as a competitive advantage. The expansion of tech firms into diverse sectors raises concerns about negative societal impacts, prompting a call for increased regulatory attention and awareness. In conclusion, this research serves as a catalyst for heightened awareness and discussion on the intricate interplay between firms' social impact goals, disruptive innovations, and the broader societal implications within the evolving landscape of the big tech oligopoly. Despite limitations, this study aims to stimulate further research, urging a conscious and responsible approach to shaping the future economic system.Keywords: innovation trends, market dynamics, social impact, tech oligopoly
Procedia PDF Downloads 741570 Prediction of Unsteady Heat Transfer over Square Cylinder in the Presence of Nanofluid by Using ANN
Authors: Ajoy Kumar Das, Prasenjit Dey
Abstract:
Heat transfer due to forced convection of copper water based nanofluid has been predicted by Artificial Neural network (ANN). The present nanofluid is formed by mixing copper nano particles in water and the volume fractions are considered here are 0% to 15% and the Reynolds number are kept constant at 100. The back propagation algorithm is used to train the network. The present ANN is trained by the input and output data which has been obtained from the numerical simulation, performed in finite volume based Computational Fluid Dynamics (CFD) commercial software Ansys Fluent. The numerical simulation based results are compared with the back propagation based ANN results. It is found that the forced convection heat transfer of water based nanofluid can be predicted correctly by ANN. It is also observed that the back propagation ANN can predict the heat transfer characteristics of nanofluid very quickly compared to standard CFD method.Keywords: forced convection, square cylinder, nanofluid, neural network
Procedia PDF Downloads 3201569 Numerical Simulation of Structured Roughness Effect on Fluid Flow Characteristics and Heat Transfer in Minichannels
Authors: R. Chouatah, E. G. Filali, B. Zouzou
Abstract:
It has been well established that there are no differences between microscale and macroscale flows of incompressible liquids. However, surface roughness has been known to impact the transport phenomena. The effect of structured roughness on the dynamics and heat transfer of water flowing through minichannel was numerically investigated in this study. Our study consists in characterizing the dynamic field and heat transfer aspect of a flow in circular minichannel equipped with structured roughness using CFD software, CFX. The study is performed to understand the effect of various roughness elements (rectangular, triangular), roughness height and roughness pitch on the friction factor and heat transfer coefficient. Our work focuses on a water flow inside a circular mini-channel of 1 mm in diameter and 10 cm in length. The speed entry into the mini-channel varies from 0.1 m/s to 25 m/s. The wall of the mini-channel is submitted to a constant heat flux; q=100,000 W/m². The simulations results are compared to those obtained with smooth minichannel and the existing experimental and numerical results in the literature.Keywords: heat transfer, laminar and turbulent flow, minichannel, structured roughness
Procedia PDF Downloads 3421568 Modeling and Stability Analysis of Viral Propagation in Wireless Mesh Networking
Authors: Haowei Chen, Kaiqi Xiong
Abstract:
This paper aims to answer how malware will propagate in Wireless Mesh Networks (WMNs) and how communication radius and distributed density of nodes affects the process of spreading. The above analysis is essential for devising network-wide strategies to counter malware. We answer these questions by developing an improved dynamical system that models malware propagation in the area where nodes were uniformly distributed. The proposed model captures both the spatial and temporal dynamics regarding the malware spreading process. Equilibrium and stability are also discussed based on the threshold of the system. If the threshold is less than one, the infected nodes disappear, and if the threshold is greater than one, the infected nodes asymptotically stabilize at the endemic equilibrium. Numerical simulations are investigated about communication radius and distributed density of nodes in WMNs, which allows us to draw various insights that can be used to guide security defense.Keywords: Bluetooth security, malware propagation, wireless mesh networks, stability analysis
Procedia PDF Downloads 981567 Escaping Domestic Violence in Time of Conflict: The Ways Female Refugees Decide to Flee
Authors: Zofia Wlodarczyk
Abstract:
I study the experiences of domestic violence survivors who flee their countries of origin in times of political conflict using insight and evidence from forty-five biographical interviews with female Chechen refugees and twelve refugee resettlement professionals in Poland. Both refugees and women are often described as having less agency—that is, they lack the power to decide to migrate – refugees less than economic migrants and women less than men. In this paper, I focus on how female refugees who have been victims of domestic violence make decisions about leaving their countries of origin during times of political conflict. I use several existing migration theories to trace how the migration experience of these women is shaped by dynamics at different levels of society: the macro level, the meso level and the micro level. At the macro level of analysis, I find that political conflict can be both a source of and an escape from domestic violence. Ongoing conflict can strengthen the patriarchal cultural norms, increase violence and constrain women’s choices when it comes to marriage. However, political conflict can also destabilize families and make pathways for women to escape. At the meso level I demonstrate that other political migrants and institutions that emerge due to politically triggered migration can guide those fleeing domestic violence. Finally, at the micro level, I show that family dynamics often force domestic abuse survivors to make their decision to escape alone or with the support of only the most trusted female relatives. Taken together, my analyses show that we cannot look solely at one level of society when describing decision-making processes of women fleeing domestic violence. Conflict-related micro, meso and macro forces interact with and influence each other: on the one hand, strengthening an abusive trap, and on the other hand, opening a door to escape. This study builds upon several theoretical and empirical debates. First, it expands theories of migration by incorporating both refugee and gender perspectives. Few social scientists have used the migration theory framework to discuss the unique circumstances of refugee flows. Those who have mainly focus on “political” migrants, a designation that frequently fails to account for gender, does not incorporate individuals fleeing gender-based violence, including domestic-violence victims. The study also enriches migration scholarship, typically focused on the US and Western-European context, with research from Eastern Europe and Caucasus. Moreover, it contributes to the literature on the changing roles of gender in the context of migration. I argue that understanding how gender roles and hierarchies influence the pre-migration stage of female refugees is crucial, as it may have implications for policy-making efforts in host countries that recognize the asylum claims of those fleeing domestic violence. This study also engages in debates about asylum and refugee law. Domestic violence is normatively and often legally considered an individual-level problem whereas political persecution is recognized as a structural or societal level issue. My study challenges these notions by showing how the migration triggered by domestic violence is closely intertwined with politically motivated refuge.Keywords: AGENCY, DOMESTIC VIOLENCE, FEMALE REFUGEES, POLITICAL REFUGE, SOCIAL NETWORKS
Procedia PDF Downloads 1691566 An Analytical Study of Small Unmanned Arial Vehicle Dynamic Stability Characteristics
Authors: Abdelhakam A. Noreldien, Sakhr B. Abudarag, Muslim S. Eltoum, Salih O. Osman
Abstract:
This paper presents an analytical study of Small Unmanned Aerial Vehicle (SUAV) dynamic stability derivatives. Simulating SUAV dynamics and analyzing its behavior at the earliest design stages is too important and more efficient design aspect. The approach suggested in this paper is using the wind tunnel experiment to collect the aerodynamic data and get the dynamic stability derivatives. AutoCAD Software was used to draw the case study (wildlife surveillance SUAV). The SUAV is scaled down to be 0.25% of the real SUAV dimensions and converted to a wind tunnel model. The model was tested in three different speeds for three different attitudes which are; pitch, roll and yaw. The wind tunnel results were then used to determine the case study stability derivative values, and hence it used to calculate the roots of the characteristic equation for both longitudinal and lateral motions. Finally, the characteristic equation roots were found and discussed in all possible cases.Keywords: model, simulating, SUAV, wind tunnel
Procedia PDF Downloads 3751565 The Nexus between Climate Change and Criminality: The Nigerian Experience
Authors: Dagaci Aliyu Manbe, Anthony Abah Ebonyi
Abstract:
The increase in global temperatures is worsened by frequent natural events and human activities. Climate change has taken a prominent space in the global discourse on crime and criminality. Compared to when the subject centred around the discussion on the depletion of the ozone layer and global warming, today, the narrative revolves around the implications of changes in weather and climatic conditions in relations to violent crimes or conflict that traverse vast social, economic, and political spaces in different countries. Global warming and climate change refer to an increase in average global temperatures in the Earth’s near-surface air and oceans, which occurs due to human activities such as deforestation and the burning of fossil fuel such as gas flaring. The trend is projected to continue, if unchecked. This paper seeks to explore the nexus between climate change and criminality in Nigeria. It further examines the main ecological changes that predispose conflict dynamics of security threats factored by climate change to peaceful co-existence in Nigeria. It concludes with some recommendations on the way forward.Keywords: conflict, climate change, criminality, global warning, peace
Procedia PDF Downloads 1711564 Soil Wind Erosion, Nutrients, and Crop Yield Response to Conservation Tillage in North China: A Field Study in a Semi-Arid and Wind Erosion Region after 9 Years
Authors: Fahui Jiang, Xinwei Xue, Liyan Zhang, Yanyan Zuo, Hao Zhang, Wei Zheng, Limei Bian, Lingling Hu, Chunlei Hao, Jianghong Du, Yanhua Ci, Ruibao Cheng, Ciren Dawa, Mithun Biswas, Mahbub Ul Islam, Fansheng Meng, Xinhua Peng
Abstract:
Context: Soil erosion is a global issue that poses a significant threat to agricultural sustainability, particular in northern of China, which experiences the most severe wind erosion worldwide. Conservation tillage is vital in arid regions for preserving soil, enhancing water retention, and sustaining agricultural productivity in the face of limited rainfall. However, the long-term impacts of conservation tillage in semi-arid regions, especially its effects on soil health, wind erosion, and crop productivity, are poorly understood. Objective: Assess the impacts of conservation tillage on soil hydrothermal properties, wind erosion rates, nutrient dynamics, and crop yield, as well as elucidating the underlying mechanisms driving these impacts. Methods: A 9-year in-situ study was conducted in Chifeng, Inner Mongolia Province, comparing conventional rotary tillage (CK) with two conservation tillage methods: no-tillage with straw mulching (CT-1) and no-tillage with standing straw (CT-2). Results: Soil bulk density increased significantly under CT-1 and CT-2 in the topsoil layer (0–20 cm) compared with CK. Soil moisture content exhibited a significant increase pattern under CT-1 and CT-2, while soil temperature decreased under CT-1 but increased under CT-2, relative to CK. These variations in soil hydrothermal properties were more pronounced during the early (critical) crop growth stages and higher temperature conditions (afternoon). Soil loss due to wind erosion, accumulated from a height of 0–50 cm on the land surface, was reduced by 31.3 % and 25.5 % under CT-1 and by 51.5 % and 38.2 % under CT-2 in 2021 and 2022, respectively, compared to CK. Furthermore, the proportion of soil finer particles (clay and silt) increased under CT due to reduced wind erosion. Soil organic carbon significantly increased throughout the soil profile (0–60 cm), particularly in the deeper layers (20–40 cm and 40–60 cm), compared to the surface layer (0–20 cm), with corresponding increases of +57.0 % and +0.18 %, +66.2 % and +80.3 %, and +27.1 % and +14.2 % under CT-1 and CT-2, respectively, relative to CK in 2021. The concentrations of soil nutrients such as total nitrogen, available nitrogen, and available phosphorus and potassium, consistently increased under CT-1 and CT-2 compared to CK, with notable enhancements observed in the topsoil layer (0–20 cm) before seedling time, albeit declining after crop harvest. Generally, CT treatments significantly increased dry matter accumulation (+4.8 % to +30.8 %) and grain yield (+2.22 % to +0.44 %) of maize compared to CK in the semi-arid region over the 9-year study period, particularly notable in dry years and with long-term application. Conclusions and implications: Conservation tillage in semi-arid regions enhanced soil properties, reduced soil erosion, and increased soil nutrient dynamics and crop yield, promising sustainable agricultural practices with environmental benefits. Furthermore, our findings suggest that no-tillage with straw mulching is more suitable for dry and wind erosion sensitive regions.Keywords: no tillage, conventional tillage, soil water, soil temperature, soil physics
Procedia PDF Downloads 61563 Estimation of Fouling in a Cross-Flow Heat Exchanger Using Artificial Neural Network Approach
Authors: Rania Jradi, Christophe Marvillet, Mohamed Razak Jeday
Abstract:
One of the most frequently encountered problems in industrial heat exchangers is fouling, which degrades the thermal and hydraulic performances of these types of equipment, leading thus to failure if undetected. And it occurs due to the accumulation of undesired material on the heat transfer surface. So, it is necessary to know about the heat exchanger fouling dynamics to plan mitigation strategies, ensuring a sustainable and safe operation. This paper proposes an Artificial Neural Network (ANN) approach to estimate the fouling resistance in a cross-flow heat exchanger by the collection of the operating data of the phosphoric acid concentration loop. The operating data of 361 was used to validate the proposed model. The ANN attains AARD= 0.048%, MSE= 1.811x10⁻¹¹, RMSE= 4.256x 10⁻⁶ and r²=99.5 % of accuracy which confirms that it is a credible and valuable approach for industrialists and technologists who are faced with the drawbacks of fouling in heat exchangers.Keywords: cross-flow heat exchanger, fouling, estimation, phosphoric acid concentration loop, artificial neural network approach
Procedia PDF Downloads 197