Search results for: robotic systems
8299 Stochastic Energy and Reserve Scheduling with Wind Generation and Generic Energy Storage Systems
Authors: Amirhossein Khazali, Mohsen Kalantar
Abstract:
Energy storage units can play an important role to provide an economic and secure operation of future energy systems. In this paper, a stochastic energy and reserve market clearing scheme is presented considering storage energy units. The approach is proposed to deal with stochastic and non-dispatchable renewable sources with a high level of penetration in the energy system. A two stage stochastic programming scheme is formulated where in the first stage the energy market is cleared according to the forecasted amount of wind generation and demands and in the second stage the real time market is solved according to the assumed scenarios.Keywords: energy and reserve market, energy storage device, stochastic programming, wind generation
Procedia PDF Downloads 5788298 Client Importance and Audit Quality under Civil Law versus Common Law Societies
Authors: Kelly Grani Yuen
Abstract:
Accounting scandals and auditing frauds are perceived to be driven by aggressive companies and misrepresentation of audit reports. However, local legal systems and law enforcements may affect the services auditors provide to their ‘important’ clients. Under the civil law and common law jurisdictions, the standard setters, the government, and the regulatory bodies treat cases differently. As such, whether or not different forms of legal systems and extent of law enforcement plays an important role in auditor’s Audit Quality is a question this paper attempts to explore. The paper focuses on the investigation in Asia, where Hong Kong represents the common-law jurisdiction, while Taiwan and China represent the civil law jurisdiction. Only the ten reputable accounting firms are used in this study due to the differences in rankings and establishments of some of the small local audit firms. This will also contribute to the data collected between the years 2007-2013. By focusing on the use of multiple regression based on the dependent (Audit Quality) and independent variables (Client Importance, Law Enforcement, and Press Freedom), six different models are established. Results demonstrate that since different jurisdictions have different legal systems and market regulations, auditor’s treatment on ‘important’ clients will vary. However, with the moderators in place (law enforcement and press freedom), the relationship between client importance and audit quality may be smoothed out. With that in mind, this study contributes to local governments and standard setters’ consideration on legal reform and proper law enforcement in the market. Perhaps, with such modifications on the economic systems, collusion between companies and auditors can finally be put to a halt.Keywords: audit quality, client importance, jurisdiction, modified audit opinions
Procedia PDF Downloads 4148297 Production Potential and Economic Returns of Bed Planted Chickpea (Cicer arietinum L.) As Influenced by Different Intercropping Systems
Authors: Priya M. V., Thakar Singh
Abstract:
A field experiment was carried out during the rabi season of 2017 and 2018 to evaluate the productivity and economic viability of bed-planted chickpea-based intercropping systems. The experiment was laid out in a randomized block design consisting of four replications with thirteen treatments. Results showed that sole chickpea recorded the highest seed yield, and it was statistically at par with seed yield obtained under chickpea + oats fodder (2:1), chickpea + oats fodder (4:1), and chickpea + linseed (4:1) intercropping systems. However, oilseed rape and barley as intercrops showed an adverse effect on yield and yield attributes of chickpea. Chickpea + oats fodder in 2:1 row ratio recorded the highest chickpea equivalent yield of 24.07 and 24.77 q/ha during 2017 and 2018, respectively. Higher net returns (Rs. 63098 and 70924/ha) and benefit-cost ratio (1.47 and 1.63) were also recorded in chickpea + oats fodder (2:1) intercropping system over sole chickpea (Rs. 44862 and 53769/ha and 1.21 and 1.41) during both the years. Chickpea + oats fodder (4:1), chickpea + linseed (2:1), and chickpea + linseed (4:1) also recorded significantly higher chickpea equivalent yield, net returns, and benefit-cost ratio as compared to sole chickpea.Keywords: bed planted chickpea, chickpea equivalent yield, economic returns, intercropping system, productivity
Procedia PDF Downloads 2068296 Stability of a Self-Excited Machine Due to the Mechanical Coupling
Authors: M. Soltan Rezaee, M. R. Ghazavi, A. Najafi, W.-H. Liao
Abstract:
Generally, different rods in shaft systems can be misaligned based on the mechanical system usages. These rods can be linked together via U-coupling easily. The system is self-stimulated and may cause instabilities due to the inherent behavior of the coupling. In this study, each rod includes an elastic shaft with an angular stiffness and structural damping. Moreover, the mass of shafts is considered via attached solid disks. The impact of the system architecture and shaft mass on the instability of such mechanism are studied. Stability charts are plotted via a method based on Floquet theory. Eventually, the unstable points have been found and analyzed in detail. The results show that stabilizing the driveline is feasible by changing the system characteristics which include shaft mass and architecture.Keywords: coupling, mechanical systems, oscillations, rotating shafts
Procedia PDF Downloads 1868295 A Review Paper for Detecting Zero-Day Vulnerabilities
Authors: Tshegofatso Rambau, Tonderai Muchenje
Abstract:
Zero-day attacks (ZDA) are increasing day by day; there are many vulnerabilities in systems and software that date back decades. Companies keep discovering vulnerabilities in their systems and software and work to release patches and updates. A zero-day vulnerability is a software fault that is not widely known and is unknown to the vendor; attackers work very quickly to exploit these vulnerabilities. These are major security threats with a high success rate because businesses lack the essential safeguards to detect and prevent them. This study focuses on the factors and techniques that can help us detect zero-day attacks. There are various methods and techniques for detecting vulnerabilities. Various companies like edges can offer penetration testing and smart vulnerability management solutions. We will undertake literature studies on zero-day attacks and detection methods, as well as modeling approaches and simulations, as part of the study process.Keywords: zero-day attacks, exploitation, vulnerabilities
Procedia PDF Downloads 1058294 GPRS Based Automatic Metering System
Authors: Constant Akama, Frank Kulor, Frederick Agyemang
Abstract:
All over the world, due to increasing population, electric power distribution companies are looking for more efficient ways of reading electricity meters. In Ghana, the prepaid metering system was introduced in 2007 to replace the manual system of reading which was fraught with inefficiencies. However, the prepaid system in Ghana is not capable of integration with online systems such as e-commerce platforms and remote monitoring systems. In this paper, we present a design framework for an automatic metering system that can be integrated with e-commerce platforms and remote monitoring systems. The meter was designed using ADE 7755 which reads the energy consumption and the reading is processed by a microcontroller connected to Sim900 General Packet Radio Service module containing a GSM chip provisioned with an Access Point Name. The system also has a billing server and a management server located at the premises of the utility company which communicate with the meter over a Virtual Private Network and GPRS. With this system, customers can buy credit online and the credit will be transferred securely to the meter. Also, when a fault is reported, the utility company can log into the meter remotely through the management server to troubleshoot the problem.Keywords: access point name, general packet radio service, GSM, virtual private network
Procedia PDF Downloads 3048293 Recycling Strategies of Construction Waste in Egypt
Authors: Hanan Anwar
Abstract:
All systems recycle. The construction industry has not only become a major consumer of natural materials along with a source of pollution. Environmental integrated production, reusing and recycling is of great importance in Egypt nowadays. Governments should ensure that the technical, environmental and economic feasibility of alternative systems is considered and is taken into account before construction starts. Hereby this paper focuses on the recycle of building materials as a way for environment protection and sustainable development. Environmental management integrates the requirements of sustainable development. There are many methods used to reduce waste and increase profits through salvage, reuse, and the recycling of construction waste. Sustainable development as a tool to continual improvement cycle processes innovations to save money.Keywords: environment, management, reuse, recycling, sustainable development
Procedia PDF Downloads 3188292 Optimizing Bridge Deck Construction: A Deep Neural Network Approach for Limiting Exterior Grider Rotation
Authors: Li Hui, Riyadh Hindi
Abstract:
In the United States, bridge construction often employs overhang brackets to support the deck overhang, the weight of fresh concrete, and loads from construction equipment. This approach, however, can lead to significant torsional moments on the exterior girders, potentially causing excessive girder rotation. Such rotations can result in various safety and maintenance issues, including thinning of the deck, reduced concrete cover, and cracking during service. Traditionally, these issues are addressed by installing temporary lateral bracing systems and conducting comprehensive torsional analysis through detailed finite element analysis for the construction of bridge deck overhang. However, this process is often intricate and time-intensive, with the spacing between temporary lateral bracing systems usually relying on the field engineers’ expertise. In this study, a deep neural network model is introduced to limit exterior girder rotation during bridge deck construction. The model predicts the optimal spacing between temporary bracing systems. To train this model, over 10,000 finite element models were generated in SAP2000, incorporating varying parameters such as girder dimensions, span length, and types and spacing of lateral bracing systems. The findings demonstrate that the deep neural network provides an effective and efficient alternative for limiting the exterior girder rotation for bridge deck construction. By reducing dependence on extensive finite element analyses, this approach stands out as a significant advancement in improving safety and maintenance effectiveness in the construction of bridge decks.Keywords: bridge deck construction, exterior girder rotation, deep learning, finite element analysis
Procedia PDF Downloads 668291 Investigation of Optical Requirements for Power System Assets Monitoring with Unmanned Aerial Vehicles
Authors: Ioana Pisica, Dimitrios Gkritzapis
Abstract:
The significance of UAS in scientific applications has been amply demonstrated in recent years. The combinations of portability and quasi-static positioning by means of flying in close loop path make them versatile and efficient in the inspection of power systems infrastructure. In this paper, we critically assess several platforms and sensor capabilities to identify their pros and cons in relation to the power systems assets to be monitored. In this respect, it is paramount the flights to be conducted by using UAS which bear certain suitable features, such as responsive and easy control, video capturing in real time, autonomous routing of pre-planned flight programming with differentiating payloads. The outcome of this research is a set of optimal requirements for power system assets monitoring with UAS.Keywords: platforms, power system, sensors, UAVs
Procedia PDF Downloads 2888290 Conception of a Reliable Low Cost and Autonomous Explorative Hovercraft
Authors: S. Burgalat, L. Teilhac, A. Brand, E. Chastel, M. Jumeline
Abstract:
The paper presents actual benefits and drawbacks of a multidirectional autonomous hovercraft conceived with limited resources and designed for indoor exploration. Recent developments in the field have led to the apparition of very powerful automotive systems capable of very high calculation and exploration in complex unknown environments. They usually propose very complex algorithms, high precision/cost sensors and sometimes have heavy calculation consumption with complex data fusion. These systems are usually powerful but have a certain price, and the benefits may not be worth the cost, especially considering their hardware limitations and their power consumption. The present approach is to build a compromise between cost, power consumption and results preciseness.Keywords: hovercraft, indoor exploration, autonomous, multidirectional, wireless control
Procedia PDF Downloads 2818289 Multi-Objective Optimal Design of a Cascade Control System for a Class of Underactuated Mechanical Systems
Authors: Yuekun Chen, Yousef Sardahi, Salam Hajjar, Christopher Greer
Abstract:
This paper presents a multi-objective optimal design of a cascade control system for an underactuated mechanical system. Cascade control structures usually include two control algorithms (inner and outer). To design such a control system properly, the following conflicting objectives should be considered at the same time: 1) the inner closed-loop control must be faster than the outer one, 2) the inner loop should fast reject any disturbance and prevent it from propagating to the outer loop, 3) the controlled system should be insensitive to measurement noise, and 4) the controlled system should be driven by optimal energy. Such a control problem can be formulated as a multi-objective optimization problem such that the optimal trade-offs among these design goals are found. To authors best knowledge, such a problem has not been studied in multi-objective settings so far. In this work, an underactuated mechanical system consisting of a rotary servo motor and a ball and beam is used for the computer simulations, the setup parameters of the inner and outer control systems are tuned by NSGA-II (Non-dominated Sorting Genetic Algorithm), and the dominancy concept is used to find the optimal design points. The solution of this problem is not a single optimal cascade control, but rather a set of optimal cascade controllers (called Pareto set) which represent the optimal trade-offs among the selected design criteria. The function evaluation of the Pareto set is called the Pareto front. The solution set is introduced to the decision-maker who can choose any point to implement. The simulation results in terms of Pareto front and time responses to external signals show the competing nature among the design objectives. The presented study may become the basis for multi-objective optimal design of multi-loop control systems.Keywords: cascade control, multi-Loop control systems, multiobjective optimization, optimal control
Procedia PDF Downloads 1598288 Spatial Architecture Impact in Mediation Open Circuit Voltage Control of Quantum Solar Cell Recovery Systems
Authors: Moustafa Osman Mohammed
Abstract:
The photocurrent generations are influencing ultra-high efficiency solar cells based on self-assembled quantum dot (QD) nanostructures. Nanocrystal quantum dots (QD) provide a great enhancement toward solar cell efficiencies through the use of quantum confinement to tune absorbance across the solar spectrum enabled multi-exciton generation. Based on theoretical predictions, QDs have potential to improve systems efficiency in approximate regular electrons excitation intensity greater than 50%. In solar cell devices, an intermediate band formed by the electron levels in quantum dot systems. The spatial architecture is exploring how can solar cell integrate and produce not only high open circuit voltage (> 1.7 eV) but also large short-circuit currents due to the efficient absorption of sub-bandgap photons. In the proposed QD system, the structure allows barrier material to absorb wavelengths below 700 nm while multi-photon processes in the used quantum dots to absorb wavelengths up to 2 µm. The assembly of the electronic model is flexible to demonstrate the atoms and molecules structure and material properties to tune control energy bandgap of the barrier quantum dot to their respective optimum values. In terms of energy virtual conversion, the efficiency and cost of the electronic structure are unified outperform a pair of multi-junction solar cell that obtained in the rigorous test to quantify the errors. The milestone toward achieving the claimed high-efficiency solar cell device is controlling the edge causes of energy bandgap between the barrier material and quantum dot systems according to the media design limits. Despite this remarkable potential for high photocurrent generation, the achievable open-circuit voltage (Voc) is fundamentally limited due to non-radiative recombination processes in QD solar cells. The orientation of voltage recovery system is compared theoretically with experimental Voc variation in mediation upper–limit obtained one diode modeling form at the cells with different bandgap (Eg) as classified in the proposed spatial architecture. The opportunity for improvement Voc is valued approximately greater than 1V by using smaller QDs through QD solar cell recovery systems as confined to other micro and nano operations states.Keywords: nanotechnology, photovoltaic solar cell, quantum systems, renewable energy, environmental modeling
Procedia PDF Downloads 1618287 Technology, Organizational and Environmental Determinants of Business Intelligence Systems Adoption in Croatian SME: A Case Study of Medium-Sized Enterprise
Authors: Ana-Marija Stjepić, Luka Sušac, Dalia Suša Vugec
Abstract:
In the last few years, examples from scientific literature and business practices show that the adoption of technological innovations increases enterprises' performance. Recently, when it comes to the field of information technology innovation, business intelligence systems (BISs) have drawn a significant amount of attention of the scientific circles. BISs can be understood as a form of technological innovation which can bring certain benefits to the organizations that are adopting it. Therefore, the aim of this paper is twofold: (1) to define determinants of successful BISs adoption in small and medium enterprises and thus contribute to this neglected research area and (2) to present the current state of BISs adoption in small and medium-sized companies. In order to do so, determinants are defined and classified into three dimensions, according to the Technology – Organization – Environment (TOE) theoretical framework that describes the impact of each dimension on technological innovations adoption. Moreover, paper brings a case study presenting the adoption of BISs in practice within an organization from tertiary (service) industry sector. Based on the results of the study, guidelines for more efficient, faster and easier BISs adoption are presented.Keywords: adoption, business intelligence, business intelligence systems, case study, TOE framework
Procedia PDF Downloads 1548286 A Re-Evaluation of Green Architecture and Its Contributions to Environmental Sustainability
Authors: Po-Ching Wang
Abstract:
Considering the notable effects of natural resource consumption and impacts on fragile ecosystems, reflection on contemporary sustainable design is critical. Nevertheless, the idea of ‘green’ has been misapplied and even abused, and, in fact, much damage to the environment has been done in its name. In 1996’s popular science fiction film Independence Day, an alien species, having exhausted the natural resources of one planet, moves on to another —a fairly obvious irony on contemporary human beings’ irresponsible use of the Earth’s natural resources in modern times. In fact, the human ambition to master nature and freely access the world’s resources has long been inherent in manifestos evinced by productions of the environmental design professions. Ron Herron’s Walking City, an experimental architectural piece of 1964, is one example that comes to mind here. For this design concept, the architect imagined a gigantic nomadic urban aggregate that by way of an insect-like robotic carrier would move all over the world, on land and sea, to wherever its inhabitants want. Given the contemporary crisis regarding natural resources, recently ideas pertinent to structuring a sustainable environment have been attracting much interest in architecture, a field that has been accused of significantly contributing to ecosystem degradation. Great art, such as Fallingwater building, has been regarded as nature-friendly, but its notion of ‘green’ might be inadequate in the face of the resource demands made by human populations today. This research suggests a more conservative and scrupulous attitude to attempting to modify nature for architectural settings. Designs that pursue spiritual or metaphysical interconnections through anthropocentric aesthetics are not sufficient to benefit ecosystem integrity; though high-tech energy-saving processes may contribute to a fine-scale sustainability, they may ultimately cause catastrophe in the global scale. Design with frugality is proposed in order to actively reduce environmental load. The aesthetic taste and ecological sensibility of design professions and the public alike may have to be reshaped in order to make the goals of environmental sustainability viable.Keywords: anthropocentric aesthetic, aquarium sustainability, biosphere 2, ecological aesthetic, ecological footprint, frugal design
Procedia PDF Downloads 2138285 Tungsten-Based Powders Produced in Plasma Systems
Authors: Andrey V. Samokhin, Nikolay V. Alekseev, Mikhail A. Sinaiskii
Abstract:
The report presents the results of R&D of plasma-chemical production of W, W-Cu, W-Ni-Fe nanopowders as well as spherical micropowders of these compounds for their use in modern 3D printing technologies. Plasma-chemical synthesis of nanopowdersis based on the reduction of tungsten oxide compounds powders in a stream of hydrogen-containing low-temperature thermal plasma generated in an electric arc plasma torch. The synthesis of W-Cu and W-Ni-Fe nanocompositesiscarried out using the reduction of a mixture of the metal oxides. Using the synthesized tungsten-based nanocomposites powders, spherical composite micropowders with a submicron structure canbe manufactured by spray dryinggranulation of nanopowder suspension and subsequent densification and spheroidization of granules by melting in a low-temperature thermal plasma flow. The DC arc plasma systems are usedfor the synthesis of nanopowdersas well as for the spheroidization of microgranuls. Plasma systems have a capacity of up to 1 kg/h for nanopowder and up to 5 kg/h for spheroidized powder. All synthesized nanopowders consist of aggregated particles with sizes less than 100 nm, and nanoparticles of W-Cu and W-Ni-Fe composites have core (W) –shell (Cu or Ni-Fe) structures. The resulting dense spherical microparticles with a size of 20-60 microns have a submicron structure with a uniform distribution of metals over the particle volume. The produced tungsten-based nano- and spherical micropowderscan be used to develop new materials and manufacture products using advanced modern technologies.Keywords: plasma, powders, production, tungsten-based
Procedia PDF Downloads 1248284 Exciting Voltage Control for Efficiency Maximization for 2-D Omni-Directional Wireless Power Transfer Systems
Authors: Masato Sasaki, Masayoshi Yamamoto
Abstract:
The majority of wireless power transfer (WPT) systems transfer power in a directional manner. This paper describes a discrete exciting voltage control technique for WPT via magnetic resonant coupling with two orthogonal transmitter coils (2D omni-directional WPT system) which can maximize the power transfer efficiency in response to the change of coupling status. The theory allows the equations of the efficiency of the system to be determined at all the rate of the mutual inductance. The calculated results are included to confirm the advantage to one directional WPT system and the validity of the theory and the equations.Keywords: wireless power transfer, omni-directional, orthogonal, efficiency
Procedia PDF Downloads 3248283 Preliminary Findings from a Research Survey on Evolution of Software Defined Radio
Authors: M. Srilatha, R. Hemalatha, T. Sri Aditya
Abstract:
Communication of today world is dominated by wireless technology. This is mainly due to the revolutionary development of new wireless communication system generations. The evolving new generations of wireless systems are accommodating the demand through better resource management including improved transmission technologies with optimized communication devices. To keep up with the evolution of technologies, the communication systems must be designed to optimize transparent insertion of newly evolved technologies virtually at all stages of their life cycle. After the insertion of new technologies, the upgraded devices should continue the communication without squalor in quality. The concern of improving spectrum access and spectrum efficiency combined with both the introduction of Software Defined Radios (SDR) and the possibility of the software application to radios has led to an evolution of wireless radio research. The software defined radio term was coined in the 1970s to overcome the problems in the application of software to wireless radios which eliminates the requirement of hardware changes. SDR has become the prime theme of research since it eliminates the drawbacks associated with conventional wireless communication systems implementation. This paper identifies and discusses key enabling technologies and possibility of research and development in SDRs. In addition transmitter and receiver architectures of SDR are also discussed along with their feasibility for reconfigurable radio application.Keywords: software defined radios, wireless communication, reconfigurable, reconfigurable transmitter, reconfigurable receivers, FPGA, DSP
Procedia PDF Downloads 3178282 Design and Development of Fleet Management System for Multi-Agent Autonomous Surface Vessel
Authors: Zulkifli Zainal Abidin, Ahmad Shahril Mohd Ghani
Abstract:
Agent-based systems technology has been addressed as a new paradigm for conceptualizing, designing, and implementing software systems. Agents are sophisticated systems that act autonomously across open and distributed environments in solving problems. Nevertheless, it is impractical to rely on a single agent to do all computing processes in solving complex problems. An increasing number of applications lately require multiple agents to work together. A multi-agent system (MAS) is a loosely coupled network of agents that interact to solve problems that are beyond the individual capacities or knowledge of each problem solver. However, the network of MAS still requires a main system to govern or oversees the operation of the agents in order to achieve a unified goal. We had developed a fleet management system (FMS) in order to manage the fleet of agents, plan route for the agents, perform real-time data processing and analysis, and issue sets of general and specific instructions to the agents. This FMS should be able to perform real-time data processing, communicate with the autonomous surface vehicle (ASV) agents and generate bathymetric map according to the data received from each ASV unit. The first algorithm is developed to communicate with the ASV via radio communication using standard National Marine Electronics Association (NMEA) protocol sentences. Next, the second algorithm will take care of the path planning, formation and pattern generation is tested using various sample data. Lastly, the bathymetry map generation algorithm will make use of data collected by the agents to create bathymetry map in real-time. The outcome of this research is expected can be applied on various other multi-agent systems.Keywords: autonomous surface vehicle, fleet management system, multi agent system, bathymetry
Procedia PDF Downloads 2758281 SisGeo: Support System for the Research of Georeferenced Comparisons Applied to Professional and Academic Devices
Authors: Bruno D. Souza, Gerson G. Cunha, Michael O. Ferreira, Roberto Rosenhaim, Robson C. Santos, Sergio O. Santos
Abstract:
Devices and applications that use satellite-based positioning are becoming more popular day-by-day. Thus, evolution and improvement in this technology are mandatory. Accordingly, satellite georeferenced systems need to accomplish the same evolution rhythm. Either GPS (Global Positioning System) or its similar Russian GLONASS (Global Navigation Satellite System) are system samples that offer us powerful tools to plot coordinates on the earth surface. The development of this research aims the study of several aspects related to use of GPS and GLONASS technologies, given its application and collected data improvement during geodetic data acquisition. So, both relevant theoretic and practical aspects are considered. In this context, at the theoretical part, the main systems' characteristics are shown, observing its similarities and differences. At the practical part, a series of experiences are performed and obtained data packages are compared in order to demonstrate equivalence or differences among them. The evaluation methodology targets both quantitative and qualitative analysis provided by GPS and GPS/GLONASS receptors. Meanwhile, a specific collected data storage system was developed to better compare and analyze them (SisGeo - Georeferenced Research Comparison Support System).Keywords: satellites, systems, applications, experiments, receivers
Procedia PDF Downloads 2558280 Measurement of Temperature, Humidity and Strain Variation Using Bragg Sensor
Authors: Amira Zrelli, Tahar Ezzeddine
Abstract:
Measurement and monitoring of temperature, humidity and strain variation are very requested in great fields and areas such as structural health monitoring (SHM) systems. Currently, the use of fiber Bragg grating sensors (FBGS) is very recommended in SHM systems due to the specifications of these sensors. In this paper, we present the theory of Bragg sensor, therefore we try to measure the efficient variation of strain, temperature and humidity (SV, ST, SH) using Bragg sensor. Thus, we can deduce the fundamental relation between these parameters and the wavelength of Bragg sensor.Keywords: Fiber Bragg Grating Sensors (FBGS), strain, temperature, humidity, structural health monitoring (SHM)
Procedia PDF Downloads 3188279 ML-Based Blind Frequency Offset Estimation Schemes for OFDM Systems in Non-Gaussian Noise Environments
Authors: Keunhong Chae, Seokho Yoon
Abstract:
This paper proposes frequency offset (FO) estimation schemes robust to the non-Gaussian noise for orthogonal frequency division multiplexing (OFDM) systems. A maximum-likelihood (ML) scheme and a low-complexity estimation scheme are proposed by applying the probability density function of the cyclic prefix of OFDM symbols to the ML criterion. From simulation results, it is confirmed that the proposed schemes offer a significant FO estimation performance improvement over the conventional estimation scheme in non-Gaussian noise environments.Keywords: frequency offset, cyclic prefix, maximum-likelihood, non-Gaussian noise, OFDM
Procedia PDF Downloads 4778278 Morphological Variation of the Mesenteric Lymph Node in Dromedary Camels: The Impact of Rearing Systems
Authors: Khenenou Tarek, Mohamed Amine Fares, Djallal Eddine Rahmoun
Abstract:
The study intends to evaluate the morphological changes in the mesenteric lymph nodes of dromedaries in different rearing systems. we aimed to evaluate the adaptative behavior of the animal’s immune system with environmental variations, and to conduct a comparative analysis on the morphological features of the mesenteric lymph node of the one-humped camel (Camelus dromedarius) in the region of El Oued, with two different rearing systems, with different practices and different purposes. The study was conducted using histo-morphometric techniques to analyze the morphological features of the mesenteric lymph node of the one-humped camel (Camelus dromedarius) in the region of El Oued. Two groups of dromedaries were used in the study, one group raised in a free-roaming housing system and another group raised in a restricted-roaming housing system. The results revealed that there were significant differences between the two groups in terms of active follicle ratio and size and also the cellular population of functional zones. Animals living and roaming outside the farm barriers were more exposed to pathogens, which leads to the installation of an adaptative process, whereas the animals living under restricted-roaming housing system were not exposed to pathogens. This study indicated that the adaptative behavior of the animal’s immune system with environmental variations is the functional translation of morphological changes. The obtained findings revealed that the morphological features of the mesenteric lymph node of the one-humped camel (Camelus dromedarius) in the region of El Oued are directly linked to the rearing system practicesKeywords: adaptative behavior, dromedary, lymph node, morphology, rearing systems
Procedia PDF Downloads 298277 Wearable Heart Rate Sensor Based on Wireless System for Heart Health Monitoring
Authors: Murtadha Kareem, Oliver Faust
Abstract:
Wearable biosensor systems can be designed and developed for health monitoring. There is much interest in both scientific and industrial communities established since 2007. Fundamentally, the cost of healthcare has increased dramatically and the world population is aging. That creates the need to harvest technological improvements with small bio-sensing devices, wireless-communication, microelectronics and smart textiles, that leads to non-stop developments of wearable sensor based systems. There has been a significant demand to monitor patient's health status while the patient leaves the hospital in his/her personal environment. To address this need, there are numerous system prototypes which has been launched in the medical market recently, the aim of that is to provide real time information feedback about patient's health status, either to the patient himself/herself or direct to the supervising medical centre station, while being capable to give a notification for the patient in case of possible imminent health threatening conditions. Furthermore, wearable health monitoring systems comprise new techniques to address the problem of managing and monitoring chronic heart diseases for elderly people. Wearable sensor systems for health monitoring include various types of miniature sensors, either wearable or implantable. To be specific, our proposed system able to measure essential physiological parameter, such as heart rate signal which could be transmitted through Bluetooth to the cloud server in order to store, process, analysis and visualise the data acquisition. The acquired measurements are connected through internet of things to a central node, for instance an android smart phone or tablet used for visualising the collected information on application or transmit it to a medical centre.Keywords: Wearable sensor, Heart rate, Internet of things, Chronic heart disease
Procedia PDF Downloads 1678276 Optimization of Energy Harvesting Systems for RFID Applications
Authors: P. Chambe, B. Canova, A. Balabanian, M. Pele, N. Coeur
Abstract:
To avoid battery assisted tags with limited lifetime batteries, it is proposed here to replace them by energy harvesting systems, able to feed from local environment. This would allow total independence to RFID systems, very interesting for applications where tag removal from its location is not possible. Example is here described for luggage safety in airports, and is easily extendable to similar situation in terms of operation constraints. The idea is to fix RFID tag with energy harvesting system not only to identify luggage but also to supply an embedded microcontroller with a sensor delivering luggage weight making it impossible to add or to remove anything from the luggage during transit phases. The aim is to optimize the harvested energy for such RFID applications, and to study in which limits these applications are theoretically possible. Proposed energy harvester is based on two energy sources: piezoelectricity and electromagnetic waves, so that when the luggage is moving on ground transportation to airline counters, the piezo module supplies the tag and its microcontroller, while the RF module operates during luggage transit thanks to readers located along the way. Tag location on the luggage is analyzed to get best vibrations, as well as harvester better choice for optimizing the energy supply depending on applications and the amount of energy harvested during a period of time. Effects of system parameters (RFID UHF frequencies, limit distance between the tag and the antenna necessary to harvest energy, produced voltage and voltage threshold) are discussed and working conditions for such system are delimited.Keywords: RFID tag, energy harvesting, piezoelectric, EM waves
Procedia PDF Downloads 4558275 Comparative Analysis of Simulation-Based and Mixed-Integer Linear Programming Approaches for Optimizing Building Modernization Pathways Towards Decarbonization
Authors: Nico Fuchs, Fabian Wüllhorst, Laura Maier, Dirk Müller
Abstract:
The decarbonization of building stocks necessitates the modernization of existing buildings. Key measures for this include reducing energy demands through insulation of the building envelope, replacing heat generators, and installing solar systems. Given limited financial resources, it is impractical to modernize all buildings in a portfolio simultaneously; instead, prioritization of buildings and modernization measures for a given planning horizon is essential. Optimization models for modernization pathways can assist portfolio managers in this prioritization. However, modeling and solving these large-scale optimization problems, often represented as mixed-integer problems (MIP), necessitates simplifying the operation of building energy systems particularly with respect to system dynamics and transient behavior. This raises the question of which level of simplification remains sufficient to accurately account for realistic costs and emissions of building energy systems, ensuring a fair comparison of different modernization measures. This study addresses this issue by comparing a two-stage simulation-based optimization approach with a single-stage mathematical optimization in a mixed-integer linear programming (MILP) formulation. The simulation-based approach serves as a benchmark for realistic energy system operation but requires a restriction of the solution space to discrete choices of modernization measures, such as the sizing of heating systems. After calculating the operation of different energy systems in terms of the resulting final energy demands in simulation models on a first stage, the results serve as input for a second stage MILP optimization, where the design of each building in the portfolio is optimized. In contrast to the simulation-based approach, the MILP-based approach can capture a broader variety of modernization measures due to the efficiency of MILP solvers but necessitates simplifying the building energy system operation. Both approaches are employed to determine the cost-optimal design and dimensioning of several buildings in a portfolio to meet climate targets within limited yearly budgets, resulting in a modernization pathway for the entire portfolio. The comparison reveals that the MILP formulation successfully captures design decisions of building energy systems, such as the selection of heating systems and the modernization of building envelopes. However, the results regarding the optimal dimensioning of heating technologies differ from the results of the two-stage simulation-based approach, as the MILP model tends to overestimate operational efficiency, highlighting the limitations of the MILP approach.Keywords: building energy system optimization, model accuracy in optimization, modernization pathways, building stock decarbonization
Procedia PDF Downloads 418274 Atmospheric Circulation Types Related to Dust Transport Episodes over Crete in the Eastern Mediterranean
Authors: K. Alafogiannis, E. E. Houssos, E. Anagnostou, G. Kouvarakis, N. Mihalopoulos, A. Fotiadi
Abstract:
The Mediterranean basin is an area where different aerosol types coexist, including urban/industrial, desert dust, biomass burning and marine particles. Particularly, mineral dust aerosols, mostly originated from North African deserts, significantly contribute to high aerosol loads above the Mediterranean. Dust transport, controlled by the variation of the atmospheric circulation throughout the year, results in a strong spatial and temporal variability of aerosol properties. In this study, the synoptic conditions which favor dust transport over the Eastern Mediterranean are thoroughly investigated. For this reason, three datasets are employed. Firstly, ground-based daily data of aerosol properties, namely Aerosol Optical Thickness (AOT), Ångström exponent (α440-870) and fine fraction from the FORTH-AERONET (Aerosol Robotic Network) station along with measurements of PM10 concentrations from Finokalia station, for the period 2003-2011, are used to identify days with high coarse aerosol load (episodes) over Crete. Then, geopotential height at 1000, 850 and 700 hPa levels obtained from the NCEP/NCAR Reanalysis Project, are utilized to depict the atmospheric circulation during the identified episodes. Additionally, air-mass back trajectories, calculated by HYSPLIT, are used to verify the origin of aerosols from neighbouring deserts. For the 227 identified dust episodes, the statistical methods of Factor and Cluster Analysis are applied on the corresponding atmospheric circulation data to reveal the main types of the synoptic conditions favouring dust transport towards Crete (Eastern Mediterranean). The 227 cases are classified into 11 distinct types (clusters). Dust episodes in Eastern Mediterranean, are found to be more frequent (52%) in spring with a secondary maximum in autumn. The main characteristic of the atmospheric circulation associated with dust episodes, is the presence of a low-pressure system at surface, either in southwestern Europe or western/central Mediterranean, which induces a southerly air flow favouring dust transport from African deserts. The exact position and the intensity of the low-pressure system vary notably among clusters. More rarely dust may originate from deserts of Arabian Peninsula.Keywords: aerosols, atmospheric circulation, dust particles, Eastern Mediterranean
Procedia PDF Downloads 2328273 Understanding the Benefits of Multiple-Use Water Systems (MUS) for Smallholder Farmers in the Rural Hills of Nepal
Authors: RAJ KUMAR G.C.
Abstract:
There are tremendous opportunities to maximize smallholder farmers’ income from small-scale water resource development through micro irrigation and multiple-use water systems (MUS). MUS are an improved water management approach, developed and tested successfully by iDE that pipes water to a community both for domestic use and for agriculture using efficient micro irrigation. Different MUS models address different landscape constraints, water demand, and users’ preferences. MUS are complemented by micro irrigation kits, which were developed by iDE to enable farmers to grow high-value crops year-round and to use limited water resources efficiently. Over the last 15 years, iDE’s promotion of the MUS approach has encouraged government and other key stakeholders to invest in MUS for better planning of scarce water resources. Currently, about 60% of the cost of MUS construction is covered by the government and community. Based on iDE’s experience, a gravity-fed MUS costs approximately $125 USD per household to construct, and it can increase household income by $300 USD per year. A key element of the MUS approach is keeping farmers well linked to input supply systems and local produce collection centers, which helps to ensure that the farmers can produce a sufficient quantity of high-quality produce that earns a fair price. This process in turn creates an enabling environment for smallholders to invest in MUS and micro irrigation. Therefore, MUS should be seen as an integrated package of interventions –the end users, water sources, technologies, and the marketplace– that together enhance technical, financial, and institutional sustainability. Communities are trained to participate in sustainable water resource management as a part of the MUS planning and construction process. The MUS approach is cost-effective, improves community governance of scarce water resources, helps smallholder farmers to improve rural health and livelihoods, and promotes gender equity. MUS systems are simple to maintain and communities are trained to ensure that they can undertake minor maintenance procedures themselves. All in all, the iDE Nepal MUS offers multiple benefits and represents a practical and sustainable model of the MUS approach. Moreover, there is a growing national consensus that rural water supply systems should be designed for multiple uses, acknowledging that substantial work remains in developing national-level and local capacity and policies for scale-up.Keywords: multiple-use water systems , small scale water resources, rural livelihoods, practical and sustainable model
Procedia PDF Downloads 2968272 Investigating the Strategies for Managing On-plot Sanitation Systems’ Faecal Waste in Developing Regions: The Case of Ogun State, Nigeria
Authors: Olasunkanmi Olapeju
Abstract:
A large chunk of global population are not yet connected to water borne faecal management systems that rely on flush mechanisms and sewers networks that are linked with a central treatment plant. Only about 10% of sub-Saharan African countries are connected to central sewage systems. In Nigeria, majority of the population do not only depend on on-plot sanitation systems, a huge chunk do not also have access to safe and improved toilets. Apart from the organizational challenges and technical capacity, the other major factors that account for why faecal waste management is yet unimproved in developing countries are faulty planning frameworks that fail to maintain balance between urbanization dynamics and infrastructures, and misconceptions about what modern sanitation is all about. In most cases, the quest to implement developmental patterns that integrate modern sewers based sanitation systems have huge financial and political costs. Faecal waste management in poor countries largely lacks the needed political attention and budgetary prioritization. Yet, the on-plot sanitation systems being mainly relied upon the need to be managed in a manner that is sustainable and healthy, pending when development would embrace a more sustainable off-site central sewage system. This study is aimed at investigating existing strategies for managing on-plot sanitation systems’ faecal waste in Ogun state, Nigeria, with the aim of recommending sustainable sanitation management systems. The study adopted the convergent parallel variant of the mixed-mode technique, which involves the adoption of both quantitative and qualitative method of data collection. Adopting a four-level multi-stage approach, which is inclusive of all political divisions in the study area, a total of 330 questionnaires were respectively administered in the study area. Moreover, the qualitative data adopted the purposive approach in scoping down to 33 key informants. SPSS software (Version 22.0) was employed for descriptively analysis. The study shows that about 52% of households adopt the non-recovery management (NRM) means of burying their latrines with sand sludge shrinkage with chemicals such as carbides. The dominance of the non-recovery management means seriously constrains the quest for faecal resource recovery. Essentially, the management techniques adopted by households depend largely on the technology of their sanitary containments, emptying means available, the ability of households to pay for the cost of emptying, and the social acceptability of the reusability of faecal waste, which determines faecal resource recoverability. The study suggests that there is a need for municipal authorities in the study area to urgently intervene in the sanitation sector and consider it a key element of the planning process. There is a need for a comprehensive plan that would ensure a seamless transition to the adoption of a modern sanitation management system.Keywords: faecal, management, planning, waste, sanitation, sustainability
Procedia PDF Downloads 1098271 Detailed Feasibility and Design of a Grid-Tied PV and Building Integrated Photovoltaic System for a Commercial Healthcare Building
Authors: Muhammad Ali Tariq
Abstract:
Grid-connected PV systems have drawn tremendous attention of researchers in the past recent years. The report elucidates the development of efficient and stable solar PV energy conversion systems after thorough analysis at various facets like PV module characteristics, its arrangement, power electronics and MPPT topologies, the stability of the grid, and economic viability over its lifetime. This report and feasibility study will try to bring all optimizing approaches and design calculations which are required for generating energy from BIPV and roof-mounted solar PV in a convenient, sustainable, and user-friendly way.Keywords: building integrated photovoltaic system, grid integration, solar resource assessment, return on investment, multi MPPT-inverter, levelised cost of electricity
Procedia PDF Downloads 1408270 Numerical Modeling of Various Support Systems to Stabilize Deep Excavations
Authors: M. Abdallah
Abstract:
Urban development requires deep excavations near buildings and other structures. Deep excavation has become more a necessity for better utilization of space as the population of the world has dramatically increased. In Lebanon, some urban areas are very crowded and lack spaces for new buildings and underground projects, which makes the usage of underground space indispensable. In this paper, a numerical modeling is performed using the finite element method to study the deep excavation-diaphragm wall soil-structure interaction in the case of nonlinear soil behavior. The study is focused on a comparison of the results obtained using different support systems. Furthermore, a parametric study is performed according to the remoteness of the structure.Keywords: deep excavation, ground anchors, interaction soil-structure, struts
Procedia PDF Downloads 420